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Abstract
Determination of haplotype phase is increasingly important as we enter the era of large-scale
sequencing because many of its applications, such as imputing low frequency variants and
characterizing the relationship between genetic variation and disease susceptibility, are
particularly relevant to sequence data. Haplotype phase can be generated through laboratory-based
experimental methods, or it can be estimated with computational approaches. We assess the
haplotype phasing methods that are available, with particular focus on statistical methods, and
discuss practical aspects of their application. We also describe recent developments that may
transform this field, particularly the use of identity-by-descent for computational phasing.

With recent technological advances, enormous amounts of genotype data are being
generated, both from increasingly comprehensive and inexpensive genome-wide SNP
microarrays and from ever more affordable whole-genome and whole-exome sequencing
tools. However, the vast amount of information in these data is best exploited through
phased haplotypes, which identify the alleles that are co-located on the same chromosome.
Because sequence and SNP array data generally take the form of unphased genotypes, one
does not directly observe which of the two parental chromosomes, or haplotypes, a
particular allele falls on. Fortunately, new advances in both computational and laboratory
methods promise improved determination of haplotype phase.

Methods for haplotype phasing have developed in response to improvements in technology
that have changed the scale of genetic data. At first, genetic studies typically would assay
only a single variant, and hence haplotype phase was irrelevant. As candidate gene
sequencing became more accessible in the late 1980s, methods were developed for
computational and experimental phasing of short regions containing a small number of
genotyped polymorphisms. With the advent of genome-wide SNP microarrays and genome-
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wide association studies around 2005, new computational methods were developed to
handle whole-chromosome data efficiently. Laboratory-based methods for experimental
phasing of whole genome sequence data have also recently been developed.

The importance of haplotype phase information is increasing as we move into the era of
large-scale sequencing. Applications of haplotype phase include understanding the interplay
of genetic variation and disease,1 imputing untyped genetic variation,2–4 calling genotypes
in microarray and sequence data,5–10 detecting genotype error,11 inferring human
demographic history,12 inferring points of recombination,13 detecting recurrent mutation13

and signatures of selection,14 and modeling cis-regulation of gene expression.15

In this review we cover the historical and recent developments in methods for computational
phasing of genotypes from population data sets and family data sets, and experimental
methods for phasing single individuals. This review focuses mostly on computational
methods, both because the authors’ expertise is in this arena, and because experimental
methods are not yet cost-effective for large-scale use. We examine the strengths and
weaknesses of the best existing methods, and consider a few examples of their use. Finally,
we discuss recent developments and current challenges in phasing methodology.

Computational haplotype phasing
Computational methods pool information across individuals in order to estimate haplotype
phase from genotype data. Unrelated individuals can be phased by considering sets of
common haplotypes that can explain the observed genotype data. The number of unrelated
individuals present in a sample is a critical factor in determining how well phase can be
estimated; the more individuals, the better the estimation. Related individuals, by contrast,
can be phased by considering haplotypes that are shared identical by descent between
individuals within families. This within-family information on identity by descent (IBD) is
much more informative for phase estimation than the haplotype frequency information used
to phase unrelated individuals; however, haplotype frequency information across families or
from the population can also be used to fill in the gaps in haplotype phase that are not
determined by IBD sharing within families. Also, with unrelated individuals, some cryptic
relatedness will exist that can be exploited with an IBD sharing approach. Thus,
computational phasing of related and unrelated individuals are not completely separate
problems.

Computational cost is an important factor when considering which computational phasing
method to use. Generally, there is choice of algorithms and algorithm parameters and the
researcher must select a trade-off between haplotype phase accuracy and computational cost.
For large data sets of unrelated individuals, one wants a method that scales well with both
number of markers and number of individuals. For family data, one wants a method that can
handle the maximum family size present in the data (many methods scale exponentially with
family size) and that also scales well with number of markers.

Computational phasing in unrelated individuals
Statistical approaches to phasing unrelated individuals rely on the modeling of haplotype
frequencies. Where several haplotype configurations are possible for an individual’s
genotypes, one can estimate, through statistical modeling of the data, the probability of any
given haplotype configuration (Figure 1), and either pick the most likely configuration or
output a set of configurations sampled from the posterior distribution. Other computational
approaches, such as parsimony16,17 and long-range phasing13 (discussed below), are rule-
based methods; they don’t model haplotype frequencies directly, but are based on the
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assumption that the haplotype configurations that are most likely are those that are seen in
other individuals.

Our description focuses on those methods that are most widely used or historically
important. We present the methods in approximate chronological order. There are many
other computational phasing methods in use which are described elsewhere.18

Clark’s algorithm
Clark’s algorithm19 was the first published method for haplotype phase inference for three
or more markers in unrelated individuals. The method is based on utilizing unambiguous
haplotypes (from individuals with at most one heterozygous marker) and parsimony (finding
solutions that utilize the least number of unique haplotypes). The algorithm is suitable only
for very tightly linked polymorphisms. When polymorphisms are not tightly linked there
may be several reasonable haplotype phase assignments corresponding to an individual’s
genotype, and the method does not provide a means of choosing between such assignments.
Clark anticipated the next significant advance in phasing methodology by observing that the
EM (Expectation-Maximization) algorithm could be used to phase small numbers of
polymorphisms that are not tightly linked.19

EM algorithm
Early application of the EM20 algorithm to the haplotype phasing problem21–23 involved
treating all possible haplotype configurations as a priori equally likely. This phasing method
is typically referred to as “the EM algorithm”, even though many other statistical phasing
methods also use an EM approach as part of their algorithms. The basic EM algorithm
works well for a small number of genetic polymorphisms (up to around 10), but quickly
encounters computational constraints as the number of markers increases. The partition-
ligation extension of the EM algorithm24 increases the number of polymorphisms that can
be handled computationally. However, for larger numbers of markers the EM method is
computationally expensive and loses accuracy by using a suboptimal model for haplotype
frequencies. More accurate phasing can be obtained by better a priori modeling of
probabilities of haplotype configurations, as is done by the coalescent-based and hidden
Markov model methods described below.25 Many software implementations of the EM
algorithm exist, including Arlequin26 and PL-EM.24

