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Summary
We consider the problem of high-dimensional regression under non-constant error variances.
Despite being a common phenomenon in biological applications, heteroscedasticity has, so far,
been largely ignored in high-dimensional analysis of genomic data sets. We propose a new
methodology that allows non-constant error variances for high-dimensional estimation and model
selection. Our method incorporates heteroscedasticity by simultaneously modeling both the mean
and variance components via a novel doubly regularized approach. Extensive Monte Carlo
simulations indicate that our proposed procedure can result in better estimation and variable
selection than existing methods when heteroscedasticity arises from the presence of predictors
explaining error variances and outliers. Further, we demonstrate the presence of heteroscedasticity
in and apply our method to an expression quantitative trait loci (eQTLs) study of 112 yeast
segregants. The new procedure can automatically account for heteroscedasticity in identifying the
eQTLs that are associated with gene expression variations and lead to smaller prediction errors.
These results demonstrate the importance of considering heteroscedasticity in eQTL data analysis.

Keywords
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1. Introduction
Heteroscedasticity, or the state of having non-constant error variances, is frequently
encountered in the analysis of genomic data sets. For example, in genetical-genomics
experiments, genetic variants can effect not only the mean gene expression levels, but also
the gene expression variances. Such expression quantitative loci (eQTLs) can hold important
biological interpretations. Moreover, genomic data sets are often subject to numerous
sources of experimental and data pre-processing errors, which can result in non-constant
error variances due to the presence of outlying observations. In Section 4, we examine the
gene expression data set of 112 yeast segregants from Brem and Kruglyak (2005) and find
more than 40% out of 5,428 gene expression levels that exhibit heteroscedasticity at the 1e-6
p-value level. We also observe that genetic variants can explain some of the
heteroscedasticity and the presence of clear outliers in this data set. Furthermore, in
statistical genomics, as well as numerous modern applications, data sets are often high-
dimensional, where the number of predictors p is much larger than the number of
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observations n. In these applications, it is essential to incorporate heteroscedasticity in order
to efficiently utilize the limited number of observations available for statistical modeling and
analysis.

The complications in eQTL data analysis from such heteroscedasticity and outlying
observations motivate the development of the method that we present in this paper. We
consider the high-dimensional heteroscedastic regression (HHR) model,

(1)

where yi are responses, xij are predictors,  are true coefficients on the mean, and ∊i are
independent and identically distributed (i.i.d.) normal random errors. In this setting, an
underlying model is assumed across observations for the expected mean, i.e.

 and observations are perturbed by random errors having possibly

different variances. The non-constant error variances  may depend upon a q-
dimensional vector of true coefficients α and predictors zi, where g is a pre-defined function

to ensure that the variances are positive. Particularly, we assume . Modeling

the logarithm of variances as linear in predictors  is a common choice
(Carroll, 1988). Other than guaranteeing positivity, the log-transformation is relevant in
modeling multiplicative and higher-order quantities, such as the variance, whose values can
otherwise vary over several orders of magnitudes (Cleveland, 1993). In the HHR model,
both p and q can be of high-dimensions. For example, in eQTL analysis, yi is the expression
level of a gene in the ith sample, and xij = zij can be the genotype for the ith sample at the jth
genetic marker, where both p – 1 and q – 1 are numbers of genetic markers considered
which can be very large.

The HHR model (1) is very general and encompasses common situations of
heteroscedasticity encountered in statistical genomics. For example, when variability is
suspected to come from predictors explaining error variances, the variance design matrix can
be constructed as,

(2)

where . When outliers are suspected to be present, we may set

(3)

where In is an n × n identity matrix and .

