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Abstract

Recently, we generated transposon-transgenic boars (Sus scrofa), which carry three monomeric copies of a fluorophore
marker gene. Amazingly, a ubiquitous fluorophore expression in somatic, as well as in germ cells was found. Here, we
characterized the prominent fluorophore load in mature spermatozoa of these animals. Sperm samples were analyzed for
general fertility parameters, sorted according to X and Y chromosome-bearing sperm fractions, assessed for potential
detrimental effects of the reporter, and used for inseminations into estrous sows. Independent of their genotype, all
spermatozoa were uniformly fluorescent with a subcellular compartmentalization of the fluorophore protein in
postacrosomal sheath, mid piece and tail. Transmission of the fluorophore protein to fertilized oocytes was shown by
confocal microscopic analysis of zygotes. The monomeric copies of the transgene segregated during meiosis, rendering a
certain fraction of the spermatozoa non-transgenic (about 10% based on analysis of 74 F1 offspring). The genotype-
independent transmission of the fluorophore protein by spermatozoa to oocytes represents a non-genetic contribution to
the mammalian embryo.
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Introduction

DNA Class II transposons have been successfully used for

transgenesis and insertional mutagenesis in invertebrates [1,2] and

transposase-catalyzed transgenesis in vertebrates has been initiated

by reactivation of the Sleeping Beauty (SB) transposon system [3].

Several other transposases, such as Tol1, Tol2 and piggyBac have

been shown to be functional for transgenesis in fish, frogs, birds

and rodents [4–16]. The SB system has gained special interest for

successful gene transfer in the pig [17-20], which is an important

large animal model for biomedicine [21,22]. Drawbacks of

classical methods for transgenesis [23–26] can be overcome by

utilizing transposase-catalyzed gene delivery, as it increases the

efficiency of chromosomal integration, facilitates single-copy

(monomeric) insertion events and provides predictable transgene

expression patterns.

Recently, we had shown that cytoplasmic plasmid injection

(CPI) of zygotes [27,28] with plasmids encoding components of the

SB system is a highly efficient method for porcine transgenesis

[17,18]. Improvements of current technologies to modify the

genome of pigs will be instrumental for the further development of

this important biomedical model [21,22,24,26,29]. Own data

revealed that SB-transposon transgenic founder boars (F0) showed

expression of the fluorescent Venus reporter in nearly all cell types

[17,18], including a prominent Venus load in mature spermato-

zoa. To the best of our knowledge, in none of the other transposon

transgenic animals [4–16,19,20] transgene expression in sperma-

tozoa was reported. Spermatozoa are highly specialized germ cells,

which have to actively roam through uterus and oviduct to fertilize

an oocyte. Whether the incorporation of Venus fluorophores into

boar spermatozoa is compatible with a functional status of these

cells was not known.

Venus is a yellow shifted variant (excitation maximum at

515 nm) of the commonly used enhanced green fluorescent

protein (EGFP, excitation maximum at 488 nm). Both fluoro-

phores extend over 239 amino acids and share an amino acid-

identity of 97% [30]. The fluorescence originates from an internal

amino acid sequence, which is post-translationally modified to

form an imidazolidone ring. Specific fluorophores, but also EGFP,

are thought to produce oxygen radicals and might act as light-

induced electron donors in photochemical reactions with biolog-

ically relevant electron acceptors [30,31]. These effects might

contribute to the toxicity of fluorophore proteins observed in some

studies [32–34]. The vast number of viable transgenic animals

with expression of EGFP or other fluorophores, however, argues

against a gross toxicity of these proteins during ontogenesis [35–

37]. Fluorophore-loaded spermatozoa could be a sensitive cell

system for the assessment of subtle effects of marker expression.

Mature spermatozoa are motile primary cells, which can be

isolated in a fully functional status under defined conditions, and

morphological, biochemical and biophysical criteria are well

defined for determination of sperm quality [38].
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Here, we characterized the prominent Venus expression in

spermatozoa of transposon-transgenic boars [17,18], assessed,

whether the Venus fluorescence reflected active transcription in

boar sperm cells, and determined whether the high expression of

an ectopic fluorescent protein affected reproductive parameters in

transgenic pigs. In addition, the relationship between phenotype

and genotype of male germ cells from transposon-transgenic boars

with regard to the Venus trait was analyzed.

Results

Fluorescence microscopy and flow cytometric
measurements of transgenic spermatozoa

Two transposon transgenic boars [17,18], each carrying three

monomeric integrants of an ubiquitously active CMV early

enhancer, chicken beta actin (CAGGS) promoter driven Venus

construct (Fig. 1A) and three cloned transgenic boars (F0), carrying

an Oct4-EGFP construct [39,40], were analysed (Table 1). The

transcriptional activity of the Oct4 promoter is restricted to the

germline, and EGFP fluorescence was exclusively detected in

blastomeres of cleavage-stage embryos, germline cells of genital

ridge and testis [39], however, ejaculated spermatozoa have not

been analysed before.

Amazingly, a distinct compartmentalization of Venus-fluores-

cence was apparent in spermatozoa of both transposon-transgenic

boars (Fig. 1B-E, Video S1). Spermatozoa of boars #503 and

#505 showed prominent Venus-fluorescence in the postacrosomal

sheath (PAS), just below the equatorial rim, as well as in the

midpiece and the tail (Fig. 1B, C). The tail tips of spermatozoa

from both founders were negative or significantly less fluorescent.

Flow cytometric measurements confirmed prominent Venus

expression in sperm of transposon-transgenic boars (Fig. 1F,G).

High resolution confocal microscopic analysis of spermatozoa

from transposon-transgenic boar #505 is shown in Fig.S1. All

spermatozoa of the transposon-transgenic boars were Venus-

positive and no difference in fluorescence intensity was found

between spermatozoa. This finding raised the question, whether

the CAGGS-promoter drives transcription in mature spermato-

zoa, or whether Venus-transcripts persisted in porcine spermato-

zoa. No specific EGFP signal could be detected in semen samples

from three cloned boars carrying an Oct4-EGFP transgene by

fluorescence microscopy (data not shown); and no or only minimal

specific EGFP fluorescence was detected by flow cytometry

(Fig.1H, I).

RNA extraction and measurement of Venus transcripts in
spermatozoa

To determine whether the Venus fluorescence reflected active

transcription or presence of paternally inherited transcripts in the

spermatozoa, ejaculated sperm from the transposon-transgenic

boars was centrifuged over a 90% Percoll gradient to remove

leukocytes and epithelial cells (Fig. 2; Fig.S2). Total RNA was then

extracted from purified sperm fractions. The presence of the

protamine 1 RNA (PRM1), which is a typical RNA of sperm, and

the absence of the hematopoietic cell marker CD45 by RT-PCR

suggested successful isolation of sperm-specific RNA (Fig. 2). A

Figure 1. Gene constructs and Venus-expression in porcine spermatozoa. A) Schematic depiction of fluorophore constructs. The Venus
transposon (T2/VenusRMCE) consists of a CAGGS promoter and Venus-cDNA flanked by Sleeping Beauty inverted terminal repeats (SB-ITR). The Oct4-
EGFP carries 9 kb Oct4 promoter, followed by EGFP-cDNA and 9 kb of Oct4 exon-intron sequences. Drawing is not at scale. B) Representative Venus
fluorophore expression in spermatozoa of transposon transgenic boar #505 viewed under specific excitation (3 ejaculates were analyzed); C) Venus
expression in spermatozoa (#503) viewed under specific excitation and dim bright light (3 ejaculates were analyzed). Note the differential Venus
fluorescence in subacrosomal sheath and PAS. Arrow heads indicate the equatorial rim. D), E) Spermatozoa from a wildtype boar under bright light
and specific excitation (bar = 10 micrometer); F), G) Flow cytometric measurements of Venus-fluorescence in sperm of transposon transgenic boars
#503 and #505 (red lines, n = 6)) and a non-transgenic control sample (black). Mean fluorescence intensities: wt = 3.3; #503 = 350 ; #505 = 147.
The small peaks (red lines) represent somatic cells. H), I) Flow cytometric measurement of specific EGFP fluorescence in sperm from three individual
Oct4-EGFP transgenic boars (red and blue lines) and a wildtype control (black). Mean fluorescence intensities: wt = 3.4; #252 = 7.6; #265 = 4.6;
#255 = 7.6.
doi:10.1371/journal.pone.0027563.g001
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specific RT-PCR for the Venus sequence reproducibly failed to

amplify an amplicon from sperm RNA samples, suggesting the

absence of Venus transcripts in mature porcine spermatozoa.

In addition, a Western blot analysis confirmed presence of the

fluorophore protein in Percoll purified spermatozoa from

transposon-transgenic boars (Fig.S3). The ubiquitous expression

of Venus in testis tissues was documented by histological analyses

of neonatal and adult tissue samples (Fig.S4).

Fertility assessment of Venus fluorophore-positive
spermatozoa

To determine whether the Venus fluorescence in spermato-

zoa has an influence on morphology and motility of the sperm

cells, essential sperm parameters of ejaculates from both

transposon-transgenic boars (#503 and #505) were analysed

and compared with that of wildtype controls (Table 2). While

semen of boar #503 did not show any essential differences

compared with the controls, spermatozoa of boar #505 showed

a modestly reduced straight-line-velocity and linearity than the

controls. The examination results suggested that ejaculates from

the transposon-transgenic boars fulfilled standard semen quality

requirements.

Venus fluorescence distribution among X and Y
chromosome-bearing spermatozoa

Spermatozoa from the transposon-transgenic boars were sorted

according to the sex chromosomes (flow sorter MoFlo, Beckman-

Coulter) and subsequently Venus fluorescence signals were

determined for X and Y chromosome-bearing populations. No

difference was found for Venus signals among X and Y

chromosome-bearing sperm populations neither for forward nor

for side fluorescence (Fig. 3A, B), albeit the size difference of the

sex chromosomes results in a relative disparity of , 3% of total

DNA between these spermatozoa fractions [38]. Thus, this

analysis corroborated uniformity of spermatozoa with respect to

Venus fluorescence.

Blue light excitation of Venus-loaded spermatozoa
To assess whether specific light-induced electron donation of the

Venus fluorophore might be detrimental for spermatozoa, sperm

from transposon-transgenic boars and control samples were placed

under a high power blue LED (40 W) to specifically excite Venus

molecules. Membrane integrity and motility of spermatozoa were

recorded over a time course of three hours. During exposure to

blue LED light the membrane damage did not increase

Table 1. Transgenic boars used for spermatozoa analysis.

Animal ID Transgene Generation Expression pattern
Transgene
copy no.

Transgenesis
method Ref.

#503 CAGGS-Venus transposon F0 ubiquitous 3 CPI [17,18]

#505 CAGGS-Venus transposon F0 ubiquitous 3 CPI [17,18]

#252 Oct4-EGFP F0 germ line specific 3 SCNT [39]

#255 Oct4-EGFP F0 germ line specific 3 SCNT [39]

#265 Oct4-EGFP F0 germ line specific 2 SCNT [39]

CPI, cytoplasmic plasmid injection into zygote; SCNT, somatic cell nuclear transfer.
doi:10.1371/journal.pone.0027563.t001

Figure 2. Absence of Venus transcripts in spermatozoa-specific RNA. A) Absence of Venus mRNA in boar spermatozoa; Venus-specific RT-
PCR from the indicated sperm samples of boars #503 and #505, fibroblast (#505) and no template. For fibroblasts (#505) samples 2.5 and 5 ng of
cDNAs, for the spermatozoa samples 60 ng of cDNAs were used as templates. From #505 ejaculates, two independent RNA-isolations were assayed.
B) The sperm-specific Protamine 1 transcripts are detectable in all isolations of sperm-specific RNA: protamine1 (PRM1)-specific RT-PCR from the
indicated sperm samples of boars #503 and #505, and testis (wt). +, with RT; - without RT; H2O, no template. From #505 ejaculates, two
independent RNA-isolations were assayed. C) The hematopoietic-specific marker CD45 is expressed only in testis, but not in fibroblasts or Percoll
purified spermatozoa. 503, 505-1, 505-2: indicate different RNA-preparations of spermatozoa from transposon-transgenic boars; fibro, testis indicate
RNA preparations from transgenic fibroblasts and wildtype testis; +, - indicate the addition, or omission of RT; H2O is the no template control.
doi:10.1371/journal.pone.0027563.g002
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Table 2. Semen parameters measured in fresh samples from transgenic and control boars.

Semen parameter #503 (mean ± SD) #505 (mean ± SD) Control wildtype (mean ± SD)

Motility (MOT) (%) 7668 7564 8365

Progressive motility (PMOT) (%) 45620 4164 5469

Velocity straight line (VSL) (mm/s) 3068ab 2562b 3464a

Linearity (LIN) (%) 2262a 1760.7b 2362ac

Morphological defects (%) 964a 1163a 22612b

n = 4 replicates.
a-cDifferent letters indicate significant differences (P,0.05) between boars.
doi:10.1371/journal.pone.0027563.t002

Figure 3. Uniform Venus fluorescence of X and Y chromosome bearing spermatozoa. A), B) Venus fluorescence (forward and side signal)
of oriented sperm from boar #503, after flow cytometric separation in X and Y chromosome bearing populations. C) Flow cytometric measurement
of Venus-fluorescence in sperm of transposon transgenic boar #503 at four time points (0 min (red line, 30 min (blue line), 60 min (lilac line), 180 min
(green line) of exposure to blue LED light, and a non-transgenic control boar sample (black line on the very left). Mean fluorescence intensities: Wt = 1.
#503 (0 min = 153, 30 min = 130, 60 min = 113, 180 min = 93). D) Decrease of Venus fluorescence intensity in whole semen after long-term storage.
Venus fluorescence was assessed directly after isolation (black line) and after storage at 4uC for four weeks (red line).
doi:10.1371/journal.pone.0027563.g003
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significantly, compared to control samples (Table 3). To determine

whether exposure to blue LED light has an influence on

morphology and motility of sperm, ejaculates from both transgenic

boars (#503 and #505) and controls were analysed for a range of

routinely applied fertility parameters (Table 4). After 3 hours of

exposure, motility of spermatozoa from transgenic and non-

transgenic boars decreased to nearly zero, suggesting that blue

light excitation is detrimental for sperm motility independent of

Venus expression. During extended exposure periods of blue LED

excitation, the fluorescence intensity of transgenic sperm decreased

slightly (Fig. 3C). To assess stability of Venus protein in boar

spermatozoa, the transgenic sperm probes were stored at 4uC in

the dark for up to five weeks. Spermatozoa from boars #503 and

#505 showed a 10–20% decrease of fluorescence intensity after

long-term preservation (Fig. 3D).

Fate of Venus protein in early embryos, inheritance of
transgene and offspring analysis

To analyze fate of the Venus protein after fertilization, two wild-

type sows were inseminated with semen of the transgenic boars,

embryos were flushed from oviduct, and early embryos were

analyzed by confocal microscopy. All analyzed zygotes (n = 6), 2-

cell stage embryos (n = 4) and 4-cell stage embryos (n = 5)

contained discrete spots of Venus fluorescent material within their

cytoplasm (Fig. 4). This material most likely represents remnants of

the spermatogonial theca and of the mid piece. In addition, several

spermatozoa bound to the Zona pellucida, a glycoprotein membrane

covering the embryo, were detected by their Venus fluorescence.

Transcriptional activation of the porcine genome occurs at the 4-

cell stage [41], and individual blastomeres were found to show de

novo expression of the transgene.

To analyze inheritance of the Venus transgene copies,

ejaculated sperm of the transposon-transgenic boars was used to

inseminate 8 sows, of which 7 became pregnant. Four pregnant

sows were sacrificed at day 30 post insemination and a total of 42

fetuses were recovered. 36 fetuses were Venus-fluorescent and 4

fetuses did not show specific fluorescence. Phenotypically, graded

fluorescence intensities were obvious between the marker positive

fetuses. This phenotypic characterization was subsequently

confirmed by PCR analysis and Southern blotting of genomic

DNA. A direct correlation between copy number of the Venus

transgene and the fluorescence intensity was found. In addition,

Southern blotting proved segregation of the independent transpo-

son integrants (Table 5). Three sows, which went to term,

delivered a total of 32 piglets and two mummies. 29 of the piglets

were Venus-transgenic and expressed the transgene, and 3 piglets

were non-transgenic (Table 5, Fig. 5). Corroborating the fetal

data, different grades of fluorescence intensity between littermates

were evident, and could be positively correlated with the transgene

copy number of the respective animals. The molecular analysis of

the F1-offspring indicated independent segregation of transposons.

Approximately 10% of the 74 F1-offspring were non-transgenic

(Table 5).

Discussion

Here, we report boars transgenic with CAGGS-Venus trans-

posons showing a unique phenotype of fluorescence marker load

in mature spermatozoa, in addition to expression in most other cell

types. The transgenic boars were generated via CPI of Sleeping

Beauty vectors into porcine zygotes [17,18]. In mammalian

spermatozoa the sperm nucleus is surrounded by a condensed

cytosolic layer, the perinuclear theca, which is divided in

Table 3. Effects of Venus excitation on membrane integrity of spermatozoa.

Animal ID membrane intact sperm (%) Untreated controls

after blue LED exposure for

0 min 30 min 60 min 180 min 180 min

#503 93.3 94.4 91.5 89.9 93.3

#505 88.2 87.5 88.8 76.9 85.4

Wt (n = 2) 92.0-95.8 92.8 89.8-92.5 86.7-88.4% 91.2-93.8

n = 3 replicates.
doi:10.1371/journal.pone.0027563.t003

Table 4. Effects of Venus excitation on sperm motility.

Animal ID CASA Ratio of motile spermatozoa (%) Untreated controls

after blue LED exposure for

0 min 30 min 60 min 180 min 180 min

boar # 503 MOT % 75 71 36 8 79

PMOT% 36 36 10 2 24

boar # 505 MOT % 69 71 51 3 56

PMOT% 44 46 27 0 32

wildtype MOT % 70 45 17 2 54

PMOT% 41 24 6 0 22

n = 3 replicates.
doi:10.1371/journal.pone.0027563.t004

Transgenerational Protein Transfer by Sperm Cells

PLoS ONE | www.plosone.org 5 November 2011 | Volume 6 | Issue 11 | e27563



subacrosomal layer and postacrosomal sheath (PAS) [42,43].

Essentially no Venus fluorescence was found in the subacrosomal

layer of spermatozoa from the transposon-transgenic boars, but a

prominent localization of Venus was evident in the PAS, below the

equatorial segment region. In addition, Venus fluorescence was

prominent in midpiece and in tail. Spermatogenesis is a complex

process, where spermatids undergo dramatic remodelling, con-

densation of nuclear chromatin, biogenesis of perinuclear theca,

formation of flagellum and development of acrosome to form

functional spermatozoa [42,43]. In bovine spermatozoa it has

been postulated that the PAS is assembled during sperm

elongation, and contains histone proteins and a presumptive

oocyte-activating factor dubbed PAWP (resides in the PAS and

contains a consensus binding site for group I WW domain

proteins) [43]. Mature spermatozoa have lost most of their

cytoplasm, and have been commonly thought to be transcription-

ally and translationally dormant [44,45]. Nevertheless, the

presence of remnant mRNAs has been shown in mature

spermatozoa of several mammals [42,44–47].

The prominent expression of a reporter fluorophore in boar

spermatozoa raised the questions, whether this is a species-specific

phenomenon or due to the used transposon-construct, and

whether the fluorescence correlates with presence of Venus

transcripts and potentially of active translation in mature boar

spermatozoa. No or only minimal specific fluorescence was found

in spermatozoa from three boars transgenic carrying a germline

restricted Oct4-EGFP construct, albeit expression of EGFP in

most germline cells and prospermatogonia was shown [39].

Similarly, transgenic boars, produced by lentiviral transfection of

an ubiquitously active phosphoglycerate kinase promoter-EGFP

construct did show only minimal specific fluorescence in mature

spermatozoa [48]. Thus, prominent transgenic expression in

porcine spermatozoa is not a general phenomenon in this species.

Until recently, it was thought that spermatozoa do not contain

RNA, but detailed analysis revealed that certain transcripts [44],

such as PRM1 mRNA, are present in sperm [44-47,49,50]. In case

of the Venus-transposon transgenic boars a highly sensitive RT-

PCR analysis suggested that the spermatozoa did not contain

Venus transcripts. Thus, Venus-fluorescence in spermatozoa

seemed to be due to Venus protein already translated in

prospermatogonial stages. An equal distribution of Venus protein

to all spermatozoa most likely occurred via cytoplasmic bridges,

connecting immature spermatids at the syncytial stage [51–53].

Both Venus-transposon transgenic boars carried three mono-

meric integrations of the transgene, which segregated during

meiosis. Whereas all spermatozoa showed a uniform phenotype

with regard to Venus fluorescence, the transgenic trait segregated

in the offspring (Fig. 5). Assuming three independent integrations

and a Mendelian inheritance, 12.5% of offspring should carry 3

transposon-integrations, 37.5% should carry 2 integrations, 37.5%

should carry 1 integration and 12.5% should be non-transgenic

(Fig. 6). Indeed, approximately 10% of the offspring were found to

be genotypic (and phenotypic) non-transgenic. These findings

strongly support the notion that mature spermatozoa displayed a

phenotype, which differed from their haploid genotype. The carry-

over of the Venus fluorophore in a genotype-independent manner

to an oocyte, represents an example for a non-genetic contribution

to a mammalian embryo [54,55]. Most likely the ‘‘epigenetic’’

Figure 4. Venus fluorophore transmission to zygotes. Venus
fluorescence was analysed in fertilized zygotes to 4-cell stages by
confocal microscopy, and overlays of DIC and Venus channels are
shown. A): Single optical section of 2 micrometer thickness from the
equatorial region of a zygote, together with the orthogonal xz and yz
views. B) Corresponding projection of a series of optical planes. This
zygote contains three discrete Venus fluorescent spots inside the
cytoplasm (arrows), but not in the pronuclei. Most likely, these reflect
remnants of postacrosomal sheath and mid piece of one spermatozoon.
Note, the intensive fluorescence of spermatozoa at the outside of the
zygote, attached to the Zona pellucida (ZP) (some are marked with
white triangle). Due to the projection, spermatozoa, which are attached
to the top or the bottom appear seemingly to be inside the zygote
(dashed circle). However, an analysis of the individual optical sections
allows an unequivocal determination of their position. C) Single optical
section of 2 micrometer thickness of a 4-cell stage, together with the
orthogonal xz and yz views. D) Corresponding projection of optical
planes. Asterisk indicates blastomere with de novo synthesized Venus
protein.
doi:10.1371/journal.pone.0027563.g004

Table 5. Phenotypes and genotypes of F1-offspring.

Parental
boar ID Status of F1 offspring

No. of
offspring

No. of Venus expressing
offspring, (%)#

No. of non-fluorescent
offspring1, (%)

#503 fetus (day 30 p.c.) 21 17 *, (81.0) 2, (9.5)

#505 fetus (day 30 p.c.) 21 19, (90.5) 2, (9.5)

#503 piglets 32 29, (90.6) 3, (9.4)

*2 degraded fetuses could not be analyzed,
#with 1-3 transposon integrants;
1genotypic wild type.
doi:10.1371/journal.pone.0027563.t005
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contribution of Venus protein will only be transiently effective

after fertilization. Thus, the uniformity in spermatozoa with regard

to Venus-specific fluorescence did not reflect the genotype, but

likely the distribution of cytoplasmic components via syncytial

bridges during spermiogenesis. Data presented here support the

assumption of a non-genetic transmission of a fluorophore protein

thereby extending the knowledge on spermatozoa-transmitted

epigenetic nuclear factors, such as miRNAs, RNAs and DNA

modifications [54–56]. Due to extreme reduction of the cytoplasm

in mature spermatozoa, transmission of cytoplasmic proteins is not

well studied, except for factors responsible for distortion of sex

transmission ratios [57] and factors which may be of importance

for fertilization [43].

The molecular basis for enrichment of Venus fluorophores in

PAS, midpiece and tail, and the apparent absence in the

subacrosomal layer is not known at the moment. However, the

uniform distribution of the Venus reporter in all spermatozoa

suggests that a specific mechanism is responsible for this process,

and most likely organizes the equal distribution of several paternal

proteins in immature spermatids, extending previous observations

of an extensive cellular traffic in spermatids of the rat [53]. Even

sophisticated analysis by sperm sorting according to X and Y

chromosome bearing spermatozoa fractions did not reveal any

differences in Venus fluorescence in sperm from transposon-

transgenic boars. The potential effects of spermatozoa-mediated

non-genetic transmission of proteins on fertilized zygotes is not

assessable by commonly applied techniques like in situ hybridiza-

tion, RT-PCR or DNA array analysis of early embryos [52,58]

and might require sophisticated proteomic and live imaging

techniques.

Apparently, the Venus fluorophore load in boar spermatozoa

behave neutral and did not affect fertilization capacity, vitality of

embryos or litter size. The born F1 piglets are vital, develop

normally and except the transgenic trait no difference between

transgenic piglets and their non-transgenic littermates was found.

This observation extends previous assessments of reproduction

performance of boars transgenic with a cytomegalovirus promoter

(CMV) driven alpha-1,2fucosyltransferase gene [59,60], albeit it is

not clear whether the CMV promoter is active in porcine

spermatogonial cells.

The data presented here, extend the knowledge about

distribution mechanisms of paternally derived proteins in pre-

spermatogonia and might be stimulating for research in non-

genetic transmission by spermatozoa. It is tempting to speculate

that transmitted protein components may affect early develop-

mental processes in the embryo.

Materials and Methods

Ethics statement
Animals were maintained and handled according to German

animal welfare guidelines and German GMO regulations. The

animal experiments were approved by an external ethics

committee (Niedersächsisches Landesamt für Verbraucherschutz

und Lebensmittelsicherheit, Oldenburg, Germany, AZ 33.9-

42502-04-09/1718).

Collection of ejaculated sperm, artificial insemination,
recovery of embryos

Gilts were superovulated by i.m. injection of 1.000 IU

Intergonan/PMSG (96h before insemination) and 500 IU Ovo-

gest/hCG (24 h before insemination) and then artificially

inseminated on day 0 (d0). In some cases, pregnant recipients

were sacrificed at days 1 and 2 post inseminations and embryonic

stages were isolated by flushing excised oviducts with PBS,

supplemented with 1% newborn calve serum.

Sperm-rich fractions were collected from boars using a dummy

and by gloved – hand technique. Semen samples were extended

with Androhep (1:2) and transported to the laboratory at 37uC.

Sperm concentration was determined by NucleoCounter SP-100

system (ChemoMetec, Denmark). For experiments the sperm

concentration was calibrated to 108/ml. Sperm analysis included

motility, morphology and membrane integrity.

Fluorescent microscopy and macroscopic excitation of
Venus fluorophore

For fluorescence microscopy, images were obtained with an

Olympus BX60 (Olympus, Hamburg, Germany) fluorescence

microscope equipped with a 12-bit digital camera and Cell*P

software (Olympus DP 71). For Venus fluorescence an excitation

Figure 5. Segregation of Venus transposon in F1 offspring. A)
F1-offspring viewed under specific excitation of Venus. Under the
recording conditions, Venus fluorescence is displayed as green-yellow
color, exemplarily some animals are labelled with their copy number of
the transposon. Note that the copy numbers of the transposon
correlated directly with the fluorescence intensity. The non-transgenic
littermates (wt) appear bluish due to reflected and scattered excitation
light B) Southern blot analysis of one litter. Lanes 1-3, 5, 7 and 8
represent transposon transgenic piglets with specific hybridization
signals. Lanes 4 and 6 represent non-transgenic littermates. M,
molecular size marker. C) PCR genotyping for the presence of the
Venus transgene. As positive control, a PCR for polyA polymerase
(PolyA) was included; wt, wild type sample.
doi:10.1371/journal.pone.0027563.g005
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filter of 460–490 nm, a band pass emission filter of 515–550 nm

and a dichroic mirror DM505 (Olympus) were used. Video

sequences of spermatozoa were filmed with the AVI recorder

function of Cell*P. For specific excitation of live Venus-transgenic

piglets and pigs, a blue floodlight LED (40 W; euroliteGermany,

Germany) and an electronic camera (Canon Powershot) equipped

with a yellow emission filter was used.

Confocal microscopy
Unfixed porcine zygotes, 2-cell and 4- cell embryos were

embedded in Vectashield (H-100, Axxora, Lörrach, Germany)

and sealed with a coverslip. Venus-specific fluorescence was

investigated with a confocal laser scanning system LSM510 (Carl

Zeiss, MicroImaging GmbH, Jena, Germany) connected to an

Axioplan 200 (Carl Zeiss). For excitation an argon laser (514 nm),

and for detection a band pass of 530–560 nm were used. The gross

cell morphology was visualized in multitracking mode with the

transmisssion channel in differential contrast (DIC). All images

were taken with a 20x Plan-Apochromat, na. 0.75 (Carl Zeiss).

Control embryos resulting from inseminations with semen from

wild type boars (n = 2) did not reveal any signal in the Venus

specific fluorescence channel.

Figure 6. Genotype-independent transmission of a transgenic fluorophore protein by spermatozoa. In founder (top) and F1-offspring
(bottom) a direct correlation between genotype and phenotype is found. The genotype is depicted by lines representing chromosomes, dots indicate
monomeric copies of the transgene; the phenotype is depicted by graded intensities of green color. However, in mature haploid spermatozoa a
uniform phenotype is found, despite segregation of transgenes and a different transgene load in different sperm cells. Even the , 10% spermatozoa,
which did not carry any transgene copy, showed a uniform Venus expression. The data presented here, suggest that the uniform phenotype in
spermatozoa is due to a highly accurate distribution of Venus protein between immature spermatozoa. Most likely several paternal proteins might be
equally distributed by this mechanism between immature spermatozoa.
doi:10.1371/journal.pone.0027563.g006
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Histology
Unfixed tissues were viewed in a stereomicroscope (Olympus

SZX16) equipped with 0.5x and 1.6x planapo objectives and

fluorescence optics. For histological examinations, tissue samples

were fixed in 4% formaldehyde overnight, soaked in a 20%

sucrose solution for 24 hours, and frozen in embedding medium

(MICROM Laborgeräte, Walldorf, Germany) and 10 micrometer

sections were cutted on a MICROM cryomicrotome (Thermo-

Fisher, Dreieich, Germany), embedded in Vectashield and viewed

in an Olympus BX60 fluorescence microscope.

Flow cytometry
Flow cytometry analysis of primary cells, leukocytes and

spermatozoa was performed using a FACScan (BD Bioscience,

Heidelberg, Germany) equipped with an argon laser (488 nm,

15 mW). Samples were diluted to 0.56106 cells/ml and measured

in duplicates acquiring 10 000 cells per sample. Membrane

impaired cells were excluded from analysis by adding propidium

iodide to a final concentration of 20 mM.

Sex chromosome sorting of spermatozoa
To determine, whether differences in Venus fluorescence exist

between X and Y chromosome bearing spermatozoa, ejaculates

were collected and diluted with sample fluid (modified Androhep)

to 108sperm/ml. Samples were sorted according to the Beltsville

Sperm Sexing method. Briefly, sperm were labelled with 20 ml of

an 8.9 mM Hoechst 33342 solution and were incubated at 34 uC
for 75 minutes. Labelled and incubated spermatozoa were kept at

22 uC in the dark. Aliqouts of 1 ml were sorted in a flow sorter

(MoFlo, Beckman-Coulter, FL, USA) using PBS supplemented

with 1% BSA as sheath fluid and a solid state UV Laser (Coherent,

Dieburg, Germany) working at 200 mW. The optical system of the

sorter was modified, using a PMT (FL1) instead of a forward

scatter diode. Signals were triggered on the side fluorescence of the

sperm heads recognized by a 90u PMT. All sorted cells were

collected in TEST-yolk [61] containing 2% seminal plasma. After

collection samples were centrifuged at 840 g for 20 minutes. The

supernatant was removed and the sperm pellet was re-suspended

with Androhep and batches were pooled to give a sperm

concentration of 108 sperm/ml.

One millilitre of the sex selected sperm populations were passed

through a flow sorter again. The sorter was equipped with a 488 nm

solid state laser (iCyte, Ill, USA) set to 35 mW to measure the

amount of Venus fluorescence. An aliquot of the ejaculate served as

control and was treated identically, except that it was not labelled

with Hoechst 33342 and was not passed through the sorter.

RNA isolation from porcine sperm
Somatic cells were removed from ejaculated sperm by Percoll

gradient (90%) centrifugation for one hour. The sperm pellet was

extracted by TriReagent for 30 minutes, centrifuged (129000 g) and

the supernatant suspended in chloroform. After 129000 g centrifu-

gation, 400 microliter of supernatant were combined with 1

microliter glycogen (5 mg/ml) and 400 microliter 2-propanol. After

centrifugation at 129000 g for 15 minutes, the pellet was washed with

70% ethanol, dried and resuspended in 10 microliter pure water. To

remove any contaminating DNA, a DNA-digest was performed with

DNase (Epicentre), before reverse transcription and PCR detection.

The primers and PCR conditions are given in Table S1.

CASA measurements
The motility parameters of the spermatozoa were measured

with a computer-assisted sperm analyser (CASA; Hamilton

Thorne Bioscience-IVOS, Beverly, USA) using a Makler cham-

ber. The motility parameters measured were as follows: MOT%

(percentage of total motile sperm), PMOT% (percentage of

progressive motile sperm), VSL (progressive velocity, mm/s), and

LIN (linearity of track %, VSL/VCL). To analyse the morphology

of sperm, 20 ml of sample (100 Million per ml) were added to

200 ml Hancock’s solution (4% formol citrat). A total of 200

spermatozoa were counted using a phase contrast microscope at

1000 x magnification and using the oil immersion technique. Each

sperm was evaluated for acrosome integrity, as well as total

morphologic integrity.

Genotyping of offspring
In brief, genomic DNA was isolated with the proteinase K

method. PCR genotyping was performed as described [18]. For

Southern blotting genomic DNA was digested with NcoI,

separated on a 0.6% agarose gel by electrophoresis and blotted

on a PVDF membrane. Then a transgene specific probe labelled

with digoxigenin was used for hybridization as described [18].

Western blotting
Western blotting was done as described [62]. In brief,

spermatozoa were extracted in RIPA buffer and 10 microgram

of protein per slot was separated on a 12% SDS-PAGE gel, blotted

to a PVDF membrane, blocked in 5% non-fat milk powder and

probed with a rabbit polyclonal anti-EGFP antibody (Thermo

Scientific, 1:1000), followed by a secondary antibody (anti-rabbit

IgG-horseradish peroxidase; 1:10 000, Sigma). In addition, a

murine monoclonal anti-tubulin antibody (Developmental Hy-

bridoma Bank, E7, 1:1000) and a anti mouse IgG-horseradish

peroxidase antibody (Sigma, 1:20 000) were employed. For

detection an ECL+ kit (GE Healthcare) and an image acquisition

system (Vilber Lourmat, Fusion SL3500) were used. A MagicMark

protein size ladder (Invitrogen) was used.

Supporting Information

Figure S1 Compartimentalized Venus localization in
spermatozoa. Confocal microscopic images of spermatozoa

from boar #505 are shown in A) differential interference contrast

(DIC), B) DIC and Venus fluorescence, and C) in Venus-specific

channel. Apparently, the distribution of Venus protein is dynamic,

sperm cells marked with an asterisk represent ‘‘fresh’’ sperm,

whereas after short incubation times (or handling procedures) a

relocation into the postacrosomal sheath happens (arrow). Bar =

5 micrometer.

(TIF)

Figure S2 Percoll purification of sperm cells. A) Low

magnification view of unpurified Venus-positive spermatozoa.

Note the aggregates of somatic cells (epithelial and immune cells),

some are labelled by arrows. B) Percoll purified Venus-positive

spermatozoa, and C) Brightfield view of B).

(TIF)

Figure S3 Detection of Venus protein in sperm of
transgenic boars. Western blot detection of Venus protein

(molecular weight , 30 kilodalton (kD)). Loading of slots: M,

molecular size ladder (bands of 20, 30, 40 and 50 kD are

indicated); 1-4 protein extracts isolated from: 1, wild type sperm; 2,

wild type sperm, Percoll purified; 3, sperm from transgenic boar,

4, sperm from transgenic boar after Percoll purification.

(TIF)

Figure S4 Expression of Venus in transgenic testis. A)

Specific Venus fluorescence in testis and accessory glands of a
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transgenic F1 piglet (day 7 postpartum), which succumbed to a

bacterial infection, is shown. Inset, same view under brightfield

conditions. B) Venus fluorescence in adult testis (18 months F0

boar). Bars = 2.5 cm. C) Venus fluorescence in cryosection of

boar testis and D) corresponding brighfield view.

(TIF)

Table S1 Primer pairs used for RT-PCR.

(DOC)

Video S1 Venus fluorescent spermatozoa. Freshly isolated

spermatozoa from boar #505. The start sequence shows the

spermatozoa under brightfield conditions, followed by specific

excitation of the Venus fluorophore. Note, several spermatozoa

are attracted to the border of an air bubble in the lower halve of

the display window.

(WMV)
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