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Abstract
Differences in gene expression are thought to be an important source of phenotypic diversity, so
dissecting the genetic components of natural variation in gene expression is important for
understanding the evolutionary mechanisms that lead to adaptation. Gene expression is a complex
trait that, in diploid organisms, results from transcription of both maternal and paternal alleles.
Directly measuring allelic expression rather than total gene expression offers greater insight into
regulatory variation. The recent emergence of high-throughput sequencing offers an
unprecedented opportunity to study allelic transcription at a genomic scale for virtually any
species. By sequencing transcript pools derived from heterozygous individuals, estimates of allelic
expression can be directly obtained. The statistical power of this approach is influenced by the
number of transcripts sequenced and the ability to unambiguously assign individual sequence
fragments to specific alleles on the basis of transcribed nucleotide polymorphisms. Here, using
mathematical modelling and computer simulations, we determine the minimum sequencing depth
required to accurately measure relative allelic expression and detect allelic imbalance via high-
throughput sequencing under a variety of conditions. We conclude that, within a species, a
minimum of 500–1000 sequencing reads per gene are needed to test for allelic imbalance, and
consequently, at least five to 10 millions reads are required for studying a genome expressing 10
000 genes. Finally, using 454 sequencing, we illustrate an application of allelic expression by
testing for cis-regulatory divergence between closely related Drosophila species.
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A major challenge in evolutionary biology today is understanding the genetic and molecular
mechanisms that give rise to phenotypic differences within and between species. Such
differences can arise from mutations affecting the function of gene products (i.e. proteins or
RNAs) or mutations that affect expression of these genes. Historically, researchers have
looked almost exclusively for (and often found) changes in protein coding regions that
appeared to contribute to phenotypic evolution; however, during the last decade, there has
been a dramatic increase in the number of studies showing that changes affecting gene
regulation can also bring about diversity in ecologically relevant traits that affect behaviour,
physiology and morphology (e.g. Duda & Remigio 2008; Giger et al. 2008; Voelckel et al.
2008; see also for reviews Wray 2007; Hoekstra & Coyne 2007; Stern & Orgogozo 2008;
Pennisi 2008; Wolf et al. 2010).

Studies of gene expression have become routine with the development of techniques that
quantify transcript abundance in a high-throughput way. Microarray studies, in particular,
have produced valuable catalogues of differences in transcript levels between individuals
(Oleksiak et al. 2002; Whitehead & Crawford 2006), between species in diverse taxa (Rifkin
et al. 2003) and between ecological conditions (Reymond et al. 2000; Carsten et al. 2005;
Derome et al. 2006). Such studies also show that inter-individual differences in gene
expression are often highly heritable (Wayne et al. 2004; Gibson & Weir 2005; Hughes et
al. 2006; Lemos et al. 2008; Ayroles et al. 2009).

Because of this heritability, quantitative trait locus (QTL) mapping can be combined with
microarray analysis to investigate the genetic basis of variable gene expression (Vasemagi &
Primmer 2005). When a QTL affecting a gene’s transcription maps close to the affected
gene it can be classified as cis-acting, while a QTL that maps further away on the same
chromosome, or to another chromosome, can be classified as trans-acting (Brem et al.
2002). However, strictly speaking, ‘cis’ describes mutations that affect expression of only
the allele on the same chromosome as the mutation, whereas ‘trans’ describes mutations that
affect allelic expression on both homologous chromosomes. Examples of cis-acting
sequences include promoters and enhancers, which are typically located close to the gene
that they regulate, while examples of trans-acting regulators include genes that encode
transcription factors, which may be located anywhere in the genome. Classifications of
expression QTLs as cis- or trans-acting based solely on their proximity to the affected gene
are therefore only an approximation – and one that comes with many caveats (Rockman &
Kruglyak 2006).

Nevertheless, studies mapping expression QTLs suggest that both cis- and trans-regulatory
mutations contribute to transcriptional variation, with a preponderance of expression QTLs
appearing to be cis-acting (Wayne et al. 2004; Hughes et al. 2006; Osada et al. 2006;
Bergen et al. 2007; Genissel et al. 2008; Gilad et al. 2008; Price et al. 2008; Lemos et al.
2008; but see Morley et al. 2004), although this methodology generally has less statistical
power to detect trans-acting than cis-acting variants (Cookson et al. 2009). In addition, QTL
mapping studies of variable gene expression require microarrays suitable for studying the
species of interest, molecular markers that cover its complete genome, and resources for
genotyping these markers in a segregating population. The lack of any one of these things
can be a significant impediment for mapping expression QTLs outside well-established
genetic model systems.
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An alternative strategy for studying regulatory variation uses allelic transcript abundance
and the fact that cis-regulatory mutations have allele-specific effects on gene expression
while trans-regulatory mutations affect expression of both alleles in a diploid cell (Cowles et
al. 2002; Wittkopp et al. 2004). One or more transcribed differences in nucleotide sequence
are used to discriminate between transcripts produced by each allele. Asymmetric
expression of two alleles, also known as allelic imbalance (AI) that is observed between
alleles present in the same cell (i.e. exposed to the same trans-regulatory environment)
provides direct evidence of cis-regulatory differences. Expression differences observed
between individuals homozygous for two different alleles that are not also observed between
these same alleles in heterozygotes are attributed to trans-regulatory differences (Wittkopp
et al. 2004).

This allele-specific approach has now been used to decompose variable gene expression into
its cis- and trans-regulatory component parts for flies (e.g. Wittkopp et al. 2008a,b), humans
(e.g. Pant et al. 2006; Serre et al. 2008), plants (e.g. de Meaux et al. 2005; Guo et al. 2008)
and yeast (Tirosh et al. 2009). With the exception of Tirosh et al. (2009), who developed
custom microarrays, the methods used to measure allelic expression in these studies are not
readily scalable to an entire genome. Furthermore, methods used in these studies, including
Tirosh et al. (2009), require polymorphic sites that differentiate alleles to be known a priori.
For these reasons, studying allelic expression genome wide has been impractical for
nonmodel (as well as most model) species.