The EM algorithm is useful when a small number of polymorphisms in a short gene or
haplotype block are to be studied. Clark’s algorithm can also be used for this purpose, and
PHASE (see below) is also suitable and would in most cases be a better choice. One
application in this setting is haplotypic association testing. For example, Drysdale et al.27

used Clark’s algorithm to phase 13 tightly linked SNPs in the beta-2 adrenergic receptor
gene and found that a haplotype pair was significantly associated with bronchodilator
response to β agonist in asthmatics, whereas individual SNPs were not. A second application
is determining whether a polymorphism seen in multiple populations has a single origin or
has independently arisen multiple times. This question can be answered by investigating
whether the polymorphism occurs on a single haplotype background (single origin) or
multiple haplotypes (multiple origins). For example, by using the EM algorithm on 5 SNPs,
Rosenberg et al.28 determined that the methylenetetrahydrofolate reductase 677T
polymorphism is associated with a common haplotype in individuals from European, Asian
and African populations. This finding indicates that the polymorphism may have occurred
on a haplotype that had a selective advantage.
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Coalescent-based methods and hidden Markov models
Approximate coalescent models29 were a breakthrough for modeling population haplotype
frequencies.30–32 These models recognize that new haplotypes are derived from old
haplotypes by the processes of mutation and recombination. Because mutation and
recombination events are rare over small genomic distances, haplotypes tend to look similar
to each other. Thus, for example, if one sees the haplotypes 1100 (where 0 and 1 represent
two possible alleles at each of 4 polymorphic sites) and 0001 in the sample, one may also be
somewhat likely to see the haplotype 1101 (formed by recombination) or 0011 (formed by
mutation), but one is less likely to see the haplotype 1111 (formed by a recombination and a
mutation). This approach forms the basis of many population-based statistical phasing
methods, including PHASE,25,33 fastPHASE,34 MACH4 and IMPUTE2.35 In each case, the
approximate coalescent gives rise to a hidden Markov model (HMM), and its parameters are
estimated with the use of iterative algorithms such as the stochastic EM algorithm.36,37 The
methods are described briefly below; additional details and comparisons of the methods are
given in Box 1.

Box 1

Approximate coalescent and HMM methods for computational phasing of
unrelated individuals

An HMM has underlying hidden states that are not directly observed. In haplotype phase
inference, these states represent in some way the underlying true haplotypes. Transition
probabilities determine the ways in which the hidden states can change from one
chromosomal position to another, and emission probabilities links unobserved states to
the observed data.

In the Li and Stephens30 framework used by MACH4 and IMPUTE2,35 the hidden states
are “template haplotypes”. These template haplotypes are haplotypes already estimated
within the sample. During each iteration of the estimation procedure, each individual’s
haplotypes are estimated by using template haplotypes previously estimated in other
individuals. Over successive iterations the haplotype estimates improve, converging
towards an optimal solution. MACH uses a random subset of sample haplotypes as
templates, whereas IMPUTE2 uses a subset of haplotypes that are selected to be similar
to the haplotypes of the individual currently being estimated. IMPUTE2’s strategy
appears to permit more improvement in accuracy as sample size increases when model
complexity (the number of states) is held constant (see Figure 2). As part of the
estimation procedure, MACH also estimates the transition probabilities for the hidden
states (essentially the recombination rates) and the emission probabilities (representing
the mutation rates). In contrast, IMPUTE2 takes as input the effective population size and
recombination rates and uses these to derive transition rates and emission probabilities.
This difference may account for some of the difference in computing times between the
two methods (Figure 2).

The model used by PHASE (v2.1) is quite similar to the Li and Stephens framework, but
adds an additional set of parameters: the coalescent times between a given haplotype and
the underlying template haplotype. All haplotypes, other than those of the individual
being re-estimated at each step, are used as hidden states (templates), unlike MACH and
IMPUTE2 which use only a subset of haplotypes as templates. This is one factor
underlying the difference in computation times. Another factor is that PHASE uses
Markov chain Monte Carlo to explore the space of all possible solutions, whereas
MACH, IMPUTE2, as well as BEAGLE and fastPHASE use stochastic EM to converge
towards the most probable solutions.
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BEAGLE40 forms an HMM by locally clustering the haplotypes at each marker position
along a chromosome. The haplotypes are locally clustered in such a way that haplotypes
in the same cluster tend to have similar probabilities for alleles at downstream markers.
The haplotype clusters are the hidden states. At each iteration of the algorithm, new
haplotype estimates are sampled from the current state of the HMM conditional on the
genotype data, and these haplotype estimates are used to build a new HMM. The model
is parsimonious in several ways. First, the clustering of haplotypes keeps the number of
underlying hidden states relatively low. Second, the model only considers a small subset
of all possible transitions between states at one position and states at the next position
(whereas the Li and Stephens framework allows for all possible transitions). The
transitions considered are those implied by the haplotype estimates used to build the
current model. These differences between BEAGLE and the Li and Stephens framework
are described in more detail elsewhere.46

The fastPHASE34 method also locally clusters haplotypes, however the way the
clustering is performed is different to that of BEAGLE. BEAGLE’s approach allows
different positions to have different numbers of clusters (hidden states), whereas
fastPHASE uses the same number of clusters at each position. For small sample sizes the
optimal number of clusters can be determined and used, but for large sample sizes the
optimal number of clusters would be larger than is computationally feasible. FastPHASE
is similar to PHASE, MACH and IMPUTE2 (but different from BEAGLE) in allowing
for all possible transitions between states from one position to the next.

PHASE25,33 was for some time considered a gold standard for accuracy among population-
based haplotyping algorithms.38 It is still useful for small genomic regions, but it is very
slow compared to newer algorithms. PHASE is suitable for moderately small numbers of
markers (up to 100) and small sample sizes (up to several hundred individuals). For large
genomic regions other methods, such as those described below, should be used. Available
software includes PHASE itself and a faster implementation, SHAPE-IT.39

FastPHASE34 was an important milestone because this algorithm made it possible to phase
genome-wide SNP array data. For small numbers of individuals (up to one hundred) it is
only a little less accurate than PHASE.34 The speed of FastPHASE is partly achieved by use
of a parsimonious clustering of haplotypes. For small sample sizes, this clustering captures
almost all of the information. However, for larger sample sizes computational feasibility is
maintained at the cost of loss of information, leading to less accurate haplotypes than can be
achieved with some of the more recent methods.40

BEAGLE40 is based on an HMM that does not explicitly model recombination and
mutation, although these aspects are implicitly captured. The model clusters haplotypes at
each locus, and the clustering adapts to the amount of information available so that the
number of clusters increases globally with sample size and locally with increasing linkage
disequilibrium (LD). Relative to fastPHASE, BEAGLE is an order of magnitude faster and
is more accurate for medium and large sample sizes (>1000 individuals), but is less accurate
for small sample sizes (100 individuals).40 BEAGLE is not well-suited for very small
numbers of markers in a region (fewer than 100).

