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Abstract

Vpr, an accessory protein of human immunodeficiency virus type 1, is a multifunctional protein that plays an important role
in viral replication. We have previously shown that the region between residues 17 and 74 of Vpr (VprN17C74) contained a
bona fide nuclear localization signal and it is targeted VprN17C74 to the nuclear envelope and then imported into the nucleus
by importin a (Impa) alone. The interaction between Impa and Vpr is important not only for the nuclear import of Vpr but
also for HIV-1 replication in macrophages; however, it was unclear whether full-length Vpr enters the nucleus in a manner
similar to VprN17C74. This study investigated the nuclear import of full-length Vpr using the three typical Impa isoforms,
Rch1, Qip1 and NPI-1, and revealed that full-length Vpr is selectively imported by NPI-1, but not Rch1 and Qip1, after it
makes contact with the perinuclear region in digitonin-permeabilized cells. A binding assay using the three Impa isoforms
showed that Vpr bound preferentially to the ninth armadillo repeat (ARM) region (which is also essential for the binding of
CAS, the export receptor for Impa) in all three isoforms. Comparison of biochemical binding affinities between Vpr and the
Impa isoforms using surface plasmon resonance analysis demonstrated almost identical values for the binding of Vpr to the
full-length isoforms and to their C-terminal domains. By contrast, the data showed that, in the presence of CAS, Vpr was
released from the Vpr/NPI-1 complex but was not released from Rch1 or Qip1. Finally, the NPI-1–mediated nuclear import of
Vpr was greatly reduced in semi-intact CAS knocked-down cells and was recovered by the addition of exogenous CAS. This
report is the first to show the requirement for and the regulation of CAS in the functioning of the Vpr-Impa complex.
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Introduction

Molecular trafficking between the nucleus and the cytoplasm is

tightly regulated in eukaryotic cells. Nuclear import processes involve

the nuclear pore complexes (NPCs) of the nuclear envelope and,

typically, require nuclear localization signals (NLSs). The nuclear

import of classical NLS-bearing proteins is mediated by specific

soluble factors, including Importin (Imp), which consists of two

subunits, Impa and Impb, small GTPase Ran/TC4, and nuclear

transport factor 2 [1]. The ternary complex with NLS-bearing

protein, Impa, and Impb translocates into the nucleus, and the

binding GTP-bound form of Ran to Impb triggers the dissociation of

ternary complex, releasing Impa [2]. However, there are many

additional pathways that mediate nuclear import; for example,

Impb-like molecules (such as the transport factor for substrates

carrying the M9 shuttling signal or importin 7) and Impb itself are

competent to transfer some cargo by themselves [3]. In addition, it

was previously reported that Impa could migrate into the nucleus in

an Impb- and Ran-independent manner [4]. Impa alone can escort

Vpr, one of the accessory proteins of human immunodeficiency virus

type 1 (HIV-1) [5,6], as well as Ca2+/calmodulin-dependent protein

kinase type IV (CaMKIV) into the nucleus without utilizing the

classical Impb-dependent transport system [7].

Impa is composed of a flexible N-terminal Impb-binding (IBB)

domain and a highly structured domain comprising ten tandem

armadillo (ARM) repeats [2]. The helical ARM repeats assemble

into a twisted slug-like structure whose belly serves as the NLS-

binding groove. The central portion of Impa, which contains the

ARM repeats, recognizes the NLS cargo, while its N-terminal basic

region, termed the IBB domain, binds to Impb, and the region

between residues 383 and 497, corresponding to the ninth and tenth

ARM regions, binds to the cellular apoptosis susceptibility (CAS)

protein [2,8]. The crystal structure of Impa has shown that the

region between residues 469 and 478, within the tenth ARM region,

contains the core sequences for CAS binding [8]. The nature of the

dissociation of the NLS cargo from Impa is unclear, but it has been

proposed that nucleoporins (Nups), together with CAS, assist in the

dissociation process [2,9]. CAS binds preferentially to Impa, after its
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dissociation from the NLS cargo, and exports nuclear Impa to the

cytoplasm. However, Impa has at least seven isoforms in human

[2,10,11], grouped into three subfamilies (a1, a2 and a3) based on

their amino acid sequence similarities. There is approximately 80–

90% sequence homology in each subfamily [2,12]. Subfamily a1

includes importin a5 (NPI-1/SPR1/karyopherin alpha 1

[KPNA1]), importin a6 (KPNA5) and importin a7 (KPNA6).

Subfamily a2 contains importin a1 (Rch1/SRP1a/KPNA2) and

the recently-reported importin a8 (KPNA7) [10,11]. Subfamily a3

includes importin a3 (Qip1/SRP3/KPNA4) and importin a4

(KPNA3). Members of the three subfamilies have about 50%

homology with each other [2,12]. Many studies have shown that

Impa isoforms differ in their efficiencies with respect to classical

substrate-specific import, show unique expression patterns in

various tissues and cells, and depend on the state of cellular

metabolism and differentiation [2,6,13]. Taken together, this

information suggests that Impa proteins contribute primarily to

tissue-specific nuclear transport.

Vpr has multiple biological functions, including nuclear localization

activity [14,15,16], arresting cells at the G2/M phase of the cell cycle

[17,18,19], increasing the activity of the HIV-1 long terminal repeat

[20], selective inhibition of cellular pre-mRNA splicing both in vivo and

in vitro [21,22], and positive and negative regulation of apoptosis [23].

These functions are carried out through interactions with a variety of

cellular partners. Especially, the virion-associated viral protein, Vpr, is

necessary for the nuclear import of the viral pre-integration complex

(PIC) in non-dividing cells [6,14,15,24], although its exact role in the

PIC entry mechanism remains unclear. There are several pathways

that Vpr could use to cross the nuclear envelope. First, numerous

investigations regarding the subcellular localization of Vpr suggest that

the Vpr protein may cross the nuclear envelope by passive diffusion, as

it is small enough (15 kDa) to pass through the NPC [15,25]. Second,

Vpr enters the nucleus by interacting with nucleoporins, which are

constituents of the NPC [26,27,28]. Third, Vpr binds to Impa , which

stimulates subsequent nuclear import of the cargo by increasing the

affinity of Impa for NLS-containing proteins [16]. Another report

describes a novel nuclear import mechanism for Vpr, involving two

putative alpha-helical domains, located between residues 17 and 34

(aH1) and between residues 46 and 74 (aH3), which are required for

the nuclear localization of Vpr [25]. A subsequent study used

microinjection and in vitro transport assays incorporating the chimeric

protein VprN17C74 to show that the entire region between residues 17

and 74 is a bona fide NLS [5]. Furthermore, an in vitro transport assay

experiment designed to identify the factors required for VprN17C74

nuclear entry found that Vpr itself is targeted to the nuclear envelope

and is then transported by Impa, without any involvement of Impb
[5]. The three typical Impa isoforms, Rch1, Qip1 and NPI-1, appear

able to interact directly with VprN17C74 and support its nuclear entry.