Substantial progress has been made recently in the regression analysis of high-dimensional
data under the assumption of constant error variances. In these applications, model selection,
in addition to estimation, is often required in order to establish statistical models with good
prediction accuracy and interpretation. The Lasso (Tibshirani, 1996) presents as an
important procedure for variable selection and estimation in high-dimensions. It can be
computed efficiently even when p is very large (Efron et al., 2004; Friedman et al., 2007)
and has been shown to be successful in various applications. Other methods of sparse
estimation for high-dimensional regression include the smoothly clipped absolute deviation
(SCAD) (Fan and Li, 2001) and Dantzig selector (Candes and Tao, 2007). However, these
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methods do not consider heteroscedasticity, a common situation that occurs in statistical
genomics. Jia, Rohe, and Yu (2009) provide asymptotic results for Lasso under the special
setting when error variances are Poisson-like. Their paper presents insightful theoretical
studies that illustrate the limitation of the Lasso under non-constant variance assumption.
However, no new methodology was provided to account for non-constant error variances.

Several recent works have considered robust procedures for high-dimensional sparse
regressions. The LAD-Lasso has been proposed in Wang et al. (2007) that utilizes the least
absolute deviations (LAD) instead of the least squares loss for the purpose of robust
estimation. It has also been extensively studied in Wang et al. (2006), Li and Zhu (2008),
Wu and Liu (2009), and Xu and Ying (2010), which have shown it to be advantageous over
the Lasso under many situations. The LAD-Lasso can be computed relatively efficiently
using the interior point method (Koenker, 2005). However, as the LAD-Lasso does not
model heteroscedasticity explicitly, observations with large or moderately large error
variances may still have considerable impact on its performances. She and Owen (2010)
considered the problem of outlier detection using sparse regression, where they assume a
mean-shift model, in which observations may have different intercept terms while error
variances are homogeneous. This is quite different from the HHR model (1), where we
assume a consistent underlying mean model and observations arising from random errors
with heterogenous variances. An advantage of the HHR model is that it can handle different
scenarios when the heteroscedasticity arises in statistical genomics, including both
predictors explaining error variances and the presence of outliers.

In order to simultaneously select the variables that are associated with means and also the
variances in the HHR model (1), we propose a doubly regularized likelihood estimation with
L1-norm penalties to attain sparse estimates for the mean and variance parameters. By
incorporating heteroscedasticity, the HHR allows more robust estimation and improved
selection of predictors explanatory of the response. Furthermore, it can identify important
factors contributing to heteroscedasticity, such as predictors explaining variability or
observations having outliers. We develop an efficient coordinate descent algorithm to solve
the penalized optimization problem.

The rest of the paper is organized as follows. In Section 2, we first introduce the penalized
estimation procedure for the HHR model, including methods for tuning parameter selection
and efficient algorithms for the HHR. Section 3 compares finite-sample performances of our
method with those of the Lasso and the LAD-Lasso using Monte Carlo studies. In Section 4,
we apply our procedure to the eQTL dataset of 112 yeast segregants from Brem and
Kruglyak (2005). Section 5 concludes with further discussions.

2. Penalized Estimation for High-Dimensional Heteroscedastic Regression
In typical eQTL experiments, both p and q can be large. In order to estimate the parameters
β and α in model (1), we propose the following high-dimensional heteroscedastic regression
estimator,

(4)

where λ1 and λ2 are tuning parameters on the variance α and mean β coefficients,
respectively, and
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(5)

is the negative log-likelihood of the model (1), assuming the logarithm of error variances 
to be linear in predictors and ignoring a constant. Intercept terms are included by setting zi1
= 1 and xi1 = 1 for i = 1, … , n, and non-intercept predictors xj = (x1j, … , xnj)T are assumed
to be centered and standardized to have mean 0 and variance 1. Further, for numerical
stability, we assume y = (y1, … , yn) to be standardized to have variance 1. The second term
in the negative log-likelihood (5) efficiently utilizes the data by down-weighting
observations with relatively large error variances, whereas the first term provides
regularization on variances, that has the effect of retaining information on mean estimation
by preventing the second term from going towards 0. These properties allow the estimation
to be effective even when the underlying error distribution is non-normal. Note that the
HHR is related to the generalized least squares (Box and Hill, 1974; Carroll and Ruppert,
1982; Carroll et al., 1988) in the classical setting when p < n. The L1-norm regularization is
applied to both the mean β and variance α coefficients in the HHR to achieve sparsity for
high-dimensional regression. Sparsity assumption is expected in our application since we
expect only a few genetic factors to contribute to mean or variance of gene expressions.