MACH4 and IMPUTE235 are new additions to the set of available statistical phasing
methods. Both methods have been used primarily for the imputation of untyped variants but
can also be used for haplotype phase inference, and are based on the same approximate
coalescent model.30 These methods can handle larger data sets than PHASE while giving
greater accuracy for large sample sizes than fastPHASE. In Figure 2 we compare the
performance of BEAGLE with that of MACH and IMPUTE2, as the haplotype phasing
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performance of MACH and IMPUTE2 has not previously been examined in detail. Using
parameters suggested in the documentation for each program (Fig. 2a–b), MACH has the
highest accuracy for the smaller sample sizes, and BEAGLE had the highest accuracy for
larger sample sizes. There was more than an order of magnitude difference in computing
times between the method with the fastest computing time (BEAGLE) and the method with
the slowest computing time (MACH). The accuracy of all programs can be improved at the
cost of increased computing time (Fig 2c–d). For MACH and IMPUTE2, increasing the
model complexity by increasing the number of HMM states allows the methods to make
better use of the information in the data and thus obtain more accurate results, though the
program will take longer to run. For BEAGLE, accuracy is improved by combining the
results from multiple runs.

One application of haplotype phase on a genome-wide scale is investigation of population
structure. Auton et al.41 used BEAGLE to phase almost 4,000 individuals from four
continental regions at over 400,000 SNPs genome-wide. They used the phased haplotypes to
compare patterns of haplotype diversity between populations. For example, they found that
Japan has lower diversity than Taiwan, and that South Eastern Europe has lower diversity
than South Western Europe. Haplotype patterns can also be used to detect signatures of
selection. Sabeti et al.42 used HapMap data43 that had been phased with PHASE to look for
unusually long haplotypes, which are a signature of positive selection. They found hundreds
of strong candidates across the genome. Another important application of genome-wide
phasing is to pre-phase data before performing imputation. Although pre-phasing data prior
to imputation is not necessary for some imputation programs, it can substantially speed up
the imputation process, but also incurs a small loss in accuracy. The main imputation
programs (including BEAGLE, MACH and IMPUTE2) are also phasing programs, and are
typically used for the pre-phasing step, if it is required. The largest public reference panels
used for imputation (HapMap43,44 and 1000 genomes8) are available in phased versions.
Haplotype association testing can also be performed on a genome-wide scale using phased
haplotypes.45–47

Making use of identity by descent (IBD)
A recent development in computational phasing of haplotypes is the use of IBD information.
Even in a sample of “unrelated” individuals, distant relationships give rise to segments of
IBD, which can be used for phasing as described in more detail in the next section. The IBD
that is useful in this context is IBD that is due to a relatively recent shared ancestor, such as
within the past 20 generations, which leads to detectable long segments of IBD.48,49 A rule-
based version of this approach was pioneered by Kong et al.13 in their long-range phasing
algorithm that was applied to the Icelandic population. In this study, IBD tracts were
identified by searching for long genomic segments (≥10 Mb) for which two individuals
shared an allele at all markers in the segment. The IBD-based approach worked particularly
well in that setting because Iceland is a small, relatively isolated population, and because a
high proportion of the existing population (over 10%) has been genotyped. Because the
genotyped Icelandic sample was large relative to the population, for most individuals at
most loci it is possible to find multiple other individuals who share a haplotype identical by
descent that can be used for phasing. Consequently, it was possible to phase approximately
90–95% of heterozygous markers in the Icelandic sample. Direct application of Kong et al.’s
rule-based approach to large outbred populations is not currently practical. An extrapolation
from the Icelandic population presented in the Kong et al. study suggests that the successful
application of the long range phasing algorithm would require at least 1% of an outbred
population to be genotyped. It is likely that the applicability of IBD-based phasing can be
extended to additional populations by employing more sensitive methods for detecting IBD
and combining IBD-based phasing with population haplotype-frequency models. Software is
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available for long-range phasing using IBD.50,51 These programs are suitable for phasing
large pedigrees or samples from small populations in which all individuals are closely
related.

The long-range haplotypes generated by Kong et al. have been used for several interesting
applications. Kong et al.52 used genealogy and the inferred haplotypes to determine the
parental origin of alleles and to test for association with disease. They found several
parental-origin-specific associations. Holm et al.53 used the inferred haplotypes for accurate
imputation of a putative rare causal variant in other individuals, to obtain a stronger
association signal. Kong et al.13 also showed that the haplotypes can be used to study fine-
scale recombination and to study the inheritance of recurrent mutations.

Computational phasing in related individuals
In related individuals for whom pedigrees are available, Mendelian constraints (or, more
generally, IBD constraints) provide information to determine the haplotype phase at many
sites. For example, a parent–offspring pair must share one allele identical by descent at
every position, and the identical by descent alleles at different sites on the same
chromosome will be on a single haplotype in the child and on a single haplotype in the
parent, provided recombination has not occurred between the sites in the transmission of the
chromosome to the child. Figure 3 gives an example of the use of IBD to determine
haplotype phase. More generally, if two individuals have IBD across a region on a
chromosome, they must share one allele identical by descent at every position in the region,
and the identical by descent allele will usually be on a single shared haplotype in both
individuals. If one or both individuals have a homozygous genotype at a site within the
region of IBD, the allele in the homozygous genotype must be the shared allele, so that the
identical by descent allele is known, and the site is phased relative to all other sites in the
region for which the identical by descent allele is known. Thus, for diallelic markers such as
SNPs, haplotype phase is only unknown at positions where both individuals are
heterozygous or not identical by descent, or where one individual has a missing genotype.