Interestingly, the interaction between Impa and Vpr is necessary not

only for the nuclear import of Vpr but also for HIV-1 replication in

macrophages [6]. These results suggest that the interaction between

Vpr and Impa may be a potential target for therapeutic intervention.

Indeed, a potential parent compound, hematoxylin, has been

identified, which suppresses the VprN17C74-Impa interaction, thereby

inhibiting the nuclear import of the HIV-1 viral genome in

macrophages in a Vpr-dependent manner [29].

A nuclear magnetic resonance structural analysis revealed that full-

length Vpr forms three amphipathic alpha helices surrounding a

hydrophobic core [30,31]. It has a flexible, negatively-charged N-

terminal domain flanking the helices and its C-terminal domain is also

flexible, positively charged, and rich in arginine residues [30,31]. Two

motifs, amino acids 56 to 77 in the third a-helical domain (aH3) and

amino acids 77 to 96 in the arginine-rich C-terminal domain, are

critical for the inhibition of pre-mRNA splicing by Vpr [20], while the

C-terminal domain appears to be critical for Vpr-induced G2 arrest

and apoptosis [32,33]. The N-terminal domain was shown to be

important for localization to the nuclear rim [34]. Taken together,

these results clearly indicate that the N-terminal and the C-terminal

Vpr domains play critical roles in the multiple functions of Vpr.

However, it is unclear whether full-length Vpr enters the nucleus in a

manner similar to that of the chimeric protein, VprN17C74. In this

investigation, we have studied the detailed mechanism of full-length

Vpr entry into the nucleus. Using a digitonin-permeabilized transport

assay, the nuclear import of full-length Vpr by the three major

isoforms of Impa, Rch1, Qip1 and NPI-1, was analyzed. Further-

more, to clarify the means by which NPI-1 selectively transports full-

length Vpr, the Impa isoform domain involved in the interaction with

Vpr and these accurate binding affinities were identified using a

glutathione-S-transferase (GST)-pull down assay and surface plasmon

resonance (SPR). Moreover, we used a GST pull-down assay to show

that although Vpr binds to the CAS-binding domain of all of three

Impa isoforms to roughly the same extent, CAS can dissociate the

interaction between Vpr and NPI-1 but not between Vpr and Rch1 or

Qip1. Finally, we used an in vitro nuclear import assay using HeLa cells

with knocked-down CAS to demonstrate that CAS is required for the

nuclear entry of full-length Vpr.

Results

Full-length Vpr is preferentially imported into nuclei by
Impa5 (NPI-1)

A chimeric protein comprising full-length Vpr fused at the N-

terminus to GST and green fluorescent protein (GFP) (,63 kDa)

was constructed, which surpassed the limit for passive diffusion

into the nucleus (Fig. 1A). An in vitro nuclear import assay was

then performed using digitonin-permeabilized, semi-intact HeLa

cells (Fig. 1B). In the absence of soluble factors, full-length Vpr

localized predominantly to the perinuclear region in a manner

similar to that of the VprN17C74 mutant. By contrast, no signal was

detected in the perinuclear region when using a negative control

protein (a chimeric GST-GFP protein). Interestingly, the nuclear

import of Vpr changed significantly in the presence of the different

Impa isoforms. High levels of Vpr entered the nucleus in the

presence of NPI-1; however, the levels were much lower in the

presence of Qip1, and no entry was observed in the presence of

Rch1. By contrast, in agreement with a previous report [6], the

VprN17C74 mutant entered the nucleus at similar levels in the

presence of all three Impa isoforms. GST-GFP failed to enter the

nucleus, even in the presence of all three Impa isoforms.

Next, the extent of the nuclear import activity exhibited by Vpr

in the presence of 0.25, 0.5, 1 or 2 mM of the Impa isoforms was

examined by measuring the fluorescence intensity in the nucleus

(Fig. 1C). Only NPI-1 efficiently enhanced the nuclear import of

Vpr. Qip1 showed a very weak effect on the nuclear entry of Vpr,

which remained at a low level even in the presence of 2 mM Qip1.

By contrast, no nuclear import of Vpr was detected in the presence

of Rch1, even at a concentration of 2 mM.

The effect of Rch1 and Qip1 on the nuclear entry of full-length

Vpr mediated by NPI-1 was then examined (Fig. 1D). NPI-1–

mediated nuclear import of Vpr did not decrease in the presence

of Rch1 or Qip1. Moreover, the Impa isoform-driven nuclear

import of Vpr was completely inhibited when Impb was added to

semi-intact HeLa cells (Fig. 1E). Likewise, Impb decreased the

nuclear import of the VprN17C74 mutant in the presence of Rch1

(Fig. 1E). Taken together, these results suggest that full-length

Vpr is targeted to the perinuclear region and is then transported

into the nucleus by NPI-1 alone, without any requirement for

Impb.

CAS Regulates Nuclear Import of HIV-1 Vpr/NPI-1
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Full-length Vpr interacts with all three Impa isoforms
To examine further whether full-length Vpr interacts directly

with all three Impa isoforms, the recombinant GST-tagged Impa
isoforms, Rch1, Qip1 and NPI-1 (immobilized on glutathione-

Sepharose beads), were incubated with mRFP-Vpr purified from

vertebrate cells. Interestingly, full-length Vpr was able to interact

with all three isoforms (Fig. 1F), indicating that Vpr is able to bind

directly to Rch1 and Qip1, even though these isoforms did not

promote its nuclear entry as well as did NPI-1, which showed

preferential transport of Vpr into the nucleus.