2.1 An Efficient Coordinate Descent Algorithm
Optimization in (4) for the HHR involves computing for an objective function that is jointly
non-convex in coefficients (α, β). Common approaches to non-convex optimization rely on
convex optimization as basic components (Boyd and Vandenberghe, 2004). The HHR
objective function is, however, convex in β for α fixed and convex in α for β fixed. In other
words, the HHR objective function is bi-convex. In the following, we describe efficient
algorithms for computing HHR estimates when α is fixed and when β is fixed. Finally, we
discuss an iterative strategy to obtain HHR estimates (α,β) altogether.

Let  for α fixed and  for β fixed. We have the
following objective functions

(6)

(7)

where fα,λ2(β) is the HHR objective function with respect to β for α fixed and fβ,λ1(α) with
respect to α for β fixed. We employ the coordinate descent strategy (Tseng, 1988, 2001;
Friedman et al., 2008) to minimize fα,λ2(β) and fβ,λ1(α) individually for a given λ2 and λ1,
respectively. In the coordinate descent, each element βj (or αj) is updated one at a time for j
= 1, … , p (or q), and this is iterated till the minimizer of fα,λ2(β) (or fβ,λ1(α)) converges.
The procedure is further sped up by iterating only through the active set till convergence
before updating all coordinates. For conciseness of presentation, we obtain unpenalized
estimates for the intercept terms by setting xi1 and zi1 to 1/δ for δ very small and dividing
the resulted estimates by δ.
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First, consider the optimization, minβ fα,λ2(β), defined as in equation (6). This problem can

be reformulated as that of an ordinary Lasso by using  and  as the new response
and design matrix, respectively. For completeness, we state the coordinate descent updating
equation for each j as the following,

where . Maximum value for λ2 is

, where x1 is an intercept term.

Next, we consider the minimization problem, minα fβ,λ1(α), defined as in equation (7). For

αj to be 0, we must have  for some  and ∊ > 0
such that ∊ → 0+. Let η = 1/∊. We obtain,

Hence, we have

(8)

and the maximum value for λ1 is  for z1 an intercept
term. When condition (8) fails to hold, αj is nonzero. In this case, we compute for the
minimization of fβ,λ1(α) with respect to αj using the Newton-Raphson algorithm. Let τ be a
pre-specified maximum step size. Then, αj is updated iteratively till convergence with where

The Newton-Raphson algorithm is very fast in the univariate setting, attaining at least
quadratic convergence rate (Nocedal and Wright, 1999). For numerical stability, we control

 to be smaller than 10300. (Maximum value representable by a double
precision number is about 1.798 × 10308.)

Finally, we propose the following algorithm for obtaining HHR estimates for a given pair of
tuning parameters (λ1, λ2):
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Step 1. Initialize . Then, obtain ;

Step 2. Update ;

Step 3. Update ;

Step 4 Repeat. Steps 2 and 3 until practical convergence of  is obtained.

The algorithm iteratively optimizes the HHR objective function (4). At each step, coefficient
estimates on the mean or the variance are updated. The algorithm usually reaches a
convergent point in a few iterations. Due to the bi-convex nature of the objective function, it
is easy to check that the algorithm satisfied the conditions of Tseng (2001), Theorem 4.1 (c),
and therefore converges to a stationary point of the objective function. Median numbers of
iterations in our simulations in Section 3 is usually between 2 to 6 using a tolerance level of
10−6. While the iterative algorithm reaches a stationary point of the HHR objective function
(4), it is not guarantee to reach the global minimum. Since the objective function is not
always convex in (α, β), it is convex in either α or β with the other fixed. We also note a
few straightforward properties of the iterative procedure, namely that each iteration
monotonically decreases the penalized negative log-likelihood and the order of minimization
is unimportant.