Further information on haplotype phase is obtained when more than two relatives are
considered simultaneously. For example, in parent–offspring trios (mother–father–child), at
diallelic markers the only positions at which phase is not determined are those where all
three individuals are heterozygous (a small proportion of sites) or sites where one or more of
the individuals has a missing genotype. Larger families contain even more information on
haplotype phase, although this is not trivial to extract. Linkage programs such as
GENEHUNTER54 can extract this information, although they assume that sites are in
linkage equilibrium (not in LD). When sites are in LD, linkage programs that assume
linkage equilibrium may falsely infer IBD where it is not present; this is a problem for
pedigrees with many ungenotyped individuals and leads to incorrect phasing.55 Moreover,
because these methods assume that markers are in linkage equilibrium, they can not utilize
information from population haplotype frequencies.

As an example of family-based phasing, Roach et al. analyzed sequence data on a nuclear
family (two parents and two children). They inferred inheritance patterns and hence
haplotype phase. They were able to use the phase information to look for genes in which the
affected children had compound heterozygosity for dysfunctional variants56. This enabled
them to determine the genes responsible for two rare syndromes affecting the children.

Long-range phasing in families
The Kong et al.13 approach to IBD detection and phasing in unrelated individuals can also
be applied to data from related individuals, and this approach can be used with sites in LD.

Browning and Browning Page 7

Nat Rev Genet. Author manuscript; available in PMC 2012 April 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



However, diallelic markers can only be phased when one of the related individuals is
homozygous or when one of the related individuals can be phased from other IBD
relationships, so that the allele on the shared haplotype can be determined. The use of IBD
to phase related individuals provides essentially perfect phasing (barring genotype error and
recent mutation) over long chromosomal regions at sites which can be phased with the IBD
information alone (i.e. not at sites at which the identical by descent individuals are all
heterozygous). Fortunately, population haplotype frequency information is also available to
estimate the phase at those ambiguous sites. Haplotype frequency information can provide
accurate phasing over very short genomic regions, and thus in principle can fill in the gaps
to provide an overall phasing that is highly accurate (Figure 3). The use of haplotype
frequency information with IBD-based phasing is currently an active area of research.

Utilizing population haplotype frequency information
Some methods use both IBD and population haplotype frequency information to phase
related individuals, although the existing methods are limited in various ways. It is possible
to use family information in conjunction with the EM algorithm to estimate haplotype
phase.57,58 This approach can only analyze very small genomic regions. MERLIN is a
linkage program that allows limited LD in the form of clusters of tightly-linked markers.59

This approach to LD modeling is not adequate for highly dense genotype data such as those
generated from current genome-wide SNP microarrays or sequencing. BEAGLE3, SHAPE-
IT39 and modifications of other programs38 use IBD and haplotype frequencies to phase
parent–offspring trios. These methods work well for trios and parent–offspring pairs, but are
not easily extended to larger families with multiple offspring or multiple generations due to
intrinsic limitations in the algorithms.

Ignoring relationship
It is possible to phase related individuals as if they were unrelated, utilizing only population
haplotype frequency information. Figure 4 demonstrates that the haplotype phase of closely
related individuals will be estimated more accurately than that of unrelated individuals even
when the relationship information is ignored or unknown, as had been suggested
previously.60 This result is because the occurrence of the same extended identical by descent
haplotype several times in the sample helps in its estimation. Drawbacks of this approach are
that it is possible to have inconsistencies between the haplotype phases of closely related
individuals (that is, the phasing may imply the unlikely occurrence of several closely spaced
recombinations, or imputed missing genotypes may not be consistent with Mendelian rules),
and the accuracy of the phase estimation will not be as high as it could be if the relationships
were fully utilized. Nonetheless, this approach provides a simple solution that will provide
acceptable accuracy for many applications.

Factors influencing computational phasing accuracy
A number of factors influence the achievable computational phasing accuracy. These
include sample size, marker density, genotype accuracy, relatedness in the sample, ethnicity
and allele frequency.

Sample size
Other factors being equal, the larger the sample size, the greater the haplotype phasing
accuracy (see Figure 2), particularly when the statistical model can incorporate the large
amount of information on population haplotype frequencies contained in larger data sets.40

This applies to family data as well as to unrelated data3 when haplotype frequency
information is used to phase those sites that do not have phase determined by IBD. Thus a
simple and powerful strategy for improving haplotype phase accuracy is increasing the
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sample size via use of a reference panel of individuals from the same population and using a
phasing method that can make effective use of the additional data.

Marker density
Whether marker density results in improved or reduced accuracy depends on the measure of
accuracy being considered (see Box 2). On a per-marker basis, haplotype estimates are more
accurate with denser data. However, on a regional basis with an absolute measure of
accuracy (totally correct haplotype over a region), having greater marker density results in
more opportunity for error and thus lower accuracy.

Box 2

Metrics for comparing haplotype phasing methods

Three primary metrics are used to measure computational haplotype phase accuracy:
haplotype accuracy, imputation accuracy, and switch error. It is generally sufficient to
use one rather than all of the metrics when comparing algorithms because the metrics
tend to produce similar rankings. The haplotype accuracy and switch error metrics
require the existence of gold standard phased data. This gold standard may come from
nuclear family data or from experimental phasing. When gold standard data are available,
switch accuracy is usually the most informative metric. The imputation accuracy metric
is unique in that it can be applied to any data set without requiring the existence of “gold
standard” phased data. Thus, one can use this metric to make sure that the haplotype
inference procedure is performing properly, or to choose which program settings to use.

Haplotype accuracy

This measure relates to the proportion of haplotypes that are inferred correctly over the
whole region of interest. This metric is typically relevant only for small numbers of
markers, as the chance of correctly phasing a large region is very small, even for the best
statistical phasing methods. This metric can be applied to simulated data for which the
true haplotype phase is known, or to real data for which Mendelian constraints from
closely-related individuals determine the true phase at most sites.

Imputation accuracy

Haplotype phasing algorithms generally impute sporadic missing data as part of the
phasing algorithm. One can mask some of the genotypes (i.e. set some genotypes to
‘missing data’ status) and determine the proportion of imputed alleles that are correctly
imputed by the phasing algorithm. This metric can be applied to any data set because it
does not require knowledge of the true haplotype phase.

Switch error

When comparing an inferred haplotype phase to the true haplotype phase, one can count
how many switches (recombination events in the inferred phased haplotypes) are
required to obtain the true haplotype phase. One can express this comparison as a rate:
the number of switches required divided by the number of opportunities for switch error,
which is the number of heterozygote markers in the individual’s genotype minus 1 (the
first heterozygote marker can be assigned arbitrary phase).

Metrics for experimental phasing accuracy

The experimental phasing of an individual’s genotypes is independent of a statistical
phasing using a reference panel (see Computational phasing in unrelated individuals),
provided that statistical phasing has not been used as part of the experimental phasing
procedure. The statistical phase of pairs of heterozygous SNPs for which LD is high (e.g.

Browning and Browning Page 9

Nat Rev Genet. Author manuscript; available in PMC 2012 April 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



D’>0.9 or =1), will be highly accurate, and can be compared with the experimental phase
to obtain a rate of concordance.69,70 Similarly, if the individual has close relatives who
have been genotyped, Mendelian or IBD constraints (see Computational phasing in
related individuals) can be used to accurately determine the phase of many SNPs, and
the proportion of SNPs at which the experimental phase is discordant can be
calculated.73,74 In addition, for experimental phasing methods, the proportion of
heterozygous SNPs at which phase can be determined is an important factor, as this is
typically much less than 100%, and the proportion of SNPs at which the genotype is
incorrect or missing also needs to be considered as this can be lower than for methods
generating unphased data.

Genotype accuracy
Genotype accuracy influences haplotype phase accuracy since at least one of the two
estimated haplotypes for an individual must be wrong whenever a genotype is mis-specified.
When genotype data are noisy or incomplete, as is the case with low-coverage sequence
data, one solution is to phase genotype likelihoods rather than called genotypes. Genotype
likelihoods capture the uncertainty in the genotype data, and both EM-based and HMM
based phasing algorithms can be adapted to phase genotype likelihood data.5,6 With
genotype likelihood data, posterior genotype probabilities and haplotype phase are estimated
simultaneously, which increases the accuracy of both tasks.6,8,61

Degree of relatedness
Known relatedness, if utilized along with haplotype frequency (such as in parent–offspring
trios), results in markedly superior haplotype phase estimation compared to the use of only
unrelated individuals.38 As we showed above, even if closely related individuals are treated
as unrelated individuals, their haplotypes will be estimated more accurately than those of
unrelated individuals.

Sample ethnicity
African populations have more haplotype diversity, and lower levels of LD, compared to
non-African populations such as Europeans. Allele frequencies and density of
polymorphisms are confounding factors when comparing accuracy across ethnicities and the
comparison will depend on the accuracy metric and also, perhaps, on the phasing algorithm
used. Overall, there does not seem to be a clear pattern of differences in phasing accuracy
between populations from different continents.3,38,62 In the context of genotype imputation,
including samples from closely related populations in the imputation reference panel can
improve genotype imputation accuracy, particularly for low-frequency variants.63,64 This
suggests that when the sample is small and no other individuals from the same population
are available to use as a reference panel, one can improve haplotype estimation accuracy by
including samples from other populations, particularly those from closely related
populations such as other populations from the same continent. For samples with admixed
ancestry, such as African Americans, including samples from the ancestral populations may
improve phasing accuracy.62

Allele frequency
Rare variants are difficult to phase computationally, because to obtain high-confidence
phase information a variant must be seen several times within its haplotype context. In
particular, computational approaches cannot phase mutations that have arisen de novo in an
individual, unless data on the individual’s offspring are available. For this important class of
variants, experimental phasing methods are required.
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Experimental phasing
Experimental phasing is expensive and labor-intensive. Nonetheless, when very accurate
long-range haplotypes are required, and close relatives are not available for IBD-based
computational phasing, experimental phasing methods are available that can be applied
during the data generation. Also, sequencing technologies automatically produce some
information on phase, and methods to use that information are beginning to be developed.

While several experimental phasing methods provide complete phasing of whole
chromosomes, other methods provide phasing only for long or short haplotype fragments. In
the latter case, computational methods must be applied to assemble overlapping fragments
into larger haplotypes. This problem, known as the single individual haplotype
reconstruction problem, is theoretically challenging and has received considerable
attention.65 In most cases, population data are not utilized, but several recent methods utilize
both experimentally derived haplotype fragments and population information.66,67

Whole genome experimental phasing
The human reference sequence generated by the International Human Genome Sequencing
Consortium was produced by first creating large-insert clones, and then shotgun sequencing
the clones68. The clone inserts are single haplotypes, resulting in haploid sequence. The
same large-insert clone plus shotgun sequencing approach can be used to directly generate
sequence on phased haplotypes, although it is extremely expensive on a whole-genome
scale. Recently, Kitzman et al.69 combined this approach with next generation sequencing to
produce whole-genome sequence data that was mostly phased (Box 3). The added cost of
applying this approach, beyond the cost of the whole-genome sequencing, was
approximately USD$4000 ($1000 labor and $3000 reagents) for the sequence of a single
individual.69 Suk et al.70 used a very similar approach, and indicated a cost of under € 6000,
including the cost of the whole-genome sequencing. These methods do not provide
completely phased chromosomes, because the phased haplotype fragments must be pieced
together, which can incur errors. Suk et al. used ReFHap71 to assemble the fragments, while
Kitzman et al. used a reimplementation of HapCUT.72 Suk et al. were able to phase 99% of
SNPs, and the phased blocks had N50 length of 1 Mb (50% of resolved sequence is in a
block of length at least 1 Mb), whereas Kitzman et al had lower coverage with 94% of SNPs
phased into blocks with N50 length of 400 kb. A disadvantage of these approaches is that
although large chromosomal segments can be phased, the segments may not be accurately
stitched together due to missing phase information across regions of homozygosity
exceeding fosmid size (40kb).70

Box 3

Recent methods for whole-genome experimental phasing

These methods separate whole chromosomes (sections a–c, below) or long haplotypes
(section d) using a variety of approaches. The separated chromosomes are either tagged
individually or first combined into pools in such a way that most pools will contain at
most one copy of each homologous chromosome or haplotype. The chromosomes are
then sequenced or genotyped. All these methods are at the proof-of-concept stage, so it is
difficult to know which of these, if any, will develop into a widely used protocol.

a. Ma et al.74 arrested cells in metaphase, then spread chromosomes and
microdissected them into subsets. Some subsets may contain two homologous
copies of a chromosome, which cannot then be phased using that subset. They
then genotyped each subset with a whole-genome genotyping array. Phased
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genotypes are available for chromosomes that had a single homologous copy in
one of the subsets.

b. Yang et al.83 used fluorescence-activated cell sorting (FACS) to separate
individual chromosomes; these were amplified and tagged before sequencing, to
enable reads to be mapped back to specific chromosome copies.

c. Fan et al.73 developed a specialized microfluidic device to capture a single
metaphase cell, and then partition the 46 chromosomes. Each chromosome was
typed to determine its identity. Two pools were constructed containing only one
copy of each homologous chromosome. Each pool was genotyped separately
with a whole genome genotyping array to obtain phased genotypes.

d. Kitzman et al.69 created a fosmid library of long haplotypes. These were
separated into 100 pools. The probability that a given pool contains two non-
homologous copies of the same chromosomal region is low. Barcode-labeled
shotgun libraries were constructed from each pool. These were sequenced at low
depth (2–3x). The barcodes were used to assemble the shotgun reads back into
the haplotypes contained in the fosmid libraries. In addition, the individual was
sequenced using standard next generation sequencing, with higher depth (15x).
The unphased genotypes were determined from this sequencing, and then the
haplotypes from the earlier step were used to determine haplotype phase.

Other approaches to experimental phasing are based on various other means to separate
homologous chromosomes or haplotype fragments before genotyping or sequencing. Some
of these methods can phase whole chromosomes. A recent method that enables whole-
genome phasing in an automatable approach is the use of a specialized microfluidics device
to separate chromosomes from a single cell in metaphase.73 The separated chromosomes can
then be sequenced or SNP-genotyped (Box 3).

One application of experimentally phased whole-genome sequence is population genetics
analysis. Kitzman et al.69 analyzed experimentally phased sequence of a Gujarati Indian
individual and determined that the novel variants mostly fall on haplotypes that are not
European-like. Another application is clinical interpretation of personal genomes. Suk et
al.70 found 171 genes with two or more potentially severe mutations (amino acid changes
predicted to alter the expressed protein) in the genome of a German individual, of which 159
were experimentally phased. Of these, 86 were in cis (on the same haplotype) and 73 in
trans (compound heterozygosity). Configurations in cis leave one protein unchanged, which
is likely to be less damaging. A further potential application of experimental phasing is
determination of HLA haplotypes70,73 for donor-recipient matches in transplant medicine.
More work is needed to assess whether the level of accuracy is sufficiently high for this
application.

Whichever method is used, whole genome experimental phasing is more expensive than
generating unphased whole genome data. The methods require an initial processing step,
such as developing fosmid libraries or separating chromosomes. As such methods become
more mainstream, it is likely this initial processing will be automated, saving time and
reducing costs. Nonetheless, additional equipment and/or reagents are needed for this step.
Further, the sequencing or genotyping following the initial processing tends to involve some
additional sequencing or genotyping beyond that required for generation of unphased data.
For example, Kitzman et al.69 and Suk et al.70 generated unphased sequence data as well as
the phased fosmid sequences to improve the quality of the final phased data, while Ma et
al.74 estimate that five to six genome-wide genotyping arrays are needed per sample on
average for their chromosome microdissection method (Box 3).
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Phase information in sequence reads
Direct sequencing can also provide some information for phasing. Sanger sequencing
produces reads that are relatively long (>700-base read lengths are possible75). The use of
paired-end sequencing also provides information for haplotype phasing. When a read
encompasses two or more heterozygous genotypes of an individual, the phase of the
heterozygote genotypes is determined since each fragment from which a read or pair of
reads is obtained is a single haplotype. Thus, if the fragments are long and sequence
coverage is sufficiently high, a substantial amount of haplotype phase information can be
obtained.76 Sanger sequencing is too expensive for whole-genome sequencing on a large
scale, but recently developed real-time, single-molecule sequencing methods are much
cheaper, and these methods can yield sequence reads that exceed 1 kb.77,78 Long read
lengths may permit direct phasing from experimental sequence reads with sufficient
sequence coverage.

Next-generation sequencing technology is considerably less expensive than Sanger
sequencing, but the reads are shorter, providing less information for phasing.77 Nonetheless,
short reads, especially when they are paired-end reads, provide some information for
phasing that can be incorporated into computational phasing.66,67 Software for using phase
information from next-generation sequence reads include the Haplotype Improver
software67 and the “read-backed phasing” algorithm incorporated in the Genome Analysis
Tool Kit software.79

While whole genome experimental phasing is likely to remain a niche application due to its
cost and complexity, the use of phase information from sequence reads is likely to be
increasingly important. At present, phase information from sequence reads is not sufficient
to fully determine haplotype phase, thus we expect to see the marriage of experimental and
computational phasing as read information is incorporated into computational phasing
methods.

Computational versus experimental phasing
There are several factors to consider when choosing whether to perform experimental
phasing, computational phasing with related individuals or computational phasing with
unrelated individuals. In terms of cost and feasibility, computational phasing in unrelated
individuals is the most simple and inexpensive approach. Computational phasing in related
individuals is straightforward if related samples are available and if the relationships are
simple (in particular, parent-offspring pairs or trios are easily handled). The use of parent-
offspring trios increases genotyping or sequencing cost threefold if the additional two
individuals in each trio are not otherwise of interest. Experimental phasing increases data
generation cost by two- to five-fold, requires high levels of technical expertise and may
require investment in specialized equipment. Of the existing whole-genome experimental
methods, the fosmid-based approaches69,70 appear to be least expensive (approximately
two-fold increase in cost over standard sequencing), although the resulting haplotype phase
has some gaps in coverage. Most types of phasing, excluding only the methods based on
whole chromosome separation, require more computing resources than typically found in a
desktop PC, and at least a moderate level of bioinformatics expertise.

Computational phasing in unrelated individuals provides accurate phasing of common SNPs
over small regions when the sample is large or a large reference panel is used. This is
adequate for a number of applications such as haplotypic association testing, imputation of
ungenotyped common SNPs, and comparing haplotypic diversity across populations.
However the accuracy is not high enough for some other applications, such as investigating
compound heterozygosity, in which the variants of interest are of low frequency.

Browning and Browning Page 13

Nat Rev Genet. Author manuscript; available in PMC 2012 April 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Rare and low frequency SNPs may be phased by genotyping/sequencing of related
individuals or by experimental phasing. Both approaches will provide highly accurate phase
at most SNPs, whether rare or common, and will provide phase over long chromosomal
regions or whole chromosomes. De novo mutations can be phased with experimental
approaches or with data from offspring (if available). With most phasing methods, one can
expect to have some positions at which phase is unknown or incorrectly estimated. For
example, phase is not known with certainty at SNPs for which parent-offspring trios are all
heterozygous (although the use of population data may allow these positions to be phased
with a reasonably high level of confidence). As another example, fosmid-based experimental
haplotyping results in long blocks of phased haplotype, with phase unknown across block
boundaries. In addition to the gaps in phase, the phased haplotypes may also be incorrect at
some positions due to underlying genotype or sequence errors.

Current challenges and future directions
The incoming flood of large-scale sequence data presents challenges for haplotype phasing.
Computational phasing is difficult for low frequency variants, and experimental phasing is
currently too expensive for use on a large scale. Developments in statistical and
experimental methods promise to meet these challenges. It remains to be seen whether
whole-genome experimental phasing will end up being sufficiently inexpensive and
automatable for common use, but the recently proposed methods suggest some promise. The
use of phase information from short reads together with statistical information from
haplotype frequencies is another area of development. Next-generation sequence-read
lengths are increasing in size as the technology develops, thus providing increased
information about phase, although improved statistical methodology is needed to fully
exploit this information.

To obtain improved computational phasing of data from unrelated individuals, there is a
critical need for large panels consisting of thousands of individuals from different
ethnicities. This will enable researchers with relatively small sample sizes to borrow
information on haplotype frequencies, and to enable the use of IBD-based haplotype phasing
for improved accuracy. There is also a need for large sets of individuals to use as reference
panels for imputation. It would be advantageous if these panels were accurately phased, to
save computation time in the imputation analyses. The 1000 Genomes Project8 is an
important step toward these goals; however, larger sets of individuals from each major
population would provide further benefits. For some continental groups that have been the
focus of existing studies, such as Europeans, large panels can be obtained by combining
existing resources, but there is a practical need for large reference panels that have had
careful quality control filtering and that have been accurately phased to be available as a
single unified data set.

Another area of future development is the expansion of phasing algorithms to consider
multi-allelic markers and copy number variants.80 Virtually all of the existing methods for
the statistical inference of haplotype phase assume diallelic markers, although there are
some exceptions.40,80,81 There is a need to extend existing methods to incorporate multi-
allelic markers and to evaluate the accuracy of phasing methods when they are applied to
data containing copy number variants.

Computational haplotype phasing is a computationally intensive task, as are other tasks
associated with high throughput data, such as mapping sequence reads. As sequencing
technology becomes less expensive and more ubiquitous, the computational challenges will
become even more prominent. There is a need for even faster computational methods for
haplotype phasing that are also highly accurate and able to exploit fully the information
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present in large samples. The use of IBD information latent in samples of “unrelated”
individuals shows promise for increasing haplotype phase accuracy in large samples. Recent
work on improved resolution of IBD detection48 should permit the extension of IBD-
phasing from founder populations with a high proportion of individuals genotyped13 to
outbred populations with a lower proportion of genotyped individuals.

Finally, computational haplotype phasing of related individuals that makes use of both
relationship (IBD constraints) and haplotype frequencies is a remaining challenge area. As
the pendulum moves back from the common-disease common-variant hypothesis with its
focus on association studies in unrelated individuals to a greater focus on rare variants that
are most easily studied in family data,82 methods for analysis of related individuals will be
increasingly important.
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Glossary

EM algorithm An iterative approach for finding the values of the unobserved data
(such as haplotype phase) that maximize the statistical likelihood of
the observed incomplete data. Although the likelihood increases
with each iteration, the approach is not guaranteed to find the global
maximum

Posterior
distribution

Probabilities that account for the prior information and the
information in the data. For haplotype phase estimation, the
posterior distribution accounts for all available information,
including the genotypes and the estimated population haplotype
frequencies

Hidden Markov
models (HMMs)

A mathematically elegant and computationally tractable class of
models in which the observed data are generated by an unobserved
Markov process. A Markov process is a probabilistic process in
which the distribution of future states (e.g. states further along the
chromosome) depends only on the current state and not on previous
states

Linkage
disequilibrium
(LD)

Non-independence (correlation) between genetic variants at the
population level. In general, LD decreases with genomic distance
and is not present between variants on different chromosomes

Identity by
descent (IBD)

Two haplotypes are identical by descent if they are identical copies
of a haplotype inherited from a common ancestor

Approximate
coalescent

The coalescent is a model for the process by which the ancestry of
alleles converges when looking back in time. An approximate
coalescent is a model that generates patterns of genetic variation
that are similar to patterns generated by the coalescent, but that is
computationally simpler
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Reference panel A collection of samples which are not of direct interest but that are
included in an analysis for the purposes of increasing statistical
power or accuracy for the samples of interest. Reference panels are
commonly used for genotype imputation and can also be used for
haplotype phasing

Large-insert
clones

Large haplotype fragments inserted into, for example, bacterial
artificial chromosomes (BACs)

Shotgun
sequencing

A sequencing method in which DNA is randomly sheared into small
fragments before being sequenced

Paired-end
sequencing

Sequencing of haplotype fragments from each end. The two
sequenced ends are typically separated by a gap

Metaphase A stage of mitosis at which chromosomes are highly condensed,
facilitating their separation for some experimental phasing methods

Fluorescence-
activated cell
sorting (FACS)

A type of flow cytometry in which individual particles (such as
chromosomes) are separated and fluorescence intensities (from
earlier staining) are measured

Compound
heterozygosity

The presence of two deleterious variants located in the same gene,
but on different chromosome copies of an individual. One can
distinguish between compound heterozygosity and the occurrence
of two variants on the same chromosome copy by determining the
haplotype phase

Genotype
likelihood

A statistical likelihood that encapsulates the relative evidence for
each possible genotype call

Imputation In the context of this article, the estimation of missing genotype
values by using the genotypes at nearby SNPs and the haplotype
frequencies seen in other individuals

Genotype calling Estimating genotype values from raw data. Genotyping technology
provides information about the underlying genotype, typically in the
form of signal intensities or read counts of the two alleles.
Statistical techniques are used to resolve this information into
genotype calls. Typically information across individuals is used,
and correlation across SNPs (i.e. haplotype phase) is also helpful

Partition-ligation A divide-and-conquer strategy designed to reduce the computational
burden phasing methods that do not scale well with increasing
region size. A large region is divided up into smaller regions, and
haplotype phase estimates from the smaller regions are used to limit
the possibilities when phasing the large region

Admixed ancestry An individual has admixed ancestry if he or she has recent ancestors
deriving from different continental populations

Microfluidics The manipulation of fluids on a very small scale. This approach can
be used to separate individual chromosomes before sequencing for
experimental phasing

Haplotype block A short genomic region within which inter-marker linkage
disequilibrium is relatively strong
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Fosmid A type of hybrid DNA molecule comprising bacterial DNA and a
section of genomic DNA of length approximately 40kb

Barcode-labelling Tagging of each sample with a unique short sequence (barcode)
before pooling samples. After sequencing, the sample
corresponding to each read can be determined from the barcode

Cryptic
relatedness

The undocumented existence of relatives within a sample
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Figure 1. Statistical phasing of unrelated individuals using haplotype frequencies
Consider one individual with heterozygous genotype at each of three SNPs in a region.
There are four possible haplotype configurations consistent with the genotype data (A–D).
Suppose haplotype frequencies are available from other individuals in the population at
these sites (provided below each phasing pattern). These frequencies may have been
estimated from population data without additional modeling (with the a priori assumption
that all haplotype frequency configurations are equally likely) or with a model that accounts
for the biological processes of recombination and mutation (such as the Li and Stephens
model30).
The population frequency of a haplotype pair is obtained using the Hardy-Weinberg
principle (independence of the two haplotypes within an individual); the factor of two in the
frequency of the haplotype pairs accounts for both possible assignments of maternal and
paternal origin to the two haplotypes. The posterior probabilities of the phased data are
obtained from the population frequencies of the possible haplotype pairs. In this example,
the posterior probability of phasing B (93%) is much greater than that of phasing C (7%).
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Figure 2. Comparison of recent statistical haplotype phasing methods
We compared phasing accuracy and computation time for BEAGLE 3.3.1,40 IMPUTE
2.1.235 and MACH 1.0.16.4 The sample was comprised of up to 5200 controls from the
Wellcome Trust Case Control Consortium 284,85 and 44 offspring from the HapMap344

CEU trios (Utah residents with Northern and Western European ancestry) genotyped on
Illumina Human1M SNP arrays. We evaluated accuracy for markers on chromosome 20
(21,166 markers after quality control filters). Phasing accuracy was measured in the
HapMap trio offspring using the markers that have phase determined by parental genotypes.
Accuracy is represented by switch error rate (see Box 1). BEAGLE was run with default
settings with the low-memory option (use of the low-memory option does not affect
accuracy but reduces memory usage at the cost of a 30–60% increase in computing time).
To obtain results in a reasonable amount of time for MACH and to follow recommended
practice for IMPUTE2, the data for MACH and IMPUTE2 were split into eleven 5.1 MB
chunks and one 6.3 MB chunk, with 500 KB overlap for adjacent chunks. The two
haplotypes for each individual were aligned across chunks using the phase of heterozygous
genotypes near the center of the overlap region and the chunks were merged to yield a
chromosome-wide phasing. Computing times are for the whole chromosome, and are
obtained for MACH and IMPUTE2 by adding computing times for each chunk. A) and B)
This comparison used parameter settings that are based on the current documentation for
each program. Parameter settings for IMPUTE2 followed parameters in a prototype phasing
script downloaded from the IMPUTE2 website: “–phase– include_buffer_in_output –
stage_one -k 80 –iter 30 –burnin 10 –Ne 11500”. MACH options were “--round 50 --states
200 --phase”, as suggested in the MACH documentation. C and D) As above, but with
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increased model complexity or run-time for each method to obtain improved accuracy.
BEAGLE was run 15 times and the results were combined by phasing successive
heterozygotes using a majority vote from the 15 runs. MACH was run with 450 states
(compared to 200 for the standard settings) and IMPUTE was run with 400 states (compared
to 80 states for the standard settings).
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Figure 3. Use of IBD to determine haplotype phase
Determining phase using IBD alone.
When two individuals are known to be identical by descent (for example, if they are a
parent–offspring pair), the individuals share an allele at each marker and this allele is
determined by the genotype data when one or both individual is homozygous. In this
example, the two individuals, with unphased genotypes given in the left-most columns, are
identical by descent. SNP 1 is heterozygous in both individuals and thus cannot be phased
using the IBD but may be able to be phased using population haplotype frequencies (see
below). SNP 2 is homozygous in individual 2, and so the shared haplotype must have the C
allele. Analogously, SNPs 3 and 4 are homozygous in individual 1, so the shared alleles are
T and G, respectively. SNP 5 is homozygous in both individuals so phasing is trivial. The
inferred shared haplotype is shaded green. Use of IBD phasing alone gives phasing shown in
the IBD-phased haplotype columns, in which the phasing of SNP 1 is unknown.
Determining phase using IBD and haplotype frequencies.
Consider the same two identical by descent individuals as above. Phase is determined by
IBD at SNPs 2–5, but is not determined at SNP 1 which is heterozygous in both individuals.
Only haplotype phasings that satisfy the IBD-phasing constraints need be considered. Here
the two identical by descent individuals are phased jointly, so the joint phase at SNP 1 must
be consistent with the IBD, and the identical by descent haplotype is only included once in
the probability of the haplotype configuration. The inferred identical by descent haplotype is
shaded. Haplotype phasing A is much more probable (94%) than phasing B (6%).
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Figure 4. Accuracy of statistical phasing of cryptic relatives when relationship is not explicitly
accounted for
The same sets of individuals were phased as in Figure 2, with the addition of one parent of
each HapMap CEU child (“Cryptic pairs” results) or both parents (“Cryptic trios” results).
Phasing was performed with BEAGLE assuming all samples are unrelated. The “Unrelated”
results are identical to those for BEAGLE in Figure 2A, and do not include any of the
parents. It can be seen that adding relatives to the phase estimation greatly improves phase
accuracy even when treating the individuals as unrelated. The phase accuracy would be
significantly further improved by using the known relationships during the phase estimation.
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