Full-length Vpr binds to the Impa CAS-binding domain
Since the three major Impa isoforms, Rch1, Qip1 and NPI-1,

share approximately 50% overall amino acid sequence similarity

[2,12], we decided to determine whether the same domain was

involved in binding full-length Vpr in all three isoforms. Impa is

Figure 1. Importin a5/NPI-1 preferentially mediates the nuclear import of Vpr. (A) Twenty-five pmol of purified recombinant GST- and GFP-
tagged Vpr (Vpr), GST- and GFP- tagged VprN17C74 (N17C74), GST-tagged GFP (GST-GFP) were resolved by 10% SDS-PAGE and stained with Coomassie
brilliant blue (CBB). (B) Nuclear import of Vpr by importin a (Impa) isoforms. Digitonin-permeabilized HeLa cells were incubated with 1 mM of Vpr,
N17C74, and GST-GFP in the absence (-) or presence of 1 mM (for Vpr and GST-GFP) or 3 mM (for N17C74) of each of the recombinant Impa isoforms,
Rch1, Qip1 and NPI-1. Cells were fixed in 3.7% formaldehyde and stained with Hoechst 33342 to show the position of the nucleus (right panel). After
fixation, cells were analyzed by confocal laser scanning microscopy. Bar = 10 mm. (C) Fluorescence intensity of Vpr per surface area was quantified for
at least 70 nuclei in the presence of the indicated concentrations of the Impa isoforms from three independent experiments. The bar shows the
standard errors of measurements. (D) In vitro nuclear import assay for GST-GFP-Vpr was performed in the absence (-) or presence of 1 mM of the Impa
isoforms. After fixation, cells were analyzed by confocal microscopy. Bar = 10 mm. (E) In vitro nuclear import assay for Vpr was performed in the
absence (-) or presence of 1 mM of the Impa isoforms, and 1 mM of Impa isoforms with 1 mM Impb. N17C74, as a control, was performed with 1 mM of
Rch1 and 1 mM Impb. After fixation, cells were analyzed by confocal microscopy. Bar = 10 mm. (F) Binding assay between Vpr and the Impa isoforms.
Glutathione-Sepharose beads were coupled with the GST-Impa isoforms, Rch1, Qip1 and NPI-1 or GST alone, and were incubated with Vpr protein
purified from 293T cells transfected with pCAGGS mammalian vectors encoding Flag-mRFP (mRFP), or Flag-mRFP-Flag-Vpr (mRFP-Vpr). The bound
fractions and 1/20 of the input of mRFP-Vpr and mRFP were analyzed by immunoblotting with an anti-Flag M2 monoclonal antibody (MAb) (right
panel). Twenty-five pmol of GST or GST-Impa isoforms were resolved by 10% SDS-PAGE and stained with CBB (left panel). The positions of mRFP and
mRFP-Vpr are indicated.
doi:10.1371/journal.pone.0027815.g001
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composed of an N-terminal IBB domain, a highly-structured

domain comprised of ten tandem ARM repeats and a C-terminal

acidic domain [2], as shown in Fig. 2A. For each isoform, three

truncated mutants were prepared as fusion proteins with GST: 1)

the IBB domain mutant, 2) the mutant containing the ARM

repeat domain but lacking the tenth ARM repeat, and 3) the

mutant including the C-terminal region between the ninth ARM

repeat and the acidic domain, (Fig. 2B). These mutants were then

assessed for their binding activity with full-length Vpr (Fig. 2D).

The recombinant mutant corresponding to the ARM repeat

domain between residues 70 to 438 of Rch1 was very unstable and

was difficult to purify; therefore, a slightly extended form of the

mutant, between residues 70 to 475 but without the tenth ARM

repeat, was used.

Vpr bound to all mutants of all three Impa isoforms: two of the

deletion mutants, the ARM repeat domain lacking the tenth ARM

repeat (Rch170–475, Qip169–439 and NPI-176–451) and the C-

terminal region containing the ninth ARM repeat (Rch1404–529,

Qip1392–537 and NPI-176–541), bound to Vpr with the same level as

full-length Impa. The IBB domain mutant (Rch11–69, Qip11–68

and NPI-11–75) also interacted with Vpr, albeit with lower affinities

than those shown by the full-length Impa isoforms. These results

suggested that the main Vpr binding site is located somewhere

between the structural ARM repeats and the C-terminal region

but is not found in the IBB domain for all three Impa isoforms.

The two mutant forms that bound strongly to Vpr, as

mentioned above, shared the ninth ARM repeat (Fig. 2A).

Therefore, different truncated forms lacking the ninth ARM

repeat (Rch170–403, Qip169–391 and NPI-176–403) were constructed

(Fig. 2C) and a pull-down assay was performed using mRFP-Vpr

(Fig. 2E). The binding of the ARM repeat mutants lacking the

ninth ARM repeat to Vpr was reduced significantly, indicating

that the ninth ARM repeat region of all of three Impa isoforms

(Rch1404–475, Qip1392–439 and NPI-1404–451) is the major binding

site for full-length Vpr.

Full-length Vpr binds with similar affinity to the C-
terminal domain of the three Impa isoforms

To quantify the binding affinities between Vpr and each of the

Impa isoforms accurately, the BIAcore 2000 SPR sensor system

was used. In this system, four samples can be immobilized

individually on the same chip, and their interactions with analytes

can be tested simultaneously. Each of the three recombinant full-

length Impa isoforms and their C-terminal peptide mutants

(Rch1404–529, Qip1392–537 and NPI-176–541), the GST was cleaved

with PreScission protease, were immobilized on one lane of a

sensor chip and a remaining vacant lane was used as a negative

control for the non-specific binding of GST-Vpr and GST to the

chip. The chip-bound Impa isoforms were exposed to various

concentrations of GST-Vpr and GST, and their affinity constants

were measured by analyzing the curves (Fig. 3). Typical sensor

curves of various Vpr concentrations (0 to 40 mM) interacting with

full-length NPI-1 (NPI-1full) are shown in Fig. 3A. The binding

affinities obtained are summarized in Table 1. The KD values for

the full-length Vpr-Impa isoform interactions were very similar:

8.9 mM (Rch1), 6.8 mM (Qip1), and 7.4 mM (NPI-1). The KD

values for two of the Vpr-Impa C-terminal peptides were similar

to those for the full-length Impa isoforms, 6.5 mM (Qip1392–537)

and 6.7 mM (NPI-1404–541); however, the KD of the Rch1 C-

terminal peptide, 4.3 mM (Rch1404–529), showed a two-fold

decrease compared with the KD of full-length Rch1. This

experiment confirmed that the binding affinities between Vpr

and all Impa isoforms are very similar.

CAS disrupts the interaction between Vpr and NPI-1, but
not between Vpr an Rch1 or Qip1

The sequences required for binding to the CAS nuclear export

factor are located between the ninth and tenth ARM repeats

within Impa [2]. The present study indicated that the ninth ARM

repeat of Impa is the main region involved in binding to Vpr and

is also necessary for the interaction with CAS. Therefore, to

determine whether CAS affects the interaction between Vpr and

Impa, glutathione-sepharose beads coupled to GST-Rch1, -Qip1

or -NPI-1 were incubated with mRFP-Vpr in the absence or

presence of purified recombinant CAS and a RanGTP analog

(Q69LRanGTP) (Fig. 4A). RanGTP is necessary for the

interaction between Impa and CAS in cell nuclei. As shown in

Fig. 4B and C, the amount of Vpr bound to NPI-1 decreased as

the concentration of CAS increased in the presence of

Q69LRanGTP in a dose-dependent manner (a 0.2-fold difference

in the presence of 50 pmoles CAS). This was not the case for Rch1

and Qip1, indicating that CAS causes the dissociation of Vpr from

NPI-1 (which can import the full-length Vpr into the nucleus) but

does not disrupt Vpr/Rch1 or Vpr/Qip1 interactions, which are

not involved in Vpr nuclear import. When Q69LRanGTP was

absence on Pull-down assay, CAS only showed a very weak effect

on the dissociation of Vpr from NPI-1 (Fig. 4D).