2.2 Selection of Tuning Parameters
We select tuning parameters for the penalized estimation for the HHR using the Akaike
(AIC) and Bayesian (BIC) information criteria defined as the following,

(9)

(10)

where  is the negative log-likelihood (5) and

 is the number of nonzero coefficients for

estimates . Estimates minimizing the AIC or BIC are obtained by computing  over
a grid of candidate values of λ1 and λ2 and selecting the estimate with the smallest AIC or

BIC. Tuning parameters λ1, λ2 with estimates  that minimize the AIC or the BIC are
selected in order to obtain models that best explain the data with minimal complexity.
Similar formulations for the AIC and BIC using numbers of nonzero coefficients have been
applied for the Lasso in Zou et al. (2007). Re-sampling techniques, such as the cross-
validation, are not applied in this paper for tuning parameter selection, as performances of
re-sampling techniques can be undermined under heteroscedasticity by outlying
observations appearing randomly in the training or validation set. Moreover, it is commonly
noted that the BIC often selects models conservatively compared to the AIC in finite
samples (Hastie et al., 2001, p. 208). We compare the AIC and the BIC for HHR in Section
3 using Monte Carlo simulations, where we find that the AIC can sometimes be preferred
for prediction accuracy and inclusion of relevant variables when the sample size n is small
relative to the number of predictors p.

3. Simulation Studies
In this section, we examine finite-sample performances of the penalized estimation
procedure for the HHR via simulation studies. We consider situations where error variances
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depend on predictors, outliers are present, and the distribution of the error is non-normal.
We compare our procedure with the ridge, Lasso, and the LAD-Lasso. When n < p, initial
weights in the LAD-Lasso are obtained by an unweighted LAD-Lasso with the number of
variables selected less than n instead of the usual LAD (Wang et al., 2007). We present
results where models are estimated using the AIC and BIC for the Lasso (Zou et al., 2007),
LAD-Lasso (Wang et al., 2007), and the HHR. Tuning parameters for the non-sparse ridge
regression are estimated using the generalized cross-validation (Golub et al., 1979).

We measure prediction accuracy using the mean-squared error (ME),

, where ∑ is the population covariance matrix of X. Further, variable
selection based upon the identification of nonzero mean β and variance α coefficients are
examined using sensitivity, specificity, and g-measure. Let p0 (or q0) be the number of the
underlying relevant predictors with nonzero coefficients for β0 (or α0). We define sensitivity
as (no. of true positives)/(p0 (or q0)) and specificity as 1–(no. of false positives)/(p–p0 (or q–
q0)). Sensitivity and specificity, respectively, describe the marginal proportions of selecting
relevant variables and discarding irrelevant variables correctly. We measure overall variable
selection performances using g-measure, or the geometric mean between sensitivity and

specificity, . A g-measure close to 1 indicates accurate selection, and
a g-measure close to 0 implies that few relevant variables or too many irrelevant variables
are selected, or both. Intercept terms are not included in these measurements.

In each example, we generate the true model (1) repeatedly 100 times. We assume that the
model has an intercept term such that X = (1n, X1), where X1 ~ N(0, ∑) and ∑ij = 0.5∣i–j∣.
Further, for simplicity of presentation, we use the same coefficients

with p–1 = 600 non-intercept predictors throughout the examples. Note that configurations
on the mean are not crucial for examining the effects of heteroscedasticity on regression
models. We report medians and bootstrapped standard deviations of medians out of 500 re-
samplings, in parentheses, in Tables 1-3. Further, we boldface, as top measurements, the 2
smallest MEs and largest g-measures for the selection of mean predictors in each case.

3.1 Presence of Predictors Explaining Error Variances
In this example, we demonstrate situations where heteroscedasticity arises from the presence
of predictors explaining error variances. We generate error variances with

 where α = {1, 1, 1, 1, 0, 0, 0, 0.5, 0.5, 0.5, 0, 0, 0, .75, .75, .75, 0, … ,
0} with q – 1 = p – 1 = 600. The variance design matrix Z = (1n, x2, … , xp) is employed in
(5). Furthermore, we vary n over {100, 200, 400} to illustrate the effect of sample size on
performances.