Next generation sequencing technologies have the potential to revolutionize studies of allelic
expression. Because they obviate the need for a priori sequence information, molecular
markers, and locus-specific genotyping assays, next generation sequencing methods can
measure allelic abundance at a genomic level in virtually any species. Only transcribed
nucleotide differences between alleles and sufficient sequencing depth for detecting AI are
required. For these reasons, we expect measurements of allelic expression based on next
generation sequencing will soon be acquired by many researchers, not only to disentangle
cis- and trans-regulatory variation, but also to quantify the heritability of gene expression,
examine dominance among regulatory alleles, evaluate their contribution to morphological,
physiological, or behavioural changes, and reveal patterns of allelic variation within and
between species.

Not surprisingly, the benefits of next generation sequencing come with a price – and often a
high one. A single ‘run’ of high-throughput sequencing can provide up to hundreds of
millions of sequences, but currently costs thousands of dollars. The precise cost per base
differs among technologies, as does the length of each sequenced fragment and the total
number of sequences collected. Because of this cost, careful experimental design that
maximizes the data per dollar for allelic expression studies using next generation sequencing
is critical. Optimal experimental design is particularly paramount for studies in molecular
ecology that seek to examine allelic expression in multiple individuals, species or
environmental conditions.

In this study, we use mathematical modelling and computer simulations to identify critical
parameters affecting measurements of allelic expression and the detection of AI with high-
throughput sequencing. We show that the statistical power of this method depends upon four
crucial parameters (Fig. 1): sequence divergence between alleles, the relative transcript
abundance, the average read length (i.e. amount of transcript sequenced) and sequencing
depth (i.e. average number of reads per gene). The latter two parameters determine the
number of sequencing reads expected to map to each gene. The former two parameters
determine the proportion of sequence reads per gene that are informative for allelic
expression [i.e. contain one or more single nucleotide polymorphisms (SNPs) that allow
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reads to be unambiguously assigned to an allele]. We show that this probability is strongly
affected by the location of SNPs within an mRNA as well as by the way in which the cDNA
library is prepared for sequencing. Here, we derive a mathematical model that determines
the minimum number of reads required to test for significant AI given various levels of
sequence divergence, read lengths, and distributions of relative transcript abundance, and we
compare these results with simulations. Finally, to illustrate the potential of this approach,
we describe an empirical study using measurements of allelic expression in F1 hybrids
between Drosophila melanogaster and Drosophila simulans obtained using 454 sequencing
(Roche 454 Life Sciences).

Materials and methods
Fly strains, rearing and crosses

F1 hybrids were produced by crossing 4-day-old virgin Drosophila melanogaster Canton S
females with Drosophila simulans C167.4 males. Each mating vial contained 10 females
and 10 males. Flies were reared on standard cornmeal medium at 20 °C under a 10/14-h
light/dark cycle. Hybrid females were collected at emergence and were stored for 5–6 days
at room temperature and then snap frozen in liquid nitrogen.

Preparation of cDNA libraries and 454 sequencing
Total RNA was extracted by homogenizing ~500 hybrid females in 4 mL of TRIZOL
Reagent (Invitrogen). We isolated mRNA using an Oligotex Direct mRNA Mini Kit
(Qiagen). One milligram of mRNA was used for the first-strand cDNA synthesis
(Superscript II; Invitrogen). Reverse transcriptase reactions were performed with
biotinylated polyT primer. Second-strand synthesis reactions contained 20 units of DNA
ligase, 5 units of RNase H and 30 units of DNA polymerase I (New England Biolabs). The
second-strand reactions were randomly sheared by sonication. The cDNA fragment was
blunt-ended with T4 polymerase (New England Biolabs). Finally, 3′-end cDNA fragments
containing the biotinylated polyT primers were removed from cDNA fragment pool by
using Dynabeads (Invitrogen). Sequencing was performed on a GS FLX Instrument
following standard protocols (454 Life Science Roche Diagnostics). Sequencing beads
containing less than 30 bases with high quality score (>20) were discarded. All sequences
are accessible in GenBank (genome project ID 41715).

Data handling and analysis of 454 sequences
A custom Perl script was used (i) to BLAST 454 reads against genic and intergenic
sequences from D. melanogaster (Flybase release 4.1, http://flybase.org/) and against the
complete genome of D. simulans (Apr. 2005 assembly, UCSC Genome Bioinformatics,
http://genome.ucsc.edu/), (ii) to assign to each 454 read to the most probable species (i.e. D.
melanogaster or D. simulans) as well as to a specific gene or intergenic region and (iii) to
extract descriptive information from each read: number of basepairs (i.e. sequence length),
extent of homology identified by BLAST, genomic position in the D. melanogaster and D.
simulans genomes, number of gaps in the sequence alignments, number of shared SNPs, and
number of species-specific SNPs. The first five of these six parameters describe the quality
of 454 reads, while the final parameter was used to classify each sequence read as derived
from D. melanogaster or D. simulans or to classify it as having an undetermined origin,
which was most common for sequence reads that matched either nonpolymorphic or
extremely polymorphic regions. All statistical analyses and simulations described in this
work were performed using R (R Development Core Team, 2005).
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Pyrosequencing data collection and analysis
To validate measures of allelic expression based on 454 sequencing, pyrosequencing assays
were performed for 14 genes (Table S2, Supporting information) using protocols described
in Wittkopp et al. (2008a,b). For each gene analysed, a custom pyrosequencing assay
consisting of three unique primers was developed and tested for specificity (primer
sequences available upon request). Using these assays, we quantified AI in each of eight
replicate cDNA samples, each independently synthesized from new mRNA extracted from
flies collected at the same time as those used for 454 sequencing. Genomic DNA was also
extracted from flies obtained in the initial collection and analysed in quadruplicate using
pyrosequencing. From each pyrosequencing reaction, the ratio of D. melanogaster to D.
simulans alleles was calculated as described in Wittkopp et al. (2008a,b). For each gene, the
ratio of relative allelic expression (i.e. D. melanogaster/D. simulans) was log (base 2)
transformed, and the average value from replicate genomic DNA samples was subtracted
from the average value of replicate cDNA samples, effectively correcting for any bias in
PCR-amplification between alleles (Wittkopp et al. 2004).