CAS regulates the NPI-1–mediated nuclear entry of
full-length Vpr

Finally, the requirement for CAS for NPI-1–mediated nuclear

entry of full-length Vpr was confirmed using an in vitro nuclear

import assay. The results clearly showed that the expression of the

endogenous CAS protein was not affected by digitonin-induced

permeabilization (Fig. S1). Therefore, an in vitro nuclear import

assay was performed using HeLa cells in which CAS expression

had been knocked down. Knock-down was confirmed by

immunoblotting experiments conducted after a 36 h treatment

with two siRNAs (siRNA1 and siRNA2) against CAS mRNA

(Fig. 5A). HeLa cells were permeabilized with digitonin and used

in an in vitro import assay (Fig. 5B, C). The nuclear import of

GST-GFP-Vpr, which was enhanced by the addition of NPI-1,

was greatly decreased in HeLa cells treated with either CAS-

specific siRNA1 or siRNA2, but not in negative control siRNA-

transfected cells or in untreated cells. Furthermore, this reduction

in nuclear import was rescued by up to 50% by the addition of

exogenous CAS (recovery was considered to be 50% because

exogenous CAS needs time to reach the cell nuclei). However, Vpr

was able to localize to the nuclear envelope in these cells,

indicating that CAS has no effect on the perinuclear localization of

Vpr, an event that does not require both Impa isoforms. These

results clearly demonstrate that CAS is essential for the NPI-1–

mediated nuclear import of Vpr.

Discussion

This study investigated the nuclear import of full-length Vpr,

the HIV-1 accessory protein, using an in vitro nuclear import assay

with digitonin-permeabilized HeLa cells and a pull-down assay.

The results produced two major conclusions: first, the data

suggested that full-length Vpr is preferentially imported into the

nucleus by NPI-1 but not Rch1 and Qip1, in contrast with

VprN17C74, which can be imported by all three major isoforms of

Impa [6]. Certain previous studies have shown that each Impa
isoform imports different viral proteins; for example, Qip1

interacts with HIV-1 integrase (IN) and contributes to HIV-1

nuclear import and replication [35], while NPI-1 and Rch1

interact with the influenza virus Nucleoprotein to promote its

CAS Regulates Nuclear Import of HIV-1 Vpr/NPI-1
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nuclear import [36]. Second, our data from the in vitro nuclear

import assay using HeLa cells with the knocked-down nuclear

export receptor, CAS, indicated that CAS is essential for the NPI-

1–mediated nuclear import of Vpr. We also showed that CAS

mediated the release of Vpr from NPI-1 but not from Rch1 and

Qip1, thus facilitating the transport of Vpr into the nucleus. It was

Figure 2. Mapping of the Impa isoform domains involved in the interaction with Vpr. (A) Schematic representation of the Impa isoforms,
Rch1, Qip1, NPI-1 and their deletion mutants. (B and C) All mutants were expressed as GST fusion proteins in E. coli and purified using Glutathione-
Sepharose. Twelve pmol of purified GST-tagged Impa isoform derivatives were resolved by 10% SDS-PAGE and stained with CBB. (D and E) Binding of
Impa isoforms to Vpr. Glutathione-Sepharose beads coupled to GST-Impa isoforms or GST alone were incubated with mRFP-Vpr or mRFP. The bound
fractions and 1/50 of the input of mRFP-Vpr and mRFP were analyzed by immunoblotting with anti-Flag M2 MAb (right panel). The positions of mRFP
and mRFP-Vpr are indicated.
doi:10.1371/journal.pone.0027815.g002
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known, from previous reports, that in the classical nuclear import

of the NLS cargo/Impa/Impb complex, CAS increased the

dissociation of the Impa/NLS cargo complex together with

nucleoporins, such as Nup50, after the dissociation of Impb from

the ternary complex in the nucleus [2,37,38]. However, a

requirement for CAS in this process had not previously been

confirmed by in vitro nuclear import assay. In addition, it was

previously reported that although CaMKIV, which is transported

by Impa without utilizing Impb, binds to the C-terminal region of

mouse Rch1 (Rch1413–459) in a similar manner to Vpr, the

interaction between Impa and CaMKIV was not disrupted by the

addition of CAS in a solution-binding assay [7]. Therefore, this

study is the first to demonstrate, using in vitro nuclear import and

pull-down assays, that CAS is required for Impa-mediated nuclear

import and plays a direct role in the regulation of the NLS cargo-

Impa complex without utilizing the Impb-dependent transport

pathway.

Our present and previous results have allowed us to

characterize the mechanism governing the entry of full-length

Vpr into the nucleus as follows: i) full-length Vpr localizes to the

perinuclear region, without a requirement for soluble factors,

before it is transported into the nucleus by Impa, as shown by the

in vitro nuclear import assays using digitonin-permeabilized HeLa

cells (Fig. 1) and CAS-specific siRNA-treated permeabilized HeLa

cells (Fig. 5). This perinuclear localization in the absence of Impa
isoforms is in agreement with the nuclear import of VprN17C74

(Fig. 1B) [6] and distinguishes the nuclear import of Vpr from

that of other NLS-bearing proteins. ii) The detailed binding assay

with truncated forms of the three Impa isoforms showed that full-

length Vpr binds preferentially to the ninth ARM repeat, which is

also the domain required for CAS interaction with Impa. This

data partially agrees with a previous report in which VprN17C74

required the C-terminal peptide of Impa directly to entry into

nucleus, though it majorly bound to IBB domain of the Impa [5].