In Table 1, we present results on both prediction accuracy and variable selection. We
observe that the performances of the LAD-Lasso tend to dominate those of the Lasso. This
suggests that the LAD-Lasso, by utilizing the least absolute deviations, can sometimes be
more robust towards heteroscedasticity than the Lasso. Nonetheless, the HHR out-performs
both the Lasso and the LAD-Lasso with the smallest ME’s and the largest g-measures for
the selection of nonzero mean coefficients β. Improvements in performances for the HHR
over the Lasso and LAD-Lasso are most pronounced when the sample size n is relatively
small. Further, when n is small, HHR using the AIC tends to dominate HHR with the BIC in
terms of prediction accuracy and the selection of nonzero variance coefficients α. As noted
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in Section 2.2, the BIC often selects models too conservatively in finite samples. Thus, for
the purpose of prediction accuracy and the inclusion of important variables, the AIC is
preferred when n is small relative to p.

3.2 Presence of Outliers
In this example, we present results when outliers are present. We use n = 100 number of
observations, in which noutlier = 10 are outliers, and σi = σ = 6. We employ Z = (1n, In).
Since errors generated from the normal distribution may contain a few extreme values by
random, in order to examine the performances of our method for outlier detection, we

generate errors for outliers from a truncated normal, such that  and

, and errors for non-outlying observations with σ∊i ~ N(0, σ2) and ∣σ∊i∣ <= σ.
We vary τ over {1, 3, 5} in order to examine situations when outliers are beyond the first,
third, and fifth standard deviations.

Table 2 presents the results for this example. When τ = 1, the outlying observations are
moderate with their distribution concentrated around the first standard deviation. In this
case, the performances of the Lasso, LAD-Lasso, and HHR are similar. In particular,
prediction accuracy are not significantly different for these methods considering the large
bootstrapped standard errors, except for the LAD-Lasso (BIC). Moreover, the median
proportions of non-intercept variance coefficients α selected are 0.1 and 0 for the HHR
using AIC and BIC, respectively. This suggests that the HHR tends to be reduced to the
Lasso when the level of heteroscedasticity is small. When τ increases, the performances of
both the Lasso and the LAD-Lasso tends to deteriorate in terms of prediction accuracy and
the selection of mean predictors, whereas those of the HHR remain relatively stable.
Detection of outliers, as indicated by the selection of nonzero αi+1 coefficients, also
improves with increasing n. Again, the BIC selects variables too conservatively in this
example, leading to lower sensitivities and g-measures.

3.3 Non-Normal Errors
In this example, we demonstrate situations when errors have non-normal distributions. We
use n = 100 observations, in which 10 have larger error variances. We sample ∊i from the t-
distribution t(df) with degrees of freedoms df varying over {3, 5, ∞}. The multiplier σi is

set equal to  to induce equal variances  across different degrees of
freedoms. We set  for the 10 observations with large variances and , otherwise. We
use Z = (1n, In) as in (3), and the selection of α refers to the identification of the 10
observations with larger variances.

The t-distribution is often utilized in robust modeling, where it has been shown to be useful
in applications of small sample sizes (Lange, Little, and Taylor, 1989). It has finite variance
for df > 2 and approaches the normal distribution as df goes towards ∞. In Table 3, we see
that performances for the HHR methods remain excellent even when df = 3. This suggests
the applicability of our procedure when the error is non-normal.

4. Application to yeast eQTL Dataset
We illustrate our method in an application to eQTL data analysis. We consider the gene
expression data set from Brem and Kruglyak (2005). In this experiment, gene expression
levels, as measured using cDNA microarrays, are treated as quantitative traits, and 2,957
markers genotyped on n = 112 yeast segregants are used to identify expression quantitative
trait loci (eQTLs). Originally, 6,216 yeast gene are assayed. We remove 788 genes which
contain missing values and use the remaining 5,428 gene expression levels as responses.
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Due to linkage disequilibrium, markers located on adjacent loci tend to be very similar.
Following Li et al. (2004), in our analysis, a few missing markers are first imputed based on
data from 10-nearest neighbors and adjacent markers differing by at most one sample are
combined into blocks. For each block, we then choose a representative marker with the
smallest number of missing values across the samples as the marker for the block. Note that
including identical or nearly identical markers individually will not increase the amount of
information used but, instead, can introduce unnecessary multicollinearity and inflate
estimation errors in regression models. Statistical analysis is performed by regressing the
5,428 individual gene expression levels on these p – 1 = 585 representative markers.