Quantifying allelic expression using short-read sequencing: expectations
and statistical power

Despite significant improvements in read length since their release, current high-throughput
sequencing technologies (e.g. Illumina Solexa, Roche 454 Life Sciences, ABI Solid) remain
‘short-read’ (i.e. <500 bp) sequencing methods. The length of sequences is particularly
important for studying allelic expression because, to be informative, a sequencing read must
include one or more SNPs that discriminate between alleles. If the distance between
heterozygous sites within a transcript is greater than the average sequence length, many
reads will include only invariant sites and thus be uninformative for allelic expression. A
single ‘run’ of next generation sequencing generates hundreds of thousands to millions of
sequencing reads, but only the subset of reads that are informative contribute to estimates of
allelic expression. The relative frequency of informative and uninformative reads has a
major impact on the statistical power for detecting AI in a given experiment.

In the following section, we derive the probability of obtaining informative and
uninformative sequences depending on the number of total sequencing reads, the read length
and the sequence divergence between alleles. The model assumes that informative reads
could be assigned unambiguously to alleles: it implies that allelic reference sequences are
known and read mapping procedures are without errors. For very short reads, alignments
against reference genome can be sensitive to mismatches but a large number of new
algorithms have been recently released to deal with this issue (see Bateman & Quackenbush
2009; Kofler et al. 2009). Nevertheless, in our model, confidence of allele assignment can
be controlled for by the number of SNPs required (see below). We then relax the model
assumptions and discuss possibilities of measuring allelic expression without reference
genomes or a priori sequences. We show that the total number of sequence reads, in
combination with the distribution of transcript abundance among genes, determines the
sequencing depth (i.e. number of reads) needed per gene. The read length and sequence
divergence define the likelihood of sampling one or more transcribed SNPs, which in turn
determines the proportion of informative reads. We explore a wide range of parameter
values that should encompass most biological comparisons within and between closely
related species. These conditions also reflect the current and anticipated output of multiple
high-throughput sequencing technologies. The ultimate goal of this work was to provide
guidance for researchers designing allelic expression experiments in their favourite system.
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The relationship between sequence divergence and read length
When quantifying total levels of transcript abundance by sequencing cDNA, reads from
anywhere within the transcript are informative as long as they are long enough to map
unambiguously to a single site in the genome (Torres et al. 2008; Wang et al. 2009). By
contrast, when measuring allelic expression, only the subset of these reads containing one or
more SNPs that distinguish transcripts derived from different alleles of the same gene are
informative. Therefore, read length is a critical parameter for sequencing-based studies of
allelic expression: longer reads increase the probability of sequencing a polymorphic site.
Sequence divergence between the two alleles under study must also be considered: greater
divergence increases the probability of sequencing polymorphic sites for a given read length.

More formally, the probability of sampling at least x SNPs in a read of length l can be
approximated by:

(1)

where d is the sequence divergence (i.e. the probability of observing a SNP at each
nucleotide position). The probability of obtaining exactly n informative reads with at least x
SNPs in s randomly sampled reads from a heterozygous gene is given by the probability
mass function:

(2)

The mean and the variance of this distribution are

(3)

and,

(4)

Consequently, Pr (X ≥ x) is the expected proportion of informative reads in a random
sample.

If only one SNP is required to assign alleles unambiguously, eqn (1) becomes:

(5)

For this special case, the minimum read length required to observe a minimum proportion of
Pr(X ≥ 1) reads with at least one SNP is

(6)
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Hence, for mRNA sequences that differ at 0.5% of sites, sequence reads longer than 138 bp
are needed in order to obtain ≥50% of reads with at least one SNP. However, in some cases,
more than one SNP may be required to unequivocally discriminate between the two alleles.
For example, depending on the specific experiment, recombination, homoplasy, or errors in
transcription or sequencing could lower the confidence of assignments only based on a
single SNP. Therefore, we also calculated the expected proportion of informative reads
when more than one SNP is required for allele assignment. By applying eqn (2), we show
that this parameter diminishes rapidly when the minimum number of required SNPs
increases (Fig. 2A, B). Sequences with little genetic divergence (i.e. <1%) are particularly
sensitive to the minimum number of SNPs required to discriminate between alleles.

To determine how well this mathematical model predicts the proportion of informative
reads, we randomly sampled reads in silico with lengths ranging from 35 to 800 bp from
pairs of virtual mRNA sequences 2000 bp long that contained various levels of sequence
divergence. SNPs were distributed uniformly across the length of each hypothetical mRNA
sequence. In each simulation, we counted the number of informative reads, that is, the
number containing one or more polymorphic sites. As shown in Fig. 2C, D, predictions from
our model are most accurate for sequence reads that are ≤300 bp. For longer reads, our
model underestimates the mean as well as the variance. Large means are inaccurately
estimated because eqn (1) assumes that mRNA molecules have infinite length and
consequently, that SNPs can be sampled with replacement. When read lengths converge to
mRNA lengths, this assumption then becomes invalid and eqn (1) should be replaced by a
hypergeometric form that includes a parameter for mRNA length (see legend for Fig. S1,
Supporting information). Although this hypergeometric model is indeed more accurate
(compare Fig. 2 and Fig. S1, Supporting information), it is also more complex
mathematically. For most experimental design applications, we anticipate that the simpler
binomial model will be sufficient.

Note that both the binomial (Fig. 2) and hypergeometric (Fig. S1, Supporting information)
models underestimate the variance observed in the simulation study. This is because these
models do not take into account the location of polymorphic sites within each mRNA. The
probability of sampling a SNP dependent upon its position in the mRNA (Fig. S2,
Supporting information) can be described as:

(7)

where i is the nucleotide position in the mRNA sequence, lg the mRNA length, and

The mean of this probability distribution is

(8)

and its variance is
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(9)

Hence, considering the location of a SNP requires a much more complex model and only
special cases can be easily derived. For instance, for the simple situation of an mRNA
sequence containing one and only one SNP, the probability of sampling informative reads
becomes

(10)

The model described above treats the read length l as a fixed value even though (after
filtering for base quality) all sequencing technologies produce reads with a range of
alignable lengths. To incorporate this element of the data, we represent the distribution of l
as Pr(l), and incorporate this new assumption into eqn (1), resulting in

(11)

Incorporating variable read lengths into the model had little effect on the probability of
sampling x SNPs in a read. For instance, assuming a Poisson distribution of read lengths,
eqn (5) becomes

(12)

Finally, the proportion of genes with more than n informative reads can be estimated by:

(13)

where Pr(T = t) is the distribution of transcript levels t across the genome. This distribution
can be empirically determined or approximated by either discrete decay or power law
functions (e.g. Ogasawara et al. 2003). Assuming a geometric decay and using eqn (5), we
can rewrite eqn (13) as:

(14)

where T ̄ is the mean number of transcripts per gene (i.e. the sequencing depth) and d̄ is the
mean sequence divergence. Although eqn (14) lacks some of the variance in parameter
values discussed above (i.e. read length and sequence divergence distributions as well as
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SNP location within a sequence), the model nevertheless does an excellent job of predicting
the simulated proportion of genes with more than n informative reads (Fig. 3).

Therefore, for a given number of transcribed genes and total number of sequencing reads
(from which T ̄ is derived), as well as a particular mean sequence divergence and mean read
length, the number of genes expected to have more than n informative reads can be robustly
predicted. This number (n) is critical for designing allelic expression experiments using next
generation sequencing because it directly determines the statistical power for detecting AI.

Allelic imbalance and statistical power
If we specifically define AI as the ratio of allelic transcript abundance (i.e. number of
transcripts from allele 1 divided by the number of transcripts from allele 2), then the
probability of observing na1 reads from allele 1 in a sample of n informative reads is given
by:

(15)

Using this equation, we can determine whether an observed AI value for a gene is
significantly different from a null hypothesis of no difference in allelic expression (AI = 1).
As shown in Fig. 4, statistical power rises quickly when the true value of AI is ≥2 (e.g. a
sample of only 50 informative reads provides 60% statistical power). On the other hand,
small imbalances (<1.25-fold) require more than 500 informative reads to reach this same
power. Although statistical power to detect significant AI can be achieved easily with small
samples, large samples are generally required to produce reasonably precise estimates of AI,
especially when the true value of AI is very large (Fig. S3, Supporting information). Prior
studies comparing allelic expression within and between Drosophila species observed a
median AI of 1.4 for all genes and samples examined and a median AI of 1.7 for cases
classified as having significant AI (Wittkopp et al. 2008a,b). This suggests that 200 or more
informative reads will generally be required to detect a significant and precise AI values
using high-throughput sequencing.

Read sampling strategies
The number of transcribed genes and the mean sequence divergence are both dictated by the
species and genotypes under study and cannot be altered. Furthermore, the researcher can
affect the average length of sequence reads only in a limited way by choosing one next
generation sequencing technology instead of another. The aspect of a sequencing-based
allelic expression experiment that the researcher has the most control over is the preparation
of cDNA (or equivalent) libraries used for sequencing. Two general types of cDNA libraries
can be used for measuring allelic expression. The first is essentially a shotgun library, in
which fragments are randomly sampled from the transcriptome. The second is more
targeted, containing fragments only from a predetermined region of each transcript. For
instance, the 5′- or 3′-end can be systematically sampled from each transcript (e.g. Gowda et
al. 2006). The sampling strategy should be chosen carefully because, as shown in eqn (7)
and Fig. S2 (Supporting information), the location of SNPs within the cDNA template used
for sequencing affects the probability of collecting sequence reads informative for allelic
expression.

For a given sequence divergence and read length, the sampling strategy does not affect the
expected mean proportion of informative reads; however, it has a large effect on the
variance among genes in the proportion of informative reads (Fig. 5C). With a targeted
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sampling approach all reads for a given gene will either be informative or uninformative,
depending on the position of SNPs in the transcript. Consequently, targeted sampling
maximizes the statistical power to detect AI for genes that have at least one polymorphic site
in the targeted region, but provides no information about relative allelic expression for genes
that lack variation in this region. With random sampling, the situation is reversed: estimates
of allelic expression can be obtained for more genes, but the power to detect significant AI
for any given gene is reduced. Additionally, under random sampling, gene length affects the
relative estimated expression among genes (i.e. more reads should come from longer genes),
but has a negligible effect on measures of relative allelic expression because transcripts from
both alleles of a gene are usually the same length. (For this reason, we did not include gene
length in the mathematical models described above.)

To compare the power of random and targeted sampling, we simulated the proportion of
genes with more than 200 informative reads under different conditions. As described above,
200 informative reads per gene provides reasonable statistical power to detect reasonably
small difference in allelic expression (see Fig. 4). Results from this simulation show that
random sampling generally performs better than targeted sampling, except when sequence
divergence and the number of sequences per gene are low, and especially when sequencing
reads are short (Fig. 5A, B). As an alternative, a ‘mixed’ sampling scheme that included
50% targeted and 50% randomly located sequence reads produced results most similar to
targeted sampling (Fig. 5C). Such a ‘mixed’ sampling strategy could be employed by paired-
end sequencing a cDNA library containing fragments of variable length that all share the
same 5′- or 3′-end.

Based on these results, we conclude that, for allelic expression experiments with at least
moderate sequence depth in species with reference genomes available (that can be used to
map sequencing reads to particular genes), a random sampling strategy will almost always
provide the most information per unit cost. However, if no reference genome sequence is
available, or if sequencing depth is limited, targeted sampling may have advantages that
offset the loss of information on a genomic scale. For example, targeted sampling simplifies
the process of determining which sequence reads come from the same gene. In the absence
of a reference genome, this is especially important because sequence reads must be
assembled into (hopefully, gene-specific) contigs de novo and all reads from the same gene
generated by targeted sampling should overlap. Alternatively if a reference genome is
available, but only low depth sequencing is possible, a targeted strategy would provide more
accurate estimates of allelic expression for the subset of the genes with SNPs in the targeted
regions than random sampling. Finally, although there may be some cases for which ‘mixed’
sampling would be the best choice, in the two scenarios considered above, reducing
coverage in the targeted region and distributing some of the reads more evenly across the
transcriptome does not offer any clear advantages.

Allelic expression in Drosophila hybrids
To illustrate one application of allelic expression measurements, we quantified allelic
expression in cDNA pools derived from interspecific F1 hybrids and used these data to test
for significant AI (i.e. differences in expression between the maternal and paternal alleles).
F1 hybrids used for this study were produced by crossing Drosophila melanogaster females
and Drosophila simulans males, collecting virgin female progeny, and aging them for 5–6
days. After extracting mRNA from these flies, a cDNA pool containing random fragments
from the transcriptome was constructed and analysed using the high-throughput sequencing
technology developed by 454 Life Sciences (Roche).
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Analysis of sequencing statistics, informative reads and allelic expression
In all, 36 855 high-quality 454 sequencing reads were obtained from the random
interspecific hybrid cDNA library (Table 1). The average length of these reads was 170 bp,
with 74 and 250 bp for the 2.5 and 97.5 percentile respectively. Eighty-eight per cent of
these reads had at least one homologous sequence in either the D. melanogaster or D.
simulans genome (BLAST, E-value < 10−4), 5% of which showed homology to only one of
the two parental genomes. These reads mapped to 5591 genes and 975 intergenic regions.
Sequences derived from intergenic regions accounted for 7% of the mapped reads, and
might have resulted from transcription of unannotated genes or exons, abnormal splicing
that generated unexpected splice junctions, transposable elements or spurious transcription
(e.g. Stolc et al. 2004). More than 10 reads matched each of 577 genes, while more than 50
reads matched each of 83 genes. Despite this relatively low sequencing depth, our data
appear to correctly, albeit crudely, measure total levels of gene expression: estimates of
transcript abundance in F1 hybrids measured using 454 sequencing correlated significantly
(Spearman correlation, Rho = 0.45, P < 0.001) with expression levels reported for female D.
melanogaster that were obtained using microarrays (Harbison et al. 2005).

In order to assign each read to a specific parental allele, we determined the number of
variable sites among 454 reads for a particular gene (i.e. SNPs) that were identical to the D.
melanogaster and D. simulans reference genomes. This analysis was performed only for
reads that showed a significant alignment with both reference genomes. Sequences were
assigned to the species with the highest number of identical SNPs. For instance, if three
SNPs within a given read were identical to the D. melanogaster reference genome and two
(different) SNPs were identical to the D. simulans reference genome, the read was assumed
to be derived from the D. melanogaster allele. Reads were expected to differ from the
reference genomes because the strains of D. melanogaster and D. simulans used to generate
the F1 hybrids analysed by 454 sequencing were not the same as the strains sequenced to
assemble these reference genomes. As mentioned above, shared recombination, homoplasy,
or errors in transcription or sequencing might also complicate the assignment of individual
reads to one species or the other. In all, 26 039 reads, which is 71% of all high-quality reads,
were assigned to one species or the other. At least 10 informative reads were identified for
each of 465 genes, with 58 of these genes having more than 50 informative reads each (Fig.
6B). As shown in Fig. 4, genes with 50 informative reads had 60% power to detect
significant AI of at least twofold, while genes with 10 reads had only 20% power to detect
changes of the same magnitude. Consistent with both intuitive and mathematical predictions,
long reads were more often informative for allele-specific expression than short reads (Fig.
6A), with the average length of uninformative reads only ~70% that of informative reads
(Table 1).

Intriguingly, more informative reads (53%) were assigned to the D. melanogaster allele than
to the D. simulans allele (13 770 and 12 269 reads, respectively; binomial test: P < 0.001).
The excess of D. melanogaster alleles was greater among sequences from genomic regions
annotated as genic than those annotated as intergenic (53.0% vs. 50.3%), although this
difference was not significant (χ2 = 3, P = 0.08) and may be an artefact of the much smaller
number of reads classified as intergenic (93% vs. 7%). The overabundance of D.
melanogaster alleles was observed not only across the whole transcriptome analysed but
also for subsets of genes with different expression levels (Fig. 6C). The one (surprising)
exception to this was the subset of genes with the highest overall expression levels, which
showed an excess of D. simulans alleles (Fig. 6C). This shows that the greater abundance of
D. melanogaster reads observed in F1 hybrids cannot be explained by higher expression of
the D. melanogaster allele of only a few highly expressed genes. In addition, this pattern is
unlikely to result from poor quality sequences or alignments because (i) BLAST hit lengths
are on average identical in both reference genomes, (ii) there were on average 4.5
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discriminating SNPs per informative read, in both species, which makes nearly all
assignments unambiguous and (iii) the trend remained after applying a higher stringency
cutoff (≥2 SNPs, see Table 1). Based on all of these observations, we conclude that the
preferential expression of D. melanogaster alleles observed in F1 hybrids is a real
(biological) property of these flies and likely results from a process that affects allelic
transcription on a genomic scale. This expression bias does not appear to be caused by a
particular tissue, a particular biological function, or a particular chromosomal location (data
not shown); however, deeper sequence coverage is required to test these hypotheses
definitively.

Allelic imbalance in Drosophila hybrids
As described in the Introduction, quantifying AI in F1 hybrids provides a direct readout of
relative cis-regulatory activity. We tested for significant AI of the 891 genes that show more
than six informative reads because it is impossible to reach significance (P < 0.05) with a
binomial test and less than six observations. One hundred seven of these 891 genes (12%)
showed significant AI based on our data (Table S1, Supporting information). For this
analysis, we estimate the false discovery rate to be c. 17% by resampling our observed
distribution of informative read abundance assuming observed AIs are true or equal to 1. On
the other hand, we estimated c. 13% of false negative AI. Consequently, the analysis
suggests that more than 190 genes could show true AI (21% of tested genes). In fact, despite
the low level of sequencing depth, we detected significant AI for 35% of genes with more
than 50 informative reads and for 14% of genes with more than 10 informative reads. On
average, the more abundant allele of a gene was observed five times more than the less
abundant allele, with a minimum of 1.6 and a maximum of 15 (Fig. S4, Supporting
information). Finally and perhaps not surprisingly given the overall excess of reads most
similar to D. melanogaster, the D. melanogaster allele was more abundant than the D.
simulans allele for 73 (68%) of these 107 genes (binomial test: P < 0.001, Fig. 6C).

454 sequencing and pyrosequencing produce similar estimates of allelic expression
To determine whether 454 sequencing produces accurate estimates of allelic expression, we
used pyrosequencing to independently quantify AI in 14 genes and compared the results to
estimates obtained using 454 sequencing. The 14 genes selected for this analysis had allelic
expression differences that spanned the range of AI values observed with 454 sequencing
(compare Fig. 6D and Fig. S4). Pyrosequencing permits quantifications of allelic expression
for individual genes and produces estimates of AI that are consistent with those obtained
using both quantitative real-time PCR and microarrays (Wittkopp et al. 2006).
Pyrosequencing allows high levels of replication for a modest cost, thus very precise
estimates of AI can be obtained. Despite the small number of informative 454 sequencing
reads for some of the genes analysed (Table S2, Supporting information), we found a
significant correlation between estimates of allelic expression obtained using these two
techniques (Fig. 6D; Spearman’s Rho = 0.65, P < 0.05). The effect of sequencing depth for
individual genes on the precision of allelic expression estimates is readily visible by
examining the gene-specific binomial sampling confidence intervals shown in Fig. 6D.
Because precision improves with deeper sequencing coverage, we also examined the
correlation between measures of allelic expression for the eight genes with at least 20
informative reads each. This subset of the data showed a stronger correlation (Spearman’s
Rho = 0.74, P < 0.05), as expected.

Discussion
Less than a decade ago, Gibson (2002) predicted that microarrays would have a tremendous
impact on molecular and genetic research at the interface of organismal and population
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biology. Since then, this methodology has proven to be a formidable tool for examining the
extent of gene expression polymorphism within species and divergence between species, as
well as for studying the evolutionary processes that generate and act upon regulatory
variation. Microarray studies have revealed extensive inter-individual variation in gene
expression and showed that this variation is often heritable and its segregation within and
between species is primarily affected by neutral drift and stabilizing selection (see for
review Whitehead & Crawford 2006). Perhaps surprisingly, very little adaptive regulatory
variation has been identified. This may be because it is uncommon or because we do not yet
have the correct theoretical framework for distinguishing the effects of neutral and non-
neutral evolution (Fay & Wittkopp 2008).

High-throughput sequencing technologies are now poised to replace microarrays for
measuring gene expression on a genomic scale, especially for evolutionary and ecological
studies that require analysis of many species and/or individuals with divergent genotypes.
(Elmer et al., 2010) Compared to microarrays, a high-throughput sequencing approach is
more complex technologically, yet much simpler statistically and methodologically.
Furthermore, it does not require taxon-specific probes or any a priori sequence information,
making it suitable for measuring expression profiles of virtually any species. Arguably, its
greatest advantage relative to microarrays is that both total and allelic measures of gene
expression are obtained simultaneously. With measures of allelic expression, there is a
closer relationship between an allele’s sequence and its activity, making it easier to study the
inheritance of gene regulation phenotypes within and between species.

Indeed, using allelic expression rather than total gene expression not only facilitates studies
exploring the evolutionary consequences of naturally occurring regulatory variation, but also
simplifies mapping of regulatory mutations variation, which is necessary to elucidate the
genetic architecture of gene expression. Such studies allow researchers to more efficiently
identify loci, genes and molecular processes that play important roles in adaptation. We fully
anticipate that studies of allelic expression will soon produce novel insights for the field of
molecular ecology, as well as many other fields. We hope that the theoretical and empirical
information provided by this study helps researchers design experiments that test specific
hypotheses efficiently and cost effectively.

To this end, we have developed a mathematical model that allows researchers to estimate the
minimum sequencing depth needed to detect significant AI, based on the average sequence
read length of their chosen next generation sequencing technology, the average genetic
divergence between alleles under study, the approximate number of transcribed genes, and
the anticipated distribution of transcript levels across the genome. For instance, eqn (14)
shows that, for an experiment that uses reads averaging 150 bp and compares allelic
expression in a polymorphic species with 0.1% sequence divergence, more than 4000
sequence reads per gene are needed to achieve 60% statistical power for detecting
significantly AI larger than 1.5-fold (see Figs 3 and 4). For a genome containing 10 000
transcribed genes (and assuming an exponential decay distribution for expression levels),
such a study would require c. 40 million reads (Fig. 3). If the average sequence length were
increased to 500 bp, the number of sequence reads required would be decreased fourfold to
c. 10 million reads. With only three million reads, a statistical power of ~20% would be
achieved.

Caveats and considerations
We stress that these predictions should be treated as approximate guidelines only because a
number of features of real transcriptomes violate our model and cause our equations to over-
or underestimate the requisite number of sequence reads. In the following paragraphs, we
discuss four such features and their impact on study design.
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We modelled the distribution of transcript levels using a standard decay function, yet the
distribution of transcript abundances in real organisms will virtually never fit such as
function perfectly. In particular, strong deviations in distribution tails, such as many more
genes with extremely high or low expression levels, will cause the model to underestimate
the required minimum sequencing depth. If the precise distribution of transcript levels is
known a priori for a particular organism, however, this information can easily be
incorporated into eqn (13) to improve the accuracy of the predictions.

Another potential caveat comes from the imprecise construction of cDNA pools. We found
that the way sequences are sampled from mRNA transcripts affects the statistical power for
a given set of parameters (Fig. 5). We modelled cases only in which cDNA pools contain
completely random fragments and perfectly targeted fragments; however, one or more of the
technical steps used to create cDNA libraries for sequencing may often introduce
imperfections. For example, an unexpected bias may arise during the production of
‘random’ cDNA libraries caused by factors such as the preferential ligation of adapters used
for sequencing. Alternatively, targeted libraries may include unwanted sequence fragments
that result from reads in untargeted regions. However, our analysis of the ‘mixed’ sampling
strategy suggests that small errors in the ultimate composition of cDNA libraries will have
little effect on the power to detect AI for most genes. Paired-end sequencing, which is an
option now available for some technologies, has no clear advantages for AI analyses,
although it could be used to evaluate read and sample quality.

Yet another factor to consider carefully is which genes (with respect to expression level) are
of utmost interest. For example, if highly transcribed genes are of primary concern, shallow
sequencing may be sufficient; increasing sequencing depth has little impact on the statistical
power to detect significant AI in these genes. By contrast, if lowly transcribed genes are of
most interest, sequencing the entire transcriptome may require such high coverage as to
make the experiment impractical. Removing transcripts from genes with the highest
expression by subtraction or normalization is one way to increase coverage of the more
lowly expressed genes; however, care must be taken not to alter the relative abundance of
alleles for the genes of interest. Methods such as quantitative PCR or pyrosequencing may
be much more cost-effective and reliable for measuring allelic expression of a few lowly
expressed genes.

Finally, computer simulations showed that the position of SNPs within a transcript increases
variance in the expected number of informative reads per gene. The model assumes,
however, that SNPs are distributed randomly across the length of each mRNA. In reality,
polymorphic sites are rarely distributed randomly within a transcript. For instance, they are
known to be more frequent in 5′ or 3′ UTRs than nonsynonymous sites (Andolfatto 2005).
Differences also exist in the amount of sequence polymorphism and divergence among
genes. In general, regions of transcripts with greater sequence variation are more likely to
produce informative reads than regions with fewer polymorphic or divergent sites. Finally,
our model assumes that transcript abundance and sequence divergence are independent, but
in fact, they are often correlated (Subramanian & Kumar 2004).

Properties of allelic expression in Drosophila hybrids
Interspecific hybrids between D. melanogaster and D. simulans show extensive
misexpression relative to either parental species (Ranz et al. 2004). The primary cause of
this misexpression is unknown, but it is generally attributed to incompatibilities between
genomes that disrupt gene regulatory networks (Landry et al. 2007). Consistent with this
idea, prior work suggests that the co-evolution of cis- and trans-regulatory factors may
contribute to misexpression when divergent alleles meet in interspecific hybrids (Landry et
al. 2005).
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To compare the activity of homologous cis-regulatory sequences between species, we used
estimates of allelic expression in interspecific F1 hybrids obtained using 454 sequencing. We
measured allelic expression for over 5500 of the most highly expressed genes and we were
able to test AI in ~900 of these genes. Overall, we detected significant AI for 12% of these
genes; among genes with the most informative reads (i.e. ≥50 reads per gene), 35% of genes
showed significant AI. Our study almost certainly underestimates the percentage of genes
with differences in expression between species-specific alleles in F1 hybrids because even
50 informative reads per gene provides only 25% and 60% statistical power to detect
significant AI for genes with true allelic expression differences of 1.5- and twofold
respectively. Consistent with this interpretation, prior studies of relative cis-regulatory
activity between D. melanogaster and D. simulans reported much higher percentages of
genes with significant AI (Lemos et al. 2008; Wittkopp et al. 2008a,b).

Genomic imbalance in interspecific hybrids
Widespread misexpression of genes is common in inter-specific hybrids, and the genomic
imbalance that we observed in F1 hybrids between D. melanogaster and D. simulans alleles
may provide insight into the molecular mechanisms responsible for this misexpression.
Drosophila melanogaster alleles are repeatedly overexpressed in F1 hybrids despite the fact
that both alleles are expected to be regulated by the same pool of maternal and paternal
trans-acting factors. Long-range chromatin effects that favour expression of D.
melanogaster chromosomes could contribute to this genomic imbalance, as could
interactions between the nuclear genome and cytoplasmic components (especially
mitochondria), which were inherited from D. melanogaster in the hybrids examined. It will
be interesting to see whether these same expression differences exist between the two alleles
if they are compared in cells containing only trans-acting factors from D. melanogaster or
D. simulans. Such a comparison would provide a direct test for complex interactions among
divergent trans-acting factors and cis-regulatory sequences. Although the prevalence of such
interactions remains an open question, a small scale study of D. melanogaster found no
evidence of such cis-by-trans interactions (Wittkopp et al. 2008a,b).

Concluding remarks
Comparing the activity of orthologous cis-regulatory alleles, as described here for
interspecific Drosophila hybrids, is but one application of sequence-based measures of
allelic expression. Quantifying heritability of gene expression, examining dominance and
imprinting among regulatory alleles, or revealing patterns of allelic variation within and
between species are some of additional applications for quantitative measures of relative
allelic expression. By identifying parameters critical for such experiments and exploring
their impact on possible outputs, we anticipate that results from this study will help
researchers optimize their available resources and generate data sets that are best suited for
addressing their primary question(s) of interest.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Fig. 1.
High-throughput sequencing technology allows measurement of relative allelic expression
genome wide. The schematic representation shown illustrates the steps require to collect
allelic expression data. Key parameters associated with each step that ultimately affect the
statistical power for detecting significant allelic imbalance (AI) are also shown.
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Fig. 2.
The expected proportion of informative reads increases with genetic divergence and read
length. (A, B) Black lines show expected proportions of informative reads (i.e. sequence
fragments that could be unambiguously assigned to one allele) predicted by eqn (3) for
transcribed sequences containing 0.1, 0.5, 1 or 5% sequence divergence, as indicated.
Predictions are shown in which either one single nucleotide polymorphism (SNP) (A) or two
SNPs (B) were required for a sequencing read to be informative for measuring allelic
expression. (C, D) Predictions based on 0.1% and 1% sequence divergence and requiring
only one SNP to be informative are shown again, as they were in (A). Results from
simulated data sets are also shown. Each simulation contained either 20 (C) or 200 (D) reads
that were generated using a virtual 2000 bp mRNA sequence, 0.1% or 1% sequence
divergence, and sequencing reads of 35, 150, 300 and 800 bp. Each scenario was simulated
500 times, and is summarized by boxplots showing the median, lower and upper quartiles, as
well as the 1.5 interquartile range. The gray lines are the 95% confidence intervals of the
expected proportions based on binomial sampling (Clopper-Pearson interval on eqn (1),
Clopper & Pearson 1934).
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Fig. 3.
Predicted proportions of genes with more than 200 informative reads for a given sequencing
depth are consistent with simulated data. Predicted values (lines) were obtained using eqn
(14), assuming a mean read length of 150 bp and sequence divergence of 0.1%, .5%, 1%,
and 5%, as indicated. Simulated data (points) used distributions of transcript abundance,
read length, and sequence divergence, as shown for the insets. Two replicate simulations
were performed and found to be highly correlated with each other (Spearman’s Rho >99%).
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Fig. 4.
Detecting significant allelic imbalance (AI) for genes with small differences in allelic
expression requires a large number of informative reads per gene. Statistical power for
detecting significant AI for a type I error α = 5% under different conditions is shown. Each
line shows the power to detect significant AI, assuming that the true value of AI is 1, 1.25,
1.5, 2, 7, 10 or 100.
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Fig. 5.
Read sampling strategy affects the proportion of informative reads per gene and thus the
number of genes for which significant allelic imbalance (AI) can be detected. (A, B)
Simulated proportions of genes with more than 200 informative reads using a random or a
targeted read sampling strategy are shown for mean read lengths of 35 bp (A) and 150 bp
(B), with individual reads sampled from a Poisson distribution. See Fig. 2 for a more
detailed description of the simulation parameters. (C) The proportion of informative reads
per gene using random (left), targeted (middle) and mixed (right) sampling strategies are
shown. Each beanplot represents the distribution (500 replicates) of the proportion of
informative reads among 500 sampled reads. The horizontal bar shown on each beanplot
indicates the mean of these distributions. For the mixed strategy, fragments with sequence
lengths drawn from a Poisson distribution with a mean of 500 bp were anchored to a fixed,
predetermined location (the 3′ end), and sequences of either 18 or 75 bp were taken from
each end to simulate paired-end sequencing.

FONTANILLAS et al. Page 23

Mol Ecol. Author manuscript; available in PMC 2011 November 16.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 6.
Analysis of allelic expression and allelic imbalance (AI) in Drosophila F1 hybrids. (A) The
distribution of sequence fragment lengths for both informative and uninformative reads is
shown. (B) The number of genes in different gene expression level classes (as measured by
the abundance of informative reads) are shown along with the number of genes in each class
that showed significant AI. (C) The top panel shows the proportion of genes with significant
AI (see Table S1, Supporting information) for which the D. melanogaster allele is most
abundant. The bottom panel shows the proportion of informative reads in a given expression
level class that were assigned to D. melanogaster. In both panels, the dotted line corresponds
to a balanced proportion (50%). (D) The relationship between relative allelic expression as
measured by 454 sequencing and by pyrosequencing is shown. For pyrosequencing, the
average of eight replicates is plotted and the 95% confidence intervals are indicated by the
horizontal bars. For 454 sequencing, the relative number of informative reads is shown, with
vertical bars indicating the Clooper-Pearson 95% confidence intervals derived from
binomial sampling (see Supplementary Fig. S3). The dotted line indicates the slope of the
nonparametric regression.
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