iii) Our SPR analysis clearly demonstrated similar binding

affinities for Vpr to each of the three full-length Impa isoforms

as well as to their C-terminal domains, which contained the ninth

ARM region, identified as the major Vpr-binding site, and also the

CAS binding site [8,37]. iv) This study demonstrated that the

release of Vpr from the Vpr/NPI-1 complex depends on CAS. By

contrast, CAS did not cause the dissociation of Vpr from

complexes with Rch1 or Qip1, even though they were capable

of importing Vpr into the nucleus (Fig. 4B, C). v) We also showed

that the nuclear import of Vpr by NPI-1 was not affected by Rch1

or Qip1 (Fig. 1D), suggesting that each of the Impa isoforms exist

in equilibrium with Vpr in the cytoplasm. It was assumed that all

the Impa isoforms have same binding affinity for Vpr (Fig. 3 and

Table 1). vi) After interacting with Impa at the perinuclear

region, full-length Vpr was selectively imported by NPI-1 but not

Figure 3. SPR measurements of the interaction between Vpr
and full-length or C-terminal Impa isoforms using BIAcore. (A)
SPR sensorgrams of the interactions between GST-Vpr and the full-
length Impa isoform, NPI-1full, immobilized to the CM sensor chip.
Sensor curves of the interactions between Vpr at various concentrations
(0 to 40 mM) and NPI-1full are shown. (B) The analysis curves used to
obtain the dissociation constants (KD) for the interactions between Vpr
and the Impa isoforms, Rch1full, Qip1full, NPI-1full, Rch1404-529, Qip1392-537

and NPI1404-541 using the steady state binding model equation (see
Material and Methods).
doi:10.1371/journal.pone.0027815.g003

Table 1. Dissociation equilibrium constants determined
using BIAcore.

Analite Ligand KD (M) Ligand KD (M)

Vpr Rch1full 8.961026 Rch1404–529 4.361026

Qip1full 6.861026 Qip1392–537 6.561026

NPI-1full 7.461026 NPI-1404–541 6.761026

Dissociation equilibrium constants determined using BIAcore. KD of Vpr was
determined by using the Vpr sensorgrams obtained by subtracting GST
sensorgrams from GST-Vpr sensorgrams at the same concentrations. Full: full-
length.
doi:10.1371/journal.pone.0027815.t001

CAS Regulates Nuclear Import of HIV-1 Vpr/NPI-1

PLoS ONE | www.plosone.org 6 November 2011 | Volume 6 | Issue 11 | e27815



by Rch1 or Qip1, in contrast to the import of VprN17C74 by all

three isoforms of Impa (Fig. 1B) [6]. In addition, the NPI-1–

driven nuclear import of Vpr appeared to be completely inhibited

when Impb was added to the in vitro import assay as shown in

Fig. 1E. Thus, it seems that the transport of full-length Vpr is

mediated in an Impa-dependent/Impb-independent manner, as

was found previously for VprN17C74 [5,6]. vii) In an in vitro nuclear

import assay using HeLa cells with knocked-down CAS, we

showed that CAS promotes the NPI-1–mediated nuclear import of

Vpr. Taken together, the results suggested that the differences in

the dissociation rates for the interactions between Vpr and the

three Impa isoforms might permit the novel nuclear import of full-

length Vpr specifically mediated by NPI-1. Data from the present

study leads us to speculate that the Vpr N- or C-terminal region

will bind to the ninth ARM region of Impa with the potential

regulation of the nuclear import process through the dissociation

of Vpr from NPI-1 via an interaction with CAS. Indeed, it has

been reported that the C-terminal region of Vpr, which most

closely resembles a classical NLS, is highly involved in its nuclear

localization [39,40].

It is unclear how the selective release of full-length Vpr from

NPI-1 depends on CAS; however, there two possible hypotheses

with regards to its mechanism: first, it is predicted that since the

binding affinities of Vpr for the C-terminal domain were almost

the same for all three Impa isoforms, CAS must be attracted to

specific amino acids in NPI-1. Interestingly, the alignment of the

sequences of the ninth ARM motif, which are involved in the

binding of Vpr, showed that the three Impa isoforms share only

50% overall amino acid sequence similarity [2,11,12], suggesting

that the ARM motif of NPI-1 may be more effective at binding

CAS than that of Rch1 or Qip1. The second possibility relates to

the targeting of Vpr to the perinuclear region. Sun et al. [38]

showed that Impa/NLS cargo complexes, without Impb,

dissociated in the presence of CAS and RanGTP at the nuclear

pore complexes. They also speculated that Nup50 facilitates the

dissociation of Impa/NLS cargo complexes in the presence of

CAS and RanGTP when it reaches the nuclear basket region of

the NPC [38]. In a recent report, Ogawa et al. [9] speculated that

the dissociation of Impa from the NLS-substrate was promoted by

Npap60 (Nup50). In addition, interactions between transport

factors and key nucleoporins, such as Nup1p, Nup2p and Nup50,

appeared to accelerate the formation and dissociation of the NLS

cargo/Impa/Impb complexes [38]. Likewise, in this study, we

have also shown that the dissociation of the Vpr/NPI-1complexes

may occur at the perinuclear region using an in vitro nuclear import

assay with digitonin-permeabilized HeLa cells. In this assay, full-

length Vpr was targeted directly to the perinuclear region in the

absence of soluble factors, and, in addition, this perinuclear

localization increased in a dose-dependent manner upon the

addition of NPI-1. Earlier studies confirmed that Vpr can interact

with nuclear pore complex components [15,16,27,41] and we

have previously demonstrated that the interaction between Vpr

and the NPC is crucial for Vpr nuclear import, since Vpr mutants,

with barely detectable perinuclear localization, could not be

imported into the nucleus [5]. Further studies on the role of Vpr at

the NPC are now essential for a full understanding of the

mechanism of CAS-regulated, NPI-1–mediated nuclear import of

full-length Vpr.

Our results clearly indicate that the ninth ARM repeat region of

all of three Impa isoforms is the major binding site for full-length

Vpr. In contrast, we here demonstrate that the IBB domain of

Impa interacts with full-length Vpr, albeit with lower affinity than

Figure 4. CAS disrupts the interaction between Vpr and NPI-1. (A) Twenty-five pmol of purified recombinant RanQ69L and CAS were resolved
by 10% SDS-PAGE and stained with CBB. (B) Glutathione-Sepharose beads coupled with the GST-Impa isoforms, Rch1, Qip1 and NPI-1 (each 25 pmol)
or GST (25 pmol), were incubated with mRFP-Vpr, Q69LRanGTP (25 pmol) and/or CAS protein (5 and 50 pmol, respectively). The bound fractions of
mRFP-Vpr and mRFP were analyzed by immunoblotting with anti-Flag M2 MAb. (C) The immunoblots of mRFP-Vpr binding were analyzed by
densitometry and each sample was normalized to the Impa isoforms without CAS protein. Each column and error bar represents the means 6 SD of
results from three experiments. The asterisk* represents a p-value of ,0.0005. (D) Glutathione-Sepharose beads coupled with the NPI-1 (each
25 pmol) or GST (25 pmol), were incubated with mRFP-Vpr, Q69LRanGTP (25 pmol) and/or CAS protein (10 and 50 pmol, respectively). The bound
fractions of mRFP-Vpr were analyzed by immunoblotting with anti-Flag M2 MAb. The bound fractions and 1/20 of the input of mRFP-Vpr were
analyzed by immunoblotting with anti-Flag M2 MAb. The positions of mRFP-Vpr are indicated.
doi:10.1371/journal.pone.0027815.g004
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those shown by the full-length Impa isoforms to their C-terminal