We first test for the presence of heteroscedasticity in this data set and find more than 40%
out of 5,428 regressions showing some degree of heteroscedasticity at the 1e-6 significance
level using the Breusch-Pagan/Cook-Weisberg test. We then illustrate the performance of
our method in several examples where presence of predictors explaining error variances and
outliers are suspected.

4.1 Presence of Heteroscedasticity
We test for the presence of heteroscedasticity in this data set for each of the 5,428 genes
using the Breusch-Pagan/Cook-Weisberg test, developed independently by Breusch and
Pagan (1979) and Cook and Weisberg (1983). The Breusch-Pagan/Cook-Weisberg is one of
the most widely-used test for heteroscedasticity. It assumes a linear model for the log
variance and utilizes the score statistics to test for the significance of coefficients. The
Breusch-Pagan/Cook-Weisberg test is not directly applicable when p > n. To reduce
dimensions, we apply the HHR to select markers that are predictive of gene expression
levels and markers that are explanatory of variability. These variables are then applied in the
Breusch-Pagan/Cook-Weisberg test to specify predictors on the response and log variance,
accordingly. We use the AIC to select tuning parameters for this purpose. The BIC can
sometimes select too few variables when the sample size is small, as shown in Section 3
with simulation studies.

Table 4 presents the numbers and proportions of genes when regressions of markers on gene
expression levels demonstrate heteroscedasticity at various p-value levels. Out of 5,428
regressions, 2,244 (41.3%) and 776 (14.3%) demonstrate heteroscedasticity at the 1e-6 and
1e-16 significance levels, respectively. The prevalence of heteroscedasticity in this eQTL
data set suggests the need to incorporate non-constant error variances in high-dimensional
regressions and potential applicability of our method for identifying the genetic variants that
are associated with gene expression variations.

As further evidence for the existence of heteroscedasticity, we apply the graphical method of

Cook and Weisberg (1983), where the squared studentized residuals  are plotted against (1
– vii)gi. The quantities vii are diagonal elements of the hat matrix for an OLS regression of
markers on the response, whereas gi are the fitted values from an ordinary least square
(OLS) regression of markers on the standardized squared residuals. Again, the HHR with
AIC is applied beforehand to reduce dimensions. Figure 1(a) presents Cook-Weisberg plots
of individual gene expression levels at varying p-values from the Breusch-Pagan/Cook-
Weisberg test. Plots for genes YAR050W, YER187W, and YNL145W at p-values of
4.25e-145, 2.39e-15, and 6.91e-10, respectively, display wedge shapes and are indicative of
predictors explaining variability; plots for genes YNL335W, YIL120W, and YMR312W at
p-values of 2.65e-129, 8.23e-18, and 1.67e-10, respectively, display the presence of outliers.

Daye et al. Page 9

Biometrics. Author manuscript; available in PMC 2013 March 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



4.2 Results from eQTL Data Analysis
We apply the HHR to the six genes discussed in the previous section and demonstrated in
Figure 1(a) and compare its performances with those of the ridge, Lasso, and LAD-Lasso.
For the three genes (YAR050W, YER187W, YNL145W) where predictors explaining error
variances are suspected in Figure 1(a), our goal is to select the genetic variants from the 585
markers that can explain gene expression levels in both the mean and variance by fitting the
following model,

where yi is the expression level of the gene in the ith segregant, xij is the 0/1 genotype
indicator for segregant i at the jth marker, β1 (or α1) is an intercept term, and βj+1 (or αj+1)
measures the effect of marker j on the mean (or variance) of gene expressions. For the three
genes (YNL335W, YIL120W, YMR312W) where presence of outliers are suspected in
Figure 1(a), we seek to robustly select markers explanatory of gene expression levels and
discover segregants that are outliers using the following model,

where nonzero αj+1 indicates deviation of segregant j from homogeneity.

We evaluate the performance of the different procedures based on random training/testing
sample partitions. To avoid possible inconsistency of results due to randomization
(Bøvelstad et al., 2007), we use 25 different partitions of the training and testing sets. In
each partition, regression coefficients are estimated using n = 90 randomly selected training
observations. The AIC and BIC are applied for the Lasso, LAD-Lasso, and HHR; whereas
ridge regression is estimated using the generalized cross-validation as in Section 3. The
remaining 22 observations are further trimmed by removing those with studentized residuals
significant at the 0.1 level using a conservative t-test with Bonferroni correction for outliers.
This prevents the test error from being strongly influenced by a few outlying observations.
The ≤ 22 trimmed observations are, then, used to robustly estimate the test error,

.

Table 5 reports median test errors and numbers of variables selected, with the standard
errors based on 500 bootstrapped re-samplings in parentheses. The two smallest test errors
are boldfaced in each case. We observe that the HHR dominates the ridge in terms of
prediction accuracy by using more parsimonious models with typically only a few nonzero
coefficients. Furthermore, the HHR tends to dominate both the Lasso and LAD-Lasso in
terms of prediction accuracy when heteroscedasticity is strong and performs comparably at
low heteroscedasticity. The results suggest that the HHR can fit the data more adequately by
incorporating non-constant error variances, especially at significant levels of
heteroscedasticity. In addition, the HHR model also selects genetic variants that can explain
the error variances and discover segregants that are outliers.

Finally, we examine residual squared versus fitted variance plots in Figure 1(b). The HHR
with the AIC estimated using the full n = 112 observations are used for these plots. Fitted
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variances are computed with  for the three genes (YAR050W,
YER187W, YNL145W) where predictors explaining variability are suspected and

 for the three genes (YNL335W, YIL120W, YMR312W) where

the presence of outliers are suspected. We see that the fitted variances  describe the

squared residuals  well by increasing linearly with increasing , even though  are
estimated with only a few selected genetic variants when predictors explain variability and a
small number of non-zero  coefficients when outliers are present. Moreover, by
modeling both large and moderate variabilities, the HHR efficiently utilizes the entire data
set by down-weighting observations according to their relative quality.

5. Discussions
Motivated by identifying the genetic variants that are associated with gene expression levels
in eQTL analysis, we have proposed and developed high-dimensional heteroscedastic
regression models in order to account for variance heterogeneity. We have provided
evidence of the presence of heteroscedasticity in eQTL data analysis and demonstrated the
importance of incorporating heteroscedasticity in estimation and variable selection. Results
from both simulation and real-data analysis have demonstrated the advantages of
incorporating heteroscedasticity in high-dimensional data analysis in parameter estimation
and variable selection. In typical eQTL analysis, since tens of thousands of regression
models are often fitted, it is important to have an automated procedure that are robust to
outliers and can handle error variance heterogeneity. In addition, the genetic variants
identified that explain the error variances may provide additional insights into how genetics
regulate gene expression, not only at the mean levels, but also at the level of the variances.

In our proposed penalized estimation for the HHR models, we used the L1-norm penalty
functions for selecting the variables in both the mean and the variance. This particular
penalization is selected for its simplicity, computational ease, and successes in various
statistical applications. The L1-norm penalized regression has been demonstrated to perform
well in large-scale genome-wide association (Wu et al., 2008) and eQTL studies (Lee et al.,
2009). However, other sparse regularization methods can be applied, such as the SCAD (Fan
and Li, 2001), adaptive Lasso (Zou, 2006), and Dantzig selector (Candes and Tao, 2007),
with additional computational cost. Although a global minimizer is usually not guaranteed in
non-convