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Abstract

Background: Individual-based biophysical larval models, initialized and parameterized by observations, enable numerical
investigations of various factors regulating survival of young fish until they recruit into the adult population. Exponentially
decreasing numbers in Northeast Arctic cod and Norwegian Spring Spawning herring early changes emphasizes the
importance of early life history, when ichthyoplankton exhibit pelagic free drift. However, while most studies are concerned
with past recruitment variability it is also important to establish real-time predictions of ichthyoplankton distributions due
to the increasing human activity in fish habitats and the need for distribution predictions that could potentially improve
field coverage of ichthyoplankton.

Methodology/Principal Findings: A system has been developed for operational simulation of ichthyoplankton
distributions. We have coupled a two-day ocean forecasts from the Norwegian Meteorological Institute with an
individual-based ichthyoplankton model for Northeast Arctic cod and Norwegian Spring Spawning herring producing daily
updated maps of ichthyoplankton distributions. Recent years observed spawning distribution and intensity have been used
as input to the model system. The system has been running in an operational mode since 2008. Surveys are expensive and
distributions of early stages are therefore only covered once or twice a year. Comparison between model and observations
are therefore limited in time. However, the observed and simulated distributions of juvenile fish tend to agree well during
early fall. Area-overlap between modeled and observed juveniles September 1st range from 61 to 73%, and 61 to 71% when
weighted by concentrations.

Conclusions/Significance: The model system may be used to evaluate the design of ongoing surveys, to quantify the
overlap with harmful substances in the ocean after accidental spills, as well as management planning of particular risky
operations at sea. The modeled distributions are already utilized during research surveys to estimate coverage success of
sampled biota and immediately after spills from ships at sea.
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Introduction

Pelagic drift and environmental exposure of ichthyoplankton

(egg, larvae and juvenile fish) of Northeast Arctic (NEA) cod and

Norwegian spring-spawning (NSS) herring in relation to variability

in recruitment indices (measured as survival until the 0-group

stage, i.e. about 5 months old pelagic juveniles) have been the

focus of many studies, e.g. [1,2]. Particular emphasis has been put

on early life history of fish due to the high mortality rates

experienced by fish during this stage. Several hypothesis suggest

key processes impacting survival in early stages of fish, e.g. match-

mismatch [3,4], bigger is better [5], and member-vagrant [6]

hypotheses. However, none of these hypotheses, when considered

alone, can explain the variability in recruitment in these fish

stocks. [7] showed that modeled flow of Atlantic Water to the

Barents Sea and modeled local primary production within the

Barents Sea, partly representing several of the processes described

above, accounted for 70% of the variability in cod with a 3-year

lead. Hence, various, synergistic mechanisms may act in different

ways to affect the feeding, growth and survival of early life stages as

they drift from their spawning grounds along the Norwegian Coast

to nursery areas located both along the Norwegian coast (herring)

and into the Barents Sea (cod and herring). Along the drift routes

the offspring need to find prey and avoid predators. Vertical

positioning in the water column is important to the larvae as it

affects the interactions with prey and predators and influences the

drift routes [1,8]. Circulation features affecting drift occur on

many scales and it is still not clear what horizontal resolution is

needed in numerical models to adequately resolve the ichthyo-

plankton drift routes. However, there seems to be a general

agreement that it should at least be on the order of the baroclinic

Rossby radius [9], about 5 km along the Norwegian Coast [10],

though decreasing northwards with the increase in the Coriolis

parameter.

The last decade of improvement in computer technology has

enabled high temporal and spatial resolution in biophysical models
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which provide crucial information on how larval fish might

interact with the environment. However, in addition to unveiling

historic biophysical links it is also important to develop tools to

report real-time distribution and abundance of the ichthyoplank-

ton. Such short-term prediction systems were initially developed

for reporting on real-time developments of the physical state of the

ocean, e.g. wave-heights, currents and ice-drift, all of which are

important for maritime safety. The systems were further developed

to also report on biogeochemistry, e.g. algal blooms of critical

knowledge to aquaculture. Currently, the European Union funded

project MyOcean (www.myocean.eu) aims at integrating Europe-

an efforts therein by building a pan-European capacity in

operational oceanography including major centres involved in

operational forecasting and monitoring. A system for operational

assessment of ichthyoplankton distribution can be useful in many

ways. Firstly, it can be consulted while surveys are ongoing to

evaluate and modify the survey design. Secondly, if there are

accidental spills of harmful substances in the ocean, an operational

larval drift system can immediately report on area overlap with

ichthyoplankton. Finally, such a system could be consulted when

deciding on time and place for allowing particular risky operations

at sea, which could result in increased mortality of ichthyoplank-

ton.

Such a system is now developed in a combined effort between

the Institute of Marine Research (IMR) and the Norwegian

Meteorological Institute (met.no), where met.no runs a version of

the Princeton Ocean Model (MI-POM, [11]) and IMR utilizes the

MI-POM two-day forecast to run an individual-based fish larvae

model (IBM) for NEA cod and NSS herring. The outcome is

numerically processed and made available online either as

distribution maps (www.imr.no/larvedrift) or NetCDF files on

request. The system has successfully been operating since 2008

and this paper describes the technical details of the model setup,

biological constraints, and potential use. Furthermore, we evaluate

the results against field observations to indicate the consistency

between model predictions and observations of 0-group fish.

Methods

0-group data
The international 0-group fish survey in the Barents Sea is a

pelagic juvenile fish survey where the fish species are sampled by

the end of the period of pelagic free drift about 5 months after

spawning. It has been carried out annually since 1965. In 1980 a

standard trawling procedure was recommended by ICES [12], the

International Council for the Exploration of the Sea, and has been

used on both Norwegian and Russian vessels since then. Since

2003 it has been part of a Joint Norwegian-Russian ecosystem

survey in the Barents Sea, designed and jointly carried out by IMR

(Norway) and PINRO (Russia). The survey only covers the

Barents Sea and therefore not the entire cod and herring 0-group,

which can be distributed farther west in the Norwegian Sea and

into the fjords along the Norwegian coast.

The standard gear is the ‘‘Harstad trawl’’, a pelagic trawl with

20 by 20 m mouth opening, 7 panels and a cod end. The panels

have mesh sizes varying from 100 mm in the first to 30 mm in the

last [13]. The standard trawling procedure consists of predeter-

mined tows at three or more depths, each of 0.5 nautical miles

(nm), with the head-line at 0, 20 and 40 m and with a vessel speed

of 3 knots. Additional tows at 60 and 80 m, also of 0.5 nm, were

made where a dense concentration of fish was recorded deeper

than 40 m depth on the echo-sounder.

The computation of abundance indices is made using the

stratified sample mean method of swept area estimates [13,14].

The fish abundance was estimated using only pelagic trawl (0–

60 m) catches. For each trawl haul the fish abundance per nm2

was calculated based on catch and trawl data (depth intervals,

effective opening and distance trawled).

Numerical ocean model and IBM
The ocean model used is MI-POM (Norwegian Meteorological

Institute’s version of the Princeton Ocean Model) described in e.g.

[11,15,16], run operationally at met.no as their core ocean

prediction model. The 4 km resolution domain covers the Nordic

Seas, the North Sea and the Barents Sea and uses monthly mean

climatological boundary conditions from [17] along its open

boundaries. Atmospheric forcing is retrieved from met.no’s

operational Hirlam 8 km model. The heat flux formulations have

been adjusted for Norwegian conditions [18] and the model also

includes a simple nudging scheme to assimilate satellite SST

products. Tides are included and described by the eight harmonic

components (M2, S2, N2, K2, Q1, O1, P1 and K1) taken from a

barotropic tidal model. The tidal forcing is applied at the lateral

edges of the model. A daily forecast of the following two days is

routinely made available.

The larval IBM is a particle-tracking model Ladim [19] with a

built-in behavioral algorithm for individual larval growth and

vertical migration. Ladim reads the daily downloaded ocean

forecast (daily averages) and updates the positions of NEA cod and

NSS herring larvae using a 49th order Runge-Kutta advection

scheme. Larval growth is temperature dependent for cod with a

growth function according to [20], while a fixed daily growth of

0.5 mm/day is applied for herring [21]. The growth affects the

swimming capability and thereby the vertical distribution. It is

assumed that larvae ascend during night and descend during day

because they are visual feeders and dependent on light availability.

Observations show that cod larvae are rarely found above 5 m

depth and deeper than 40 m [22]. Upper and lower limits are

therefore set to 5 and 40 m. A total of about 100 000 particles are

initialized at spawning grounds representative for the most recent

years during the spawning/hatching season which lasts from

March until April [23,24]. The relative importance of the different

spawning grounds (Figure 1) is shown in Table 1.

Particles are counted within each of the 4 by 4 km grid cells

before filtering horizontally by convolution with a standard normal

distribution covering 5 by 5 cells normalized to conserve mass.

This is done to compensate for a relatively low number of particles

and to smooth the noisy maps when displaying the results.

However, the data behind the maps can also be made available on

the web page for downloading. The concentrations are normalized

according to the daily maximum value.

All subparts of the system (download the ocean forecast, update

particle positions, process particle distribution and abundance into

maps and Netcdf files, upload results to a ncWMS server) are

written in Fortran or Matlab and integrated by a python script run

regularly on an IMR server by a cron job. By maneuvering in the

calendar on the web page one can display the distribution map of

any day in the pelagic free drift period from March to September

during the years 2008 until today.

Results

Figure 2 shows an example of modeled distribution maps for

NEA cod (A) and NSS herring (B) along with the corresponding

observations (C,D). In contrast to field data collected once or twice

a year the modeled distributions are available on a daily basis.

However, a systematic evaluation of the modeled distributions is

necessary to determine their reliability. There is no single test to
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determine the reliability of the model output, one needs to

evaluate both the different sub-models (ocean forecast, particle

tracking algorithm and vertical migration scheme) and the final

ichthyoplankton distribution. The MI-POM system has been

thoroughly validated for the upstream domain of the North Sea

([16] and references therein), the southern part of the spawning

grounds [25] and in the core of the drift area [26]. The particle

tracking algorithm and the growth and vertical migration scheme

has been thoroughly investigated in several studies [1,2,19,20,21].

We therefore focus on comparing the modeled 0-group distribu-

tions in early September with data from IMR surveys at the same

time.

The 4 km model grid resolution is significantly higher than the

horizontal sampling grid from the surveys. In order to compare the

overlap between modeled and observed juveniles we interpolate

both to a 25 by 25 km grid previously defined by [27]. Figure 3

shows the resulting modeled (dm) and observed (do) 0-group

distributions of NEA cod (A,C,E) and NSS herring (B,D,F) for

2008 (A,B), 2009 (C,D) and 2010 (E,F). Shades of blue indicate cells

occupied by modeled particles but where there are no observations.

Dark blue indicate relatively higher concentrations than lighter

blue. Observations are only available within cells colored by green

and red. Green cells show that modeled and observed concentra-

tions are consistent, i.e. either 0-group fish are present in both or in

none of them. Red cells show that modeled and observed

concentrations are inconsistent, i.e. either 0-group fish are present

in the model but not in the observations, or the other way around.

We quantify the overlap in percent as the sum of grid cells where

either (do, dm) .0 or (do, dm) = 0 (i.e. green cells) divided by the total

number of grid cells with observations (i.e. green and red cells). Cells

where the model indicate juveniles but there are no observations are

left out of the overlap estimates, as we cannot determine the quality

of the model prediction. The numbers are reported in Table 2. In

addition, we partitioned the observed and modeled abundance as

either high or low (depending on whether they were above or below

median) and weighted the overlap estimate. These results are

reported in parenthesis in Table 2.

The percentage overlap varies between years from 61 to 73%.

When weighted with concentrations, effectively posing a stronger

criterion for overlap, the percentage decreases in 2008 for NEA

cod and NSS herring and 2009 for NEA cod (Fig.3A,B,C) by 7, 4

and 6% respectively. However, for NSS herring in 2009 and NEA

cod in 2010 (Fig.3D,E) the overlap in fact increases by 2%,

indicating that the area overlap fits even better when taking

concentrations into consideration. The area overlaps are higher

for cod than herring in all years. The differences are less when

weighted with concentrations in 2008 and 2009, though opposite

in 2010.

In general the main features of the modeled distributions tend to

compare well with the observations (Fig. 2); i) they are limited in

the west by the shelf edge, ii) they are limited by the polar front in

the northeastern Barents Sea [28], iii) most particles have been

advected into the Barents Sea while some are advected to the west

and north of Spitsbergen, and iv) NEA cod are distributed farther

east then NSS herring.

Discussion

How can the model system be utilized?
This study describes a numerical system used to predict real-

time ichthyoplankton distributions of NEA cod and NSS herring

based on a two-day ocean forecast by the national meteorological

institute of Norway. Although the system has only been running

for the previous four years, it has already proven useful in

situations with urgent requirement for updated ichthyoplankton

distributions. One such application addressed the need to know

whether the same larval patches were sampled during two

subsequent days. Another application was a sinking vessel, and

subsequent fuel spill, at a bank structure in the typical drift paths of

ichthyoplankton and the need for a preliminary assessment of

possible overlap. However, there are a number of potential

benefits of a model system for operational larval drift.

Firstly, a real-time modeling system can be consulted while

surveys are ongoing to evaluate and modify the survey design. As

there are fundamental limitations to the model predictions we

know that it may never be able to represent the ichthyoplankton

distribution exactly, but it may still be able to indicate whether

the survey is covering the main parts of the distribution.

Additionally, it may prove important while conducting dedicated

process studies (in addition to the 0-group surveys) when

knowledge of day-to-day dispersal may impose restrictions on

the validity of a study.

Secondly, potential contamination of marine habitats by

accidental spills and long-term introduction of harmful substances

Figure 1. Spawning ground distribution. The spawning grounds
used for initializing virtual ichthyoplankton are numbered from 1 to 9.
Their relative importance is described in Table 1.
doi:10.1371/journal.pone.0027367.g001

Table 1. Spawning grounds for cod and herring numbered
from 1-9 in accordance with Figure 1, and the percentage of
all ichthyoplankton initialized at the respective spawning
grounds.

Spawning ground 1 2 3 4 5 6 7 8 9

NEA cod (%) 5 5 20 10 20 25 10 5

NSS herring (%) 50 20 10 20

doi:10.1371/journal.pone.0027367.t001
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motivate the creation of an operational larval drift system that can

report on potential overlap with ichthyoplankton in real-time.

Also, it may be necessary to prioritize the protection of certain

areas due to limitations in resources (e.g. personnel, vessels,

chemicals) and a system for real-time surveillance may guide

decision-makers in taking the right decisions.

Finally, the system enables monitoring of ichthyoplankton

exposure to long-term contamination such as radioactivity,

agriculture pollution through freshwater runoff along the coast,

and waste-water from petroleum industry. Similarly, the system

may be consulted when conducting particularly risky operations at

sea where spatiotemporal distribution of ichthyoplankton may be

taken into consideration to limit potential risk.

However, while utilizing such a tool it is important to be aware of

the limitations. Sources of errors relevant to this study can be divided

into those resulting in erroneous model predictions and uncertainties

in the field data used for evaluating the model result. The bulk part of

the errors in the first category is due to poorly understood processes,

such as the motivation for vertical migration in fish and lack of data

on prey and predator distributions causing area-specific and time-

specific mortality of the offspring. We have therefore tried to keep the

model code as simple as possible in order to avoid complex algorithms

representing poorly understood processes.

Sources of errors in the model predictions
We assume that the spawning distribution is similar to the

most recent years and that we have a fairly good knowledge of

what the spawning distribution has been. A herring larvae

survey is conducted in March/April each year to estimate the

abundance and distribution of newly hatched larvae. This gives

a good indication of the spawning distribution. However,

hatching time varies throughout the survey area and hatching

may occur after the survey. Also, larvae have been subject to

various duration of dispersal dependent on age and may have

drifted away from the spawning areas. However, we assume this

drift is limited since larvae are mostly caught soon after

hatching.

Further, we assume for simplicity that herring eggs hatch at

15 m depth while in nature they are demersal and hatch at the

seabed of up to 250 m depth [29]. Insufficient knowledge of the

rising velocities is why we have omitted this, though we know it

may take some days to ascend to the upper water column after

hatching. Contrary, cod eggs have an initial pelagic drift phase of

about three weeks where the depth distribution is dependent on

the individual egg buoyancy distribution [30]. Algorithms for

implementing such a dynamic vertical distribution is described in

[31] and utilized in [32,33] but not yet incorporated here.

Both cod and herring perform a diel vertical migration

constrained by an upper and lower boundary and available light

at their individual respective depths. Diel migration is here limited

by individual length but not dependent on the presence of prey

and predators, which is likely to affect vertical habitat selection

[1,8,34]. The upper and lower boundaries are based on qualitative

descriptions from different historic surveys [35], and should be

Figure 2. Modeled and observed distributions for NEA cod and NSS herring September 1st 2010. Modeled distributions for NEA cod (A)
and NSS herring (B) based on initialization of particles according to spawning grounds location (Figure 1) and relative importance (Table 1)
September 1st 2010. Colors indicate abundance relative to maximum abundance for the given time on a logarithmic scale. The corresponding
observed distributions for NEA cod (C) and NSS herring (D) where each dot indicates a station on the survey grid and the size of the dot indicate the
abundance.
doi:10.1371/journal.pone.0027367.g002
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considered approximate as the process of vertical migration is

poorly sampled and not well understood.

The ocean forecast by met.no is modeled with MI-POM on a

grid with a horizontal resolution of 4 by 4 km. Important small-

scale dynamics that will clearly affect dispersal are therefore not

included [36]. Because of computational costs it is not possible to

both resolve all scales of importance while at the same cover the

area of concern. Important effects of this are that dispersal on

scales less than about twice the grid resolution is truncated and

resulting trajectories are smoother than in reality and that the

Figure 3. Quantification of percentage area overlap and abundance weighted area overlap between modeled and observed
distribution September 1st 2008–2010. Modeled and observed juveniles are interpolated to a 25 by 25 km grid [27] for cod and herring in 2008
(A,B), 2009 (C,D) and 2010 (E,F). Blue cells show concentrations of modeled particles where there are no observations (dark blue indicate relatively
higher concentrations than lighter blue). Green cells show that there are observations available and that they are consistent with the model, i.e. either
0-group fish are present in both or in none of them. Red cells show that there are observations available but that they are inconsistent with the
model, i.e. either 0-group fish are present in the model but not in observations, or the other way around.
doi:10.1371/journal.pone.0027367.g003
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modeled spread of particles is likely underestimated. Specifically,

we see in these particular results that trajectories tend to divert

towards shore and overestimate concentrations close to the coast.

This might be a result of misrepresentation of sub-grid scale

processes or suboptimal handling of coastal boundaries in the

particle tracking. In addition, air-sea-wave interactions including

Stokes drift are not included in the ocean forecast and are

therefore also a source of error in the modeled drift. We are

addressing these challenges in ongoing studies.

Finally, natural mortality is not included since spatiotemporal

variation therein is one of the main knowledge gaps of early life

history in fish. Natural cod egg mortality was studied by [37] and

they found that the increased egg mortality in 2001 was connected

to age, size and condition of the spawning cod females, and

increasing fraction of first time spawners may negatively influence

both egg and larval survival. Additionally, both eggs and fish

larvae are common prey for several species. Also, studies have

revealed indications of spatiotemporal variations in natural

survival in ichthyoplankton [38,39], but details on how this vary

through the season are complex and remain a continuous area of

research. Our approach is therefore to leave this out completely

and acknowledge the limitation this has on the predictive

capabilities of the model system.

The present system is run without any kind of data assimilation.

Assimilation of data is in principle easy with such a system, as a

particle distribution may be modified and the application restarted

without much harm to the model dynamics. However, there is

little information available. For herring the distribution may only

be reinitialized after the larvae survey in March/April, shortly

after hatching. For NEA cod no such data is available.

Sources of errors in the observational data
The 0-group survey has been carried during August-September,

and is clearly not synoptic. This has not been accounted for in

abundance estimations as drift paths and swimming behavior of

the fish during this period are not well known. The capture

efficiency of the sampling trawl differs between species and

decreases with decreasing 0-group length [40,41]. Hence, a

correction factor was therefore included during the original

storage of the data to avoid underestimates in abundance [14].

In addition, the transition in cod from pelagic free drifting to

bottom settled is a rather prolonged process occurring gradually in

September-October in the Spitsbergen area and October-

November in the Southern Barents Sea [42]. This may lead to

an underestimate of abundance and distribution as juveniles may

escape the sampling volume and an evaluation of the model

prediction on false premises. Herring, on the other hand, does not

settle to the bottom.

We compared the model predictions for early September with

observations of 0-group cod and herring from the same time,

though the surveys typically span several weeks. Hence, there is a

chance for repeated sampling of a juvenile patch or missing

patches as they ‘slip through’ survey masks while we steam for the

next sampling station. However, increasing the sampling frequen-

cy can compensate for such events, although it is still debated what

resolution is required to obtain a representative description of

juvenile distribution. One argument is that surveys need to resolve

the main physical features of the ocean investigated to ensure a

representative estimate of abundance [9,43]. To a first guess this is

likely to be represented by the baroclinic Rossby radius. Whether

this is true can be checked by oversampling the area during a few

test surveys. The September surveys of cod and herring in the

Barents Sea are not close to such sampling rates. Here the distance

between stations are more on the order of 25–35 nautical miles.

Survey design is made in advance, but may be modified during

the cruise to reach zero-levels of abundance to ensure that the

entire distribution is covered. However, this is not always the case,

either because there is not enough time to explore the outskirts of

the distribution area or because low levels of abundance may

falsely be misinterpreted as the boundary. Incomplete coverage

will anyhow complicate the evaluation of model predictions, and

in this study we have therefore chosen to not let model predictions

outside the surveyed area affect the overlap estimate.
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