domains. This result partially corresponds to our previous finding

that Impa binds strongly to VprN17C74 via the IBB domain, but

this binding is not essential for the nuclear entry of Vpr [5]. The

IBB domain contains an NLS-like sequence (49-KRRNV-53) that

binds to autologous NLS-binding sites in a similar way to the NLS

of SV40. Thus, Impa appears to be prevented from binding to a

classical-type NLS by an internal NLS until Impb binds to the IBB

domain [42]. These facts suggest that Vpr might modulate the

interaction between a classical NLS-bearing protein and Impa, as

does Impb. Interestingly, Bukrinsky and colleagues [16,43]

reported that Vpr associates with the N-terminal region of Impa,

which overlaps with the IBB domain of Impa and differs from the

classical NLS cargo binding site. This interaction may stimulate

nuclear import of the cargo by increasing the affinity of Impa for

NLS-containing proteins, including that of HIV-1 matrix (MA)

protein, which is one of the components of the PIC and has a basic

type of NLS. Thus, Vpr might accelerate nuclear import of the

PIC through interaction with the IBB domain, in addition to the

NPI-1-driven nuclear import of Vpr, that requires the C-terminal

domain of Impa.

Various factors are reported to adapt Impa isoforms for nuclear

import. Viral proteins, such as the herpes virus open reading frame

(ORF) 57 protein [44], the Influenza virus nucleoprotein [45,46],

and polymerase PB2 [47], appear to be transported by NPI-1.

Likewise, it was recently shown that HIV-1 IN appears to interact

with Qip1 and contributes to the nuclear import of PIC and viral

replication [35]. The results of the present study show that Vpr is

selectively imported into the nucleus by NPI-1, and previous work

shows that the interaction between Impa and Vpr is necessary not

only for the nuclear import of Vpr but also for HIV-1 replication

in macrophages [48]. Macrophages are a major target for HIV-1

and serve as a viral reservoir that releases small amounts of viral

particles in symptomatic carriers [49]. A striking feature of HIV-1

is its ability to replicate in non-dividing cells, particularly in

macrophages. Replication in non-dividing cells depends on the

active nuclear import of the viral PIC, which includes the viral

proteins, IN, Vpr, and small amounts of MA, in addition to viral

nucleic acids [48]. Vpr is particularly important for the nuclear

import of the PIC in non-dividing cells [6,14,15,24], although its

exact role in the PIC entry mechanism remains to be clarified.

Work is currently ongoing to study the expression of Impb in

human differentiated macrophages, and preliminary data suggest

that it is expressed at very low levels in primary differentiated

macrophages. The low level of Impb expression in macrophages

may result in the inefficient nuclear import of MA and IN, which

utilize the classical Impa/Impb-dependent nuclear import path-

way. By contrast, previous studies show that all three Impa
isoforms are strongly expressed at both the mRNA and protein

levels [6]. This suggests that, although Vpr utilizes many nuclear

import pathways [6,16,26,27,28], the Impa-mediated nuclear

import pathway is the most efficient in macrophages. In summary,

Figure 5. The siRNA-induced knock down of CAS prevents the nuclear import of Vpr. (A) CAS-specific siRNA and nonspecific siRNA
(negative control) transfections were performed in HeLa cells. After 36 h of treatment with CAS-specific siRNA1 and siRNA2 and the negative control
siRNA, cell extracts were prepared and immunoblotting with an anti-CAS antibody was used to determine the transfection efficiencies of the siRNAs.
Untreated HeLa cells (-). Actin was included as an internal control. The positions of CAS and actin are indicated. (B) Digitonin-permeabilized HeLa cells,
transfected with siRNAs, were incubated with 1 mM GST-GFP-Vpr, 1 mM NPI-1 and 1 mM CAS. After fixation, cells were analyzed by confocal laser
scanning microscopy. Bar = 10 mm. (C) Fluorescence intensity per nuclear surface area was quantified in over 80 nuclei from three independent
experiments. The bar shows the standard errors of measurements.
doi:10.1371/journal.pone.0027815.g005
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the results of the present study show for the first time that CAS

mediates the release of Vpr from the Vpr-NPI-1 complex, thereby

allowing its transport into the nucleus. Further investigation of the

molecular mechanisms underlying the Vpr/NPI-1 interaction and

the selective release of full-length Vpr from NPI-1 and its

contribution to HIV-1 replication is required to facilitate a better

understanding of the HIV-1 nuclear import process.

Materials and Methods

Cell culture
Human cervical HeLa and 293T cells were grown in Dulbecco’s

modified Eagle’s medium (DMEM; Invitrogen, Carlsbad, CA)

supplemented with 10% heat-inactivated fetal bovine serum (FBS;

Sigma-Aldrich, St. Louis, MO) and GlutaMax (GIBCO Industries

Inc., Los Angeles, CA).

Plasmids
The following plasmids have been described previously: the

expression vector, pME18Neo, encoding Flag-tagged wild-type

Vpr and its control vector, pME18Neo; the expression vector,

pCAGGS, encoding Flag-mRFP-Flag-Vpr (mRFP-Vpr) and its

control vector, pCAGGS-Flag-mRFP (mRFP); and the GST

expression vector, pGEX-6P-3, encoding GST-tagged-Rch1, -

Qip1, -NPI-1 and -Impß [6,33,50,51]. The pCAGGS encoding

Flag-mRFP-VprN17C74 (mRFP-N17C74) was constructed as

described previously [50]. For the construction of the expression

vector pGEX-6P-3, encoding GST-tagged-Vpr (GST-Vpr), a

fragment encoding Vpr was amplified by PCR with the follow-

ing primers: 59-GGGGATCCGAACAAGCCCCAGAAGACC-

39 and 59-CCCTCGAGCTAGGATCTACTGGCTCC-39 from

pME18Neo-Flag tagged Vpr [33,51] and was subcloned into

pGEX-6P-3 (GE Health, Buckinghamshire, UK) at the BamHI/
XhoI sites. For construction of the expression vector, GST-green

fluorescent protein (GFP)-tagged Vpr (GST-GFP-Vpr), a cDNA

encoding histidine tag6 (His6)-tagged-Vpr (Vpr-His), was amplified

from pME18Neo-Flag tagged Vpr by PCR with the primers 59-

GGGATCCATGGAACAAGCCCCAGAAGA-39 and 59-GCG-

GCCGCTCAATGATGATGATGATGATGACCGGTCCCG-

GGGGATCTACT-39 and subcloned into the pGEX-6P-1-GFP

vector at the BamHI/NotI sites. The plasmid GST-VprN17C74-GFP

(GST-N17C74-GFP) has been described previously [5]. To

construct the expression vector, pGEX-6P-3-CAS, a cDNA

encoding CAS was prepared from pGEX-6P-2-GFP-CAS [9]

and ligated into pGEX-6P-3 at the BamHI/XhoI sites. To

construct the expression vector, pGEX-6P-3- Q69LRan, a cDNA

encoding wild-type Ran was cloned by PCR from a HeLa cDNA

library generated using SuperScript II (Invitrogen) according to

the manufacturer’s instructions. The N-terminal His-tag fused

Ran was then amplified by PCR and subcloned into pGEX-6P-3

(GE Healthcare Life Science). Q69LRan was generated using a

QuickChange II Site-Directed Mutagenesis kit (Stratagene)

according to the manufacturer’s instructions. For construction of

the truncated Impa isoform expression vectors, the fragments were

amplified by PCR and were subcloned into pGEX-6P-3 at the

BamHI/EcoRI sites for Rch1 and NPI-1 and the BamHI/XhoI sites

for Qip1. The following PCR primers were used: Rch1 1-69, 59-

CCCGGATCCTCCACCAACGAGAATGCTAATACACC-39

and 59-CCCGAATTCCTAGTTGCGGTTTTCCTGCAGC-

GG-39; 70–475, 59-CCCGGATCCAACCAGGGCACTGTAA-

ATTGG-39 and 59-GGGGAATTCCTAAGCTTCAATTT-

TGTCTAA -39; 70–402, 59-CCCGGATCCAACCAGGGCAC-

TGTAAATTGG-39 and 59-CCCGAATTCCTAGTTGGT-

CACGGCCCACACAGCTTCC-39; 403–529, 59-GGGGGATC-

CTATACCAGTGGTGGAACAG-39 and 59-GGGGAATTCC-

TAAAAGTTAAAGGTCCC-39; NPI-1 1–75, 59-CCCGGATC-

CACCACCCCAGGAAAAGAGAAC-39 and 59-GGGGAATT-

CCTACATGTTATTAATCTGAGCCTCATG-39; 76–405, 59-

CCCGGATCCGAGATGGCACCAGGTGGTGTC-39 and 59-

CCCGAATTCTCAGGCCCAAGCTGCTTCTTTTCTTG-39;

76–451, 59-CCCGGATCCGAGATGGCACCAGGTGGTGT-

C-39 and 59-GGGGAATTCTCACAGGATATTTTCCAAG-

CC-39; 406–538, 59-CCCGGATCCATCACAAATGCAACT-

TCTGG-39 and 59-GGGGAATTCTCAAAGCTGGAAACC-

TTCCATAG-39; Qip1 1–67, 59-CCCGGATCCGCGGACAAC-

GAGAAACT-39 and 59-GGGCTCGAGCTATCTATAAT-

CACCATCTATATCAGAG-39; 68–393, 59-CCCGGATCCGT-

GCAAAATACCTCTCTAGAA-39 and 59-GGGGCTCGAGC-

TAGGCCCAAGCAGCTTCTTTTTGAGTGC-39, 68–439, 59-

CCCGGATCCGTGCAAAATACCTCTCTAGAA-39 and 59-

GGGGCTCGAGCTACTAATATATTACTTAG-39; and 394–

521, 59-CCCGGATCCATAAGTAACTTAACAATTAGT-39

and 59-GGGCTCGAGCTAAAACTGGAACCCTTCTGTT-

GGTAC-39.

Protein expression and purification
The recombinant GST-tagged Rch1, Qip1, NPI-1, the deletion

mutants, GST-GFP, Impß and CAS were expressed in the

Escherichia coli strain BL21 CodonPlus (DE3)-RIL (Stratagene, La

Jolla, CA) and purified using the Glutathione Sepharose 4FF bead

system (GSH System, Amersham Biosciences, Piscataway, NJ) as

described elsewhere [6,50]. GST-Vpr and GST-GFP-Vpr were

purified as described elsewhere [52]. After expressing these

proteins in E. coli, cells were lyzed with Lysis Buffer [10 mM

Tris-HCl (pH 8.0), 500 mM NaCl, 1% Triton X-100, 5 mM 2-

Mercaptoethanol, 10% (w/v) glycerol and protein inhibitor].

GST-Vpr and GST-GFP-Vpr were purified using the GSH system

(Amersham Biosciences) and separated on a His-Trap column (GE

Health) [5,52]. GST-N17C74-GFP protein was purified as

described previously [5]. Purified GST-Vpr, GST-GFP-Vpr and

GST-N17C74-GFP proteins were dialyzed against transport

buffer [TB: 20 mM HEPES-KOH [pH 7.3], 110 mM potassium

acetate, 2 mM magnesium acetate, 5 mM sodium acetate and

1 mM dithiothreitol (DTT)]. RanQ69L was expressed from

pGEX-6P-3 and purified on GSTrap and HisTrap column (GE

Healthcare), and after nucleotide exchange for GTP, GST was

digested by PreScission Protease and separated on Hi-Trap SP

column (GE Healthcare). Activity was confirmed by binding with

GST-Importin b.

To express and purify the Flag fusion proteins, 293T cells

(56105 cells) were transfected with 5 mg of the pCAGGS

mammlaian expression vector encoding mRFP-Vpr, mRFP-

N17C74 or mRFP using FuGene HD Transfection Reagent

(Roche Diagnostics, Basel, Switzerland). Two days after transfec-

tion, expressed proteins were purified using ANTI-FLAG M2

agarose (Sigma-Aldrich) as described previously [50].

In vitro nuclear import assay
HeLa cells (2 6106) were seeded on an eight-well coverslip in a

10-cm dish. After 16 to 24 h of culture, HeLa cells were

permeabilized by digitonin in TB on ice for 5 min and washed

twice with TB as described previously [25]. The permeabilized

cells were incubated at room temperature for 1 h or 30 min with

1% bovine serum albumin, GST-GFP-Vpr (for 1 h), GFP-GST

(for 1 h) or GST-N17C74-GFP (for 30 min), and transport

substrates in a total volume of 10 ml per sample. After incubation,

the cells were washed twice with TB and fixed in 3.7%

formaldehyde in TB. Samples were examined using confocal laser
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scanning microscopy (FV 1000; Olympus, Tokyo, Japan) and the

nuclear fluorescence intensity was analyzed with MetaMorph

software (Molecular Devices Inc., Downingtown, PA). For each

condition, the fluorescence intensity per nuclear surface area was

quantified for at least 70 nuclei stained with Hoechst 33342

(ImmunoChemistry Technologies LLC., Bloomington, MN).

Pull-down assay
Glutathione-Sepharose 4FF beads were coupled with GST-Impa

isoforms and their mutants in TB for 1 h at 4oC and then in 10 mM

Tris-HCl (pH 8.0), 50 mM NaCl, 0.05% NP-40 and 1 mM DTT.

Vpr proteins purified from 293T cells transfected with pCAGGS

encoding mRFP or mRFP-Vpr were incubated with GST-protein

conjugated beads for 2 h at 4oC. The beads were washed four times

with 500 ml washing buffer [10 mM Tris-HCl (pH 8.0), 150 mM

NaCl, 0.2% NP-40 and 1 mM DTT] and bound proteins were

eluted by incubation with sodium lauryl sulfate (SDS) sample buffer

[100 mM sodium phosphate (pH 7.2), 1% SDS, 10% glycerol,

100 mM DTT and 0.001% bromophenol blue] at 98uC for 5 min.

Eluted proteins were fractionated by 10% SDS-polyacrylamide gel

electrophoresis (PAGE) and detected by Western blotting with anti-

Flag M2 monoclonal antibody (MAb) (Sigma-Aldrich).

Immunoblotting
Cells or proteins were dissolved in SDS sample buffer, heat-

denatured and loaded onto 10% SDS polyacrylamide gels.

Separated proteins were transferred to a polyvinylidene difluoride

membrane (Immobilon; Millipore, Bedford, MA). After treatment

with PBST [20 mM Dulbecco’s phosphate-buffered saline (PBS)

and 0.05% (v/v) Tween 20] containing 5% skim milk at room

temperature for 1 h, the blotted membrane was incubated with

anti-Flag MAb (M2) (Sigma-Aldrich), anti-CAS polyclonal antibody

(CSE1L, Medical & Biological Laboratories Co. Ltd., Nagoya,

Japan), or anti-actin polyclonal antibody (Santa Cruz Biotechnology

Inc., Santa Cruz, CA) diluted with PBST containing 3% skim milk

at room temperature for 2 h or at 4oC for 16 to 18 h. The

membrane was rinsed with PBST and incubated with horseradish-

peroxidase (HRP)-conjugated goat anti-mouse IgG (Zymed Labo-

ratories, San Francisco, CA) for anti-Flag, HRP-goat anti-rabbit

IgGs (Zymed Laboratories) for anti-CAS, or HRP-rabbit anti-goat

IgG (Zymed Laboratories) for anti-actin. Each antibody was diluted

with PBST containing 3% skim milk. After washing with PBST, the

bound antibodies were visualized with ECLTM Blotting Detection

Reagents (Amersham Biosciences) followed by exposure to X-ray

film (Kodak BioMaxTM XAR film, Sigma-Aldrich).

Surface plasmon resonance (SPR) analysis
SPR experiments were performed using the BIAcore 2000

system (GE Health) at room temperature. Impa isoforms and their

mutants were coupled directly to the sensor chip (CM5 research

grade, GE Health) via standard N-hydroxysuccinimide and N-

ethyl-N-(dimethylaminopropyl) carbodiimide activation. To im-

mobilize the proteins, full-length Rch1 [dissolved in 10 mM

sodium acetate buffer (pH 5.0)] full-length Qip1 and full-length

NPI-1 [dissolved in 10 mM sodium acetate buffer (pH 4.5)], and

their mutants [dissolved in 10 mM sodium acetate buffer (pH 4.0)]

were injected onto the sensor surface with HBS EP buffer [10 mM

Hepes (pH 7.4), 150 mM NaCl, 3 mM ethylenediaminetetraacetic

acid, and 0.05% surfactant P20; GE Healthcare] employed as the

mobile phase buffer during the immobilization process. Following

immobilization, 50 mM Tris-HCl buffer (pH 7.5) was injected to

quench the unreacted N-hydroxysuccinimide groups, and then

PBS was used as the mobile phase buffer. GST and GST-Vpr

samples at various concentrations were injected as analytes, and

bound analytes were subsequently removed by washing with the

mobile phase buffer at 300 s after the injection. Vpr sensorgrams

were obtained by subtracting GST curves from GST-Vpr curves.

Kinetic constants were calculated from the Vpr sensorgrams using

the BIA evaluation software, version 3.0 Biacore AB (GE

Healthcare). Dissociation constants (KD) were calculated from

the resonance unit at equilibrium using the following equation:

Req~
Req

:C

CzKD

where Req is the steady state binding level, KD is the dissociation

constant and C is the analyte concentration. Req is related to

concentration according to this equation.

Small interfering RNAs (siRNA)
The siRNAs against CAS were designed with the BLOCK-iT

RNAi Designer (Invitrogen). The siRNA forward sequences

targeting CAS were 59-AGCAACAGUGGAUAAUUCU-

GAUUUC-39 for siRNA1 and 59-UUAACUGCUUCUGAAU-

UUGCUCUGG-39 for siRNA2. HeLa cells (16106) were seeded

on a 6-cm dish. After cells had adhered to the dish, the cells were

transfected with the siRNAs using Lipofectamine RNAiMAX

(Invitrogen) according to the manufacturer’s protocols. After 16 h,

cells (26106) were seeded onto an eight-well coverslip within a 10-

cm dish and were used in an in vitro import assay following 36 h

incubation with an siRNA.

Statistical methodology
Statistical analyses were conducted using R version 2.8 (1).

Supporting Information

Figure S1 Immunofluorescent staining of endogenous
CAS in semi-intact cells. The two panels show the steps

involved in cell preparation for the in vitro import assay: intact cells

(left panel), digitonin-treated cells and the cells incubated on ice for

5 min following digitonin treatment (right panel). Cells on cover

slips were fixed with 3.7% formaldehyde in PBS for 15 min at room

temperature and permeabilized with PBS containing 0.5% Triton

X-100 for 7 min on ice. The cells on the coverslips were incubated

with either anti-CAS polyclonal antibody (Green) or anti-Rch1

MAb (Red) in PBS containing 5% skim milk for 1 h at RT. After

rinsing with PBS, the cells were incubated with either Alexa-488–

conjugated anti-rabbit IgG (for CAS) or Alexa-546–conjugated

anti-mouse IgG (for Rch1) antibodies (Invitrogen), or Hoechst

33342 (ImmunoChemistry Technologies LLC.) in PBS containing

5% skim milk for 30 min. After rinsing with PBS, the cover slips

were mounted on glass slides in PBS containing 90% glycerol before

analysis by confocal laser scanning microscopy. Bar = 10 mm.

(TIF)
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