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Abstract

Introduction of biomolecules into cells in living animals is one of the most important techniques in molecular and
developmental biology research, and has potentially broad biomedical implications. Here we report that biomolecules can
be introduced into single cells in living vertebrate embryos by photoporation using a femtosecond laser amplifier with a
high pulse energy and a low repetition rate. First, we confirmed the efficiency of this photoporation technique by
introducing dextran, morpholino oligonucleotides, or DNA plasmids into targeted single cells of zebrafish, chick, shark, and
mouse embryos. Second, we demonstrated that femtosecond laser irradiation efficiently delivered DNA plasmids into single
neurons of chick embryos. Finally, we successfully manipulated the fate of single neurons in zebrafish embryos by delivering
mRNA. Our observations suggest that photoporation using a femtosecond laser with a high pulse energy and low repetition
rate offers a novel way to manipulate the function(s) of individual cells in a wide range of vertebrate embryos by
introduction of selected biomolecules.

Citation: Hosokawa Y, Ochi H, Iino T, Hiraoka A, Tanaka M (2011) Photoporation of Biomolecules into Single Cells in Living Vertebrate Embryos Induced by a
Femtosecond Laser Amplifier. PLoS ONE 6(11): e27677. doi:10.1371/journal.pone.0027677

Editor: Hector Escriva, Laboratoire Arago, France

Received June 7, 2011; Accepted October 21, 2011; Published November 16, 2011

Copyright: � 2011 Hosokawa et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by a Grant-in-Aid for Young Scientists (A) from the Japan Society for the Promotion of Science to YH and a Grant-in-Aid for
Challenging Exploratory Research to MT. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the
manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: hosokawa@hskw.jp (YH); mitanaka@bio.titech.ac.jp (MT)

. These authors contributed equally to this work.

Introduction

Manipulation of gene function in vivo is an indispensable

technique for modifying individual functions of targeted cells in

living animals. Gene manipulation techniques have been applied

for molecular and developmental biology as well as for gene

therapy. Targeted gene manipulation can be conducted by

producing transgenic animals expressing a transgene under the

control of a specific promoter, but this method is time consuming

and is only applicable for a limited range of organisms. For non-

transgenic animals, a variety of vectors, chemicals, and electropo-

ration-based procedures have been used for delivery of exogenous

genes. Viral vectors have proven to efficiently deliver exogenous

genes to cells of living animals; however, the virus or its vector

derivatives may be toxic to the host animal. Liposome-mediated

transfection (lipofection) and electroporation have also been widely

used to deliver genetic materials; however, these methods come

with the challenge of controlling the range of the transfected area.

Recently, transgene expression in a transgenic worm was

successfully manipulated by using a heat shock promoter and

then focusing a continuous-wave infrared laser on a single cell in

the transgenic animal [1]. Unfortunately, this system is only

applicable to transgenic animals carrying a gene driven by the heat

shock promoter.

Near-infrared femtosecond (NIR-fs) laser photoporation is an

attractive method for delivering DNA plasmids into targeted cells.

Recent work has demonstrated the successful application of this

method to targeted cells in culture [2,3,4]. Most groups have

utilized a NIR-fs laser oscillator with a low pulse energy (,1 nJ/

pulse) and a high repetition rate (.10 MHz) for DNA delivery. It

is, however, difficult to achieve single-cell manipulation in thick

late-stage vertebrate embryos with low transparency using this

approach (Figure S1A). Although an objective with a high

numerical aperture and a short working distance is typically

required for effective multiphoton absorption for transfection, an

objective with a long working distance is required to focus through

thick vertebrate embryos (.300 mm; Figure S1B). Because the

numerical aperture becomes small and the laser focal spot size

(diameter d) becomes large with increasing working distance, an

intense NIR-fs laser pulse is required to obtain sufficient

multiphoton absorption at the laser focal spot. However, NIR-fs

laser pulses with a high pulse energy and high repetition rate are

problematic as they lead to overheating due to non-radiation

relaxation of photoexcitation energy at the laser focal spot. To

avoid such overheating, the pulse repetition rate must be

decreased to suppress total irradiation energy. Therefore, we have

found that a NIR-fs laser with a high pulse energy and low

repetition rate yields suitable laser irradiation conditions for living

vertebrate embryos (Figure S1B).

Here, we demonstrate for the first time the effective introduc-

tion of dextran, DNA plasmids, antisense morpholino oligonucle-

otides (MOs), or mRNAs into targeted single cells in embryos of
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non-transgenic zebrafish, shark, chick, and mouse by photopora-

tion using a femtosecond laser amplifier with a high pulse energy

(.100 nJ) and a low repetition rate (1 kHz) [4] (Figure 1A and

Figure S1B). We show that this method allowed us to manipulate

the fate of individual neurons in non-transgenic zebrafish embryos

by introducing mRNA in a targeted fashion.

Results

First, we introduced FITC-tagged standard control morpholinos

(FITC-MOs; 1,810 Da; Gene Tools; www.gene-tools.com) into

single cells in living zebrafish embryos (Figures 1B–D). MOs are

useful research tools for reverse genetics because they block targeted

RNA sequences. FITC-MOs (5 ng/nl) were injected into the

chorion cavity of anesthetized zebrafish embryos at 28 h post-

fertilization (hpf), and the embryos were mounted in 3%

methylcellulose in the depression of a glass slide (Figure 1B). NIR-

fs laser pulses (120 fs, 800 nm, 50 pulses at 1 kHz) were focused on

targeted epithelial cells of these embryos through a 106objective on

an inverted microscope (Figure 1A–B). Immediately after irradia-

tion, delivery of MOs was observed under a fluorescence

microscope. When laser pulses with an energy of 200 nJ/pulse

were used, FITC fluorescence was observed in single cells in 22% of

cases (2 single cells out of 9 individual shots; Figure 1D). When

energies of 300 and 400 nJ/pulse were used, fluorescence was seen

in single cells in 52.6% and 68.4% of cases (10/19 and 13/19,

respectively; Figure 1D). Irradiation at 800 nJ/pulse led to physical

dispersion of cells around the targeted area in 85.7% of cases (6/7;

Figure 1D). Thus, a laser pulse with an energy of 300–400 nJ/pulse

provided the efficient delivery of FITC-MOs into single cells of 28

hpf zebrafish embryos (Figure 1C–D).

Next, we delivered a relatively larger molecule, 10,000-Da

dextran, into single cells of 25- to 26-hpf zebrafish embryos

(Figure 1E, G). We injected dextran into the chorion cavity,

irradiated embryos, and observed fluorescence of dextran immedi-

ately after irradiation. Irradiation with 400-nJ laser pulses provided

the best conditions for delivering dextran to single cells, with a

success rate of 76.5% (13/17; Figure 1E). With 800-nJ laser pulses,

cells were dispersed in all cases (11/11; Figure 1E). At 24 h post-

irradiation with a 400-nJ/pulse, dextran fluorescence was detected

in newly divided cells (Figure 1H), suggesting that irradiated cells

remained healthy. When dextran was introduced into single cells of

30-hpf embryos, laser pulses at 800 nJ/pulse delivered the dextran

into individual cells in 54.5% of cases (6/11; Figure 1F).

Taken together, these observations suggest that our photopora-

tion technique can be used to introduce molecules with a

molecular size of up to 10,000 Da into single cells in zebrafish

embryos and that higher pulse energy is required to introduce

molecules into the cells of later-stage embryos. Furthermore,

higher energies from the NIR-fs laser tend to physically disperse

cells in early-stage embryos.

Next, we applied our photoporation technique to amniote chick

embryos (Figure 2). Chick embryos were cultured using a modified

version of the New method [5]. Briefly, stage 15 chick embryos

attached to a paper ring were placed on an albumin agar plate,

and dextran (10,000 Da) was injected between the vitelline

membrane and the ectoderm (Figure 2A). Laser pulses of 400 nJ

were focused on embryos from the dorsal side. Immediately after

irradiation, we observed successful transfer of dextran into single

epithelial cells in 71% of cases (32/45; Figure 2B).

Introduction of DNA plasmids is a general method for

manipulating gene function in model organisms. To date, however,

no studies have demonstrated successful manipulation of gene

function in single cells of living amniote embryos. Thus, we

introduced DNA into single cells in chick embryos. We injected a

cocktail of mini-ruby dextran and a DNA plasmid (pCAGGS-EGFP)

between the vitelline membrane and the epithelium of stage 14–16

chick embryos and irradiated single cells with 400-nJ laser pulses. At

15 to 24 h post-injection, 50% of cells showed fluorescence from

mini-ruby dextran as well as EGFP (produced by the plasmid) in

single cells or in newly dividing cells (Figure 2C, D).

To assess delivery to internal cells of chick embryos, we next

introduced DNA into single neurons (Figure 2E–H). The

pCAGGS-RFP construct was injected into the lumen of the

neural tube in stage 12–14 chick embryos using a glass capillary

needle and irradiated with 400-nJ laser pulses. We can target areas

deep in the neural tube only by shifting the laser focal position in

the z axis as shown in Movie S2. At 24 h post-injection, red

fluorescent protein (RFP) was distributed in single neurons

(Figure 2E). Immunohistochemical analysis confirmed that RFP

was produced in the transfected neurons (Figure 2F–H). Thus,

DNA constructs were successfully introduced to both external and

internal cells using our photoporation technique. We then

examined the usefulness of our photoporation technique in a

range of vertebrate embryos (Figure 3) by introducing the larger

molecule (10,000-Da dextran) into single neurons of embryos from

a model animal (mouse) and a non-model animal (shark). E9

mouse embryos with closed yolk sacs were cultured as described

[19,20]. Laser pulses of 400 nJ were focused on the surface of the

neural tube through a small slit made in the yolk sac (Fig. 3A). At

24 h post-injection, dextran was successfully delivered to single

neurons of cultured mouse embryos (Fig. 3B). Stage 29 shark

embryos were removed from the eggs (Fig. 3C) and transferred to

a transparent dish filled with saline solution. Immediately after

irradiation with 400-nJ laser pulses, shark embryos were returned

to the eggs and cultured. At 3 days post-irradiation, dextran

fluorescence was detected in single neurons of cultured shark

embryos (Fig. 3D). From the four animals tested, it stands to

reason that our photoporation technique could be applied to a

wide range of vertebrate embryos.

In developmental biology, introduction of mRNA into single-

cell embryos of teleost fishes is a useful method for gain-of-function

experiments, and introduction of MOs or mRNA into targeted

cells of living zebrafish embryos would be a great benefit. Thus, we

attempted to manipulate the fate of single neurons in zebrafish

embryos by introducing mRNA using our photoporation tech-

nique (Figure 4). Protein kinase A (PKA) is involved in the

hedgehog signaling pathway in the central nervous system, and

injection of a dominant-negative form of PKA mRNA (dnPKA)

into single-cell embryos induces expression of the floor plate

marker spondin1b (spon1b; previously known as F-spondin) in dorsal

regions of the central nervous system [6]. We examined whether

dnPKA mRNA could be introduced into single dorsal neurons of

zebrafish embryos and looked for ectopic expression of spon1b.

Because the zebrafish neural plate closes by the 14-somite stage (16

hpf) to form the neural rod, we injected dnPKA mRNA into the

chorion cavity at 13–14 hpf and focused 400-nJ laser pulses on the

presumptive dorsal neurons of the unclosed neural keel (Figure 4A).

Immediately after irradiation, embryos were dechorionated,

washed, and manipulated in fish water. At 24 hpf, spon1b

transcripts were observed in the floor plate of embryos injected

with either control EGFP mRNA or dnPKA mRNA, as expected

(FP in Figure 4B, C, D). In addition, ectopic spon1b expression was

detected in the dorsal neurons of embryos injected with dnPKA

mRNA (arrowheads in Figure 4C, E). Introduction of a cocktail of

biotin-dextran and dnPKA mRNA confirmed that the cells

expressing ectopic spon1b were indeed photoporated (Figure 4D).

These results clearly show that our photoporation technique can
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be applied for manipulation of gene function in single cells in

higher vertebrates.

Discussion

In this paper, we have shown for the first time that biomolecules

can be introduced into individual cells of diverse live non-

transgenic embryos using the presented femtosecond laser

photoporation technique. This demonstration opens the opportu-

nity to introduce various types of biomolecules, including DNA,

RNA, MOs, and drugs, into single cells in a broad range of

vertebrate embryos. Here we discuss the physical mechanism of

our photoporation technique as well as its potential for application

in a broad range of biological research settings.

Figure 1. NIR-fs Laser Photoporation of MOs or dextran into single cells of zebrafish embryos. (A) Experimental setup for targeted
introduction of biomolecules with femtosecond laser irradiation. Specifications are described in Materials and Methods. (B) Schematic representation
of targeted delivery to single cells of zebrafish embryos. FITC-MO, FITC-dextran, or mini-ruby dextran was injected into the chorion cavity of
anesthetized embryos mounted in methylcellulose solution. The femtosecond laser pulse train was focused on the surface of single cells. (C) FITC-MO
was detected in three targeted single cells (arrowheads). Inset: FITC-MO was localized to the nucleus (N) of the targeted cell. (D) Success rate of
delivery of FITC-MO into 28-hpf zebrafish epithelial cells. (E, F) Success rate of delivery of mini-ruby dextran into 25- to 26-hpf (E) and 30-hpf (F)
zebrafish epithelial cells. (G) Mini-ruby dextran was detected in a single targeted cell (arrowhead) of a 25- to 26-hpf zebrafish embryo. Inset:
Magnification of the targeted cell. (H) At 24 h after introduction of FITC-dextran, FITC fluorescence was detected in newly divided cells (arrowheads).
n, number of individual experiments. Scale bars: 250 mm (C, G); 50 mm (insets in C, G); 100 mm (H).
doi:10.1371/journal.pone.0027677.g001

 fs laser 

Chick embryo 
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Figure 2. NIR-fs Laser Photoporation of dextran or DNA into single cells of chick embryos. (A) Schematic representation of targeted
delivery to single cells of chick embryos. Mini-ruby dextran and pCAGGS-EGFP were injected between the vitelline membrane and the embryo in the
New culture system, and the femtosecond laser was focused on targeted cells. (B) Success rate of delivery of mini-ruby dextran into stage 15 chick
epithelial cells. (C) At 15 h after introduction, the fluorescence of both mini-ruby dextran (red) and EGFP (green) transcribed from the plasmid vector
was detected in an actively dividing cell (white arrowhead). (D) Success rate of delivery of mini-ruby dextran and pCAGGS-EGFP into stage 14–16
chick epithelial cells. (E–G) pCAGGS-RFP was transfected into single targeted cells in chick embryos. DNA was injected into the lumen of the neural
tube, and the femtosecond laser was focused on individual cells. (E) At 15 h after introduction, dorsal view shows RFP labeling of targeted neurons
(arrowheads). (F–H) At 15 h, transverse sections were visualized with DAPI (blue) and RFP antibody (red). (F) Merged image of anti-RFP (G) and DAPI.
RFP was identified in a single neuron and its axon in the neural tube (arrowheads). (H) Higher magnification of transfected neuron in F and G. The
nucleus (N) was identified by DAPI. D, dorsal; N, nucleus; NT, neural tube; V, ventral; n, numbers of individual experiments. Scale bars: 50 mm (left in C;
E, F, G); 10 mm (right in C); 20 mm (H).
doi:10.1371/journal.pone.0027677.g002
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Figure 3. Targeted introduction of biomolecules into single neurons of mouse and shark embryos. Mini-ruby dextran was injected into
the neural tube of mouse (A, B) and shark (C, D) embryos, and the femtosecond laser was used to irradiate targeted single neurons. (A) Schematic of
targeted delivery to single neurons of E9 mouse embryos. (B) Lateral view of the head region in bright field. (B9) Higher magnification of the midbrain
region shown in B. Dextran was identified in a single neuron (white arrowheads). (C) Side view of a cultured stage 29 shark embryo prior to the
photoporation. Red arrowhead indicates the spot where the laser was focused. (D) Dorsal view of the head region. Dextran was identified in a single
neuron (white arrowheads). (D9) Higher magnification of the hindbrain region shown in D. h, heart; hb, hindbrain; mb, midbrain. Scale bars: 200 mm
(B, B9, D9); 2 mm (C); 1 mm (D).
doi:10.1371/journal.pone.0027677.g003

Figure 4. Manipulation of the fate of targeted cells in zebrafish embryos. Targeted introduction of dnPKA mRNA induced floor plate marker
gene expression in single dorsal neurons of zebrafish embryos. (A) Schematic illustration of dnPKA mRNA delivery to single dorsal neurons of
zebrafish embryos. dnPKA mRNA was injected into the cavity between the chorion and the surface of embryo, and dorsal neurons in the neural keel
(center) were irradiated at 13–14 hpf with a femtosecond laser pulse (red triangle). Irradiated embryos were fixed at 24 hpf (right panel) and
processed for in situ hybridization. (B–E) Expression of the floor plate marker spon1b in embryos injected with control EGFP RNA (B) and dnPKA RNA
(C–E) at 24 hpf. (B–D) Lateral view; (E) transverse section. In the control embryo (B), spon1b transcripts were detected only in the floor plate. In the
dnPKA RNA-injected embryo, ectopic spon1b signals were observed in individual cells (arrowheads in C, E). (D) Expression of the floor plate marker
spon1b (purple) and localization of biotin-dextran (brown) in embryos injected with dnPKA RNA at 24 hpf. Ectopic expression of spon1b was only
detected in cells photoporated with biotin-dextran (black arrowhead). Although dextran was also observed in the adjacent dividing cell (open
arrowhead), ectopic spon1b expression was barely detected in this cell. CNS, central nervous system; D, dorsal; FP, floor plate; V, ventral. Scale bars:
100 mm (B, C); 50 mm (D, E).
doi:10.1371/journal.pone.0027677.g004
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The introduction of biomolecules into cells by photoporation is

triggered by multiphoton absorption. We propose that the physical

phenomena induced by multiphoton absorption in animal cells

can be categorized as follows: (I) enhancement of membrane

fluidity, (II) generation of a hole by laser ablation of the cell

membrane, and (III) cell dispersion due to shockwave and

cavitation bubbles at the laser focal spot. Enhanced membrane

fluidity (I) seems to be due to weak heating of the cell membrane

by laser irradiation. With increasing total irradiation energy, the

accumulated heat leads to local disruption of the membrane.

Furthermore, when the pulse energy is sufficiently high, the cell

membrane can be disrupted by single-pulse laser ablation and

overheating, which has been explained in terms of its photome-

chanical mechanism [7,8]. These processes then lead to generation

of a hole (II). The generation of a shockwave and cavitation

bubbles occurs in response to an excessive single-pulse ablation,

and has been explained in terms of optical breakdown [7]. When a

low pulse energy (,1 nJ/pulse) and a high repetition rate

(.10 MHz) are used, external molecules around the targeted cell

are transported intracellularly as a result of phenomena I and II.

On the other hand, our previous investigation [4] suggests that a

high pulse energy (.100 nJ/pulse) and a low repetition rate

(1 kHz) lead to the introduction of exogenous molecules mainly by

phenomenon II. Notably, when a tissue cell layer is stimulated by a

laser pulse with suitable energy to induce phenomenon II,

exogenous molecules are delivered to single cells in the tissue

(Figure S2A). If the laser pulse energy is excessively high (i.e., 800

nJ/pulse), however, phenomenon III is also induced, causing

dispersal of cells surrounding of the laser focal point (Figure S2B).

It is known that cell-cell adhesion in early embryonic tissues is

relatively weak. The fact that the NIR-fs laser tended to disperse

cells in early-stage zebrafish embryos (Figure 1D, E) can be

explained by phenomenon III. Similar dispersion of cells was

observed when NIR-fs laser pulses were applied to early-stage

chick embryos (stage 14; Fig. 2D). However, the proportion of

dispersed cells was not always proportional to the level of energy

applied. This discrepancy could reflect individual differences in the

geometrical relationship between sample and laser focal position,

which leads to variability in the laser focus. If the laser spot is

focused on the edge of the cells, cells may be dispersed with

relatively lower energy. For similar reasons, success rates of

delivery of molecules were not always proportional to the level of

energy applied. The phenomena I, II, and III were induced at the

laser focal spot even when the laser was focused on internal cells.

Taking advantage of this observation, we were able to introduce

plasmid DNA into single cells in the neural tube of chick embryos

(Figure 2E–H).

This technique allowed us to introduce a great variety of

biomolecules, including dextran, DNA, MOs, and RNA, into

single cells of vertebrate embryos. The procedure was successful in

a range of commonly used model organisms, including zebrafish,

chick, and mouse. Furthermore, it was successful in a non-model

organism, the shark, opening the opportunity to introduce

biomolecules to single cells of a much broader range of organisms.

Heretofore, local manipulation of gene function in animals

generally required production of transgenic animals or the use of

viral vectors, chemicals, or electroporation to transfect exogenous

genes. Producing transgenic animals is time consuming and is only

applicable in a limited range of organisms. Viral vectors, chemical

transfection reagents, and electroporation cannot be used to target

individual cells. Even the recent application of a continuous-wave

infrared laser to target cells can only be applied to transgenic

animals carrying a gene driven by a heat shock promoter. Our

method will permit the functional genomic analysis of targeted

cells in a potentially unlimited range of vertebrate embryos

without the need to produce transgenic animals.

The introduction of DNA plasmids, MOs, and RNAs into

vertebrate embryos has provided a general method for performing

a variety of gain- or loss-of-function experiments (Table S1).

Molecules can be introduced directly to the cell of one- or two-cell

embryos, or they can be delivered to limited areas of later-stage

embryos by electroporation or chemical or viral mediators.

Although these methods are in widespread use, it has been

difficult to limit the region that is transfected or to direct molecules

to deep levels of embryos where molecules cannot be injected.

Targeting deep-embryo sites poses a problem not only for

electroporation or mediators but also for our photoporation

method. For all these methods, molecules can be introduced more

efficiently if the targeted regions lie next to or near a cavity with a

clear lumen where molecules can be injected. Nonetheless, our

photoporation technique provides an advantage in terms of the

ability to restrict delivery to targeted cells.

It has also been difficult to apply current techniques to allow

functional gene analysis in single cells of living embryos. In teleost

fishes, introduction of MOs or mRNA can be carried out in one-

or two-cell embryos by using glass capillaries, but delivering

molecules to individual cells beyond the 32-cell stage has been

challenging. Although focal electroporation has been achieved in

zebrafish embryos in several cases [9,10,11], it came with the

challenge of controlling the number of transfected cells. In chick

and mouse embryos, although DNA plasmids have been

introduced into targeted regions by electroporation or toxic

mediators, targeted delivery has not yet been achieved at the

single-cell level.

Using our photoporation technique method, we succeeded in

introducing these biomolecules into targeted single cells without

the use of toxic reagents. Moreover, this technique allowed us to

introduce multiple biomolecules simultaneously in the same cells.

Finally, we demonstrated that the introduction of mRNA into

individual cells of live zebrafish embryos could manipulate the fate

of those cells, again without the use of any toxic reagents. The

development of new techniques for manipulation of cell fate and

function by introducing multiple biomolecules into cells of living

animals without the use of toxic mediators opens many

opportunities for future biomedical research in areas such as gene

therapy and induced pluripotent stem cell research, among others.

In conclusion, the NIR-fs laser approach for intracellular

delivery of biomolecules should be adaptable to a wide range of

non-transgenic organisms, obviating the time-consuming process

of producing transgenic animals and allowing the manipulation of

gene function in many non-model systems. We demonstrated the

success of this method using a variety of biomolecules and a wide

range of higher vertebrates. This technique thus holds great

promise for improving the efficacy and accuracy of targeted

transfection/delivery of biomolecules to individual cells in a broad

range of research disciplines.

Materials and Methods

Ethics Statement
Experimental protocols involving animals were approved by

Animal Studies Committees at NAIST (the permit numbers; 193

and 216).

Experimental Equipment for NIR-fs Laser Photoporation
NIR-fs laser pulses from a regeneratively amplified Ti:sapphire

femtosecond laser system (Spectra physics, Hurricane, 800 nm,

120 femtoseconds (fs), 1 mJ/pulse, 1 kHz) were focused on targeted
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epithelial cells or neurons in embryos through a 106 objective

(Olympus, PlanN, 0.25 NA, 10.6 working distance) on an inverted

microscope (Olympus, IX71) as shown in Figure 1A [12]. In this

laser system, NIR-fs laser pulses generated by a Ti:sapphire

femtosecond laser oscillator (Spectra-Physics, Mai Tai laser) were

reduced to a repetition rate of 1 kHz and amplified by chirped-pulse

regenerative amplification. Fifty repetitions of the amplified pulses

were detected with a mechanical shutter (gate time 50 ms) and

delivered to the sample. The laser pulse energy was tuned by a half-

wavelength (l/2) plate and dual polarizers. Laser pulses were

collimated by dual convex lenses before the microscope, and the

laser focal point was tuned to the plane of the image on the

microscope. The laser pulse energy through the objective was

measured by attaching a laser power meter (ORIEL, model AN/2)

to the objective. The pulse energy after passing through the

objective was approximately half that before the objective due to

delivery loss. The spatial distribution of the laser intensity at the

focal spot was estimated by examining the etching pattern on a

carbon-doped polymer film, in which laser ablation is initiated by

single-photon absorption. The diameter of the laser focal point was

,5 mm. The threshold energy for cavitation bubble generation in

water (Fth
W) was ,50 nJ/pulse, which is estimated to be 250 mJ/

cm2 as a unit of laser fluence. This is in rough agreement with the

fluence reported as a threshold of optical breakdown [8,13].

Namely, we performed the photoporation experiments with pulse

energy ranging from 26Fth
W (100 nJ) to 166Fth

W (800 nJ). The z

position was controlled by mechanically shifting the microscope

stage from the image plane. The accuracy of the z position, based on

the mechanical precision of the microscope stage, was less than

5 mm. Therefore, we can target cells in the z plane with this

precision. The three-dimensional precision of targeting is sufficient

for the experimenter to reliably target single cells, as the typical

animal cell is between 10 and 100 mm (see Movie S1 and Movie S2).

The process of laser-mediated biomolecule delivery was monitored

by transmission images collected using a CCD camera (Ikegami,

ICD-878). Total magnification of the images is 5406. The

illuminating light source was a halogen lamp set above the

microscope. The laser focal point in the image plane was adjusted

using a joystick to position the microscope stage, after which the

laser pulses were shot by opening the mechanical shutter. The

accuracy of the xy position was less than 5 mm.

Morpholinos, Dextran, Plasmids, and mRNA
Fluorescein-tagged standard control morpholino antisense

oligonucleotides (control MOs, 59-CCTCTTACCTCAGTTA-

CAATTTATA-39; Gene Tools) were dissolved in endotoxin-free

water at a final concentration of 5 ng/nl. Fluorescein-conjugated

10,000 MW dextran and mini-ruby dextran (tetramethylrhoda-

mine and biotin, 10,000 MW, lysine fixable) were purchased from

Invitrogen. pCAGGS-EGFP [14] and pCAGGS-RFP [15] were

dissolved in endotoxin-free water at a final concentration of

10 mg/ml. Capped mRNAs were transcribed from linearized

pCSEGFP [7] and pCSdnPKA [6] using an in vitro transcription kit

(MEGAscript SP6, Ambion).

NIR-fs Laser Photoporation for Single Cells in Zebrafish
Embryos

Wild-type Danio rerio (strains TL and Tü) were reared as

described [16]. Embryos were mounted in the center of a

depression on a glass slide with 3% methylcellulose solution

under tricaine anesthesia (MS222, Sigma). For epithelial

fibroblasts, 5 ng/nl FITC-MO, 5% FITC-dextran, or 5% mini-

ruby dextran were injected into the cavity between the chorion

and the embryo surface. Immediately after injection, the

femtosecond laser was focused on the surface of a single epithelial

cell. For neural cells, 400 ng/ml control EGFP mRNA [17] or

dnPKA mRNA [6] in 2.5% FITC-dextran or in 2.5% miniruby-

biotin-dextran was injected into the cavity between the chorion

and the surface of an 8- to 10-somite embryo (13–14 hpf).

Femtosecond laser pulses were focused on the presumptive dorsal

neurons of the unclosed neural keel. After laser irradiation, eggs

were manually dechorionated and washed in fish water [16]. At

24 hpf, some embryos were fixed in 4% paraformaldehyde/PBS

for in situ hybridization.

NIR-fs Laser Photoporation for Single Cells in Chick
Embryos

HH stage 12–16 [18] chicken embryos were explanted with the

aid of a ring of filter paper and cultured according to a modified

version of the New culture method [5]. For epithelial cells, a

solution of 5% mini-ruby dextran (Invitrogen) and/or 10 mg/ml

pCAGGS-EGFP was injected between the vitelline membrane

and the epiblast ectoderm. Femtosecond laser pulses were then

focused on the surface of a single epithelial cell. For neural cells, a

solution of 10 mg/ml pCAGGS-RFP was injected into the lumen

of the neural tube, and a single cell was irradiated. Immediately

after laser irradiation, embryos were transferred to a fresh albumin

plate for New culture and incubated at 38uC.

NIR-fs Laser Photoporation for Single Cells in Mouse
Embryos

E9 mouse embryos with closed yolk sacs were precultured for 1–

2 h in rat serum (Charles River Japan) as described [19,20], and

then transferred into Tyrode’s solution (Sigma). Reichert’s

membrane was removed, and a solution of 5% mini-ruby dextran

was injected into the lumen of the neural tube. A small slit was

made in the yolk sac to allow femtosecond laser pulses to be

focused on the surface of the neural tube. Immediately after laser

irradiation, embryos were placed in a warm tube with 1 ml warm

(37uC) rat serum per embryo. The tube was then gassed with 20%

O2/5% CO2,/75% N2, sealed, and placed in a roller-tube mouse

incubator at 37uC. Embryos were harvested after 24 h of culture

and fixed in 4% paraformaldehyde/PBS.

NIR-fs Laser Photoporation for Single Cells in Shark
Embryos

A window ,10 mm in diameter was opened on the surface of

Scyliorhinus canicula eggs at stage 29. Embryos were removed from

the eggs and transferred to saline solution for sharks [21]. A

solution of 5% mini-ruby dextran was injected into the lumen of

the neural tube, and the femtosecond laser was focused on a single

neuron. Immediately after irradiation, embryos were returned to

the eggs and incubated in a moist chamber at 16uC. Embryos were

harvested after 3–7 days of culture and fixed in 4% paraformal-

dehyde/PBS.

Immunohistochemistry
Immunohistochemical localization of proteins was performed as

described [20]. The polyclonal antibody against RFP was

purchased from MBL.

Whole-Mount In Situ Hybridization and Biotin Labeling
Whole-mount in situ hybridization was performed as described

[16]. The probe for Danio rerio spondin 1b (spon1b) was amplified by

reverse transcription-polymerase chain reaction using primers

derived from the published sequence (NM_131517). Selected

stained embryos were processed for cryosectioning by dehydrating,
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incubating in 20% sucrose/PBS, and embedding in 7.5% gelatin/

15% sucrose. Sections were ,20–40 mm thick. For biotin labeling

in combination with in situ hybridization, stained embryos were

treated with 0.1 N glycine HCl (pH 2.2), washed five times in PBS,

and incubated overnight with streptavidin–horseradish peroxidase

(HRP; Vector) in PBS at 4uC. The specimens were washed five

times in PBS at room temperature, then HRP activity was

detected using 3,39-diaminobenzidine in water with 0.01%

hydrogen peroxide.

Supporting Information

Figure S1 Schematic examples indicating the difference
between femtosecond laser–mediated introduction of
DNA into a thin sample with high transparency (A) and a
thick sample with low transparency (B). (A) Conventional

method for DNA introduction into cultured cells utilizing a Ti:

Sapphire femtosecond laser oscillator with low pulse energy (,1

nJ/pulse) and a high repetition rate (.10 MHz). (B) Our method

for introducing MO, DNA, or RNA into single cells in living

mouse embryos utilizing the regeneratively amplified Ti: Sapphire

laser system with high pulse energy (.100 nJ) and a low repetition

rate (1 kHz).

(PDF)

Figure S2 Multiphoton absorption leads to introduction
of molecules to cells or cell dispersion. (A) Generation of a

shockwave and cavitation bubbles caused by an excessive single-

pulse ablation leads to generation of a hole in the cell membrane

and delivery of molecules to the cell through the hole. (B) Cell

dispersion is induced when the pulse energy is particularly high.

(PDF)

Table S1 Comparison of NIR-fs laser photoporation
and other methods.

(DOC)

Movie S1 Typical example of targeting a single cell in a
zebrafish embryo using a NIR-fs laser. The arrow indicates

the targeted cell at the surface of the zebrafish embryo. The black

spot observed 33 ms after laser irradiation is due to local

deformation of the cell, which leads an increase in light scattering.

(AVI)

Movie S2 Demonstration of laser focal precision in the
optical (z) axis. A 200-nJ laser pulse was focused on cells in the

neural tube of zebrafish embryos at the surface (arrow at

‘‘surface’’) and at 15 mm from the surface in the direction of the

z axis (arrow at ‘‘15 mm’’).

(AVI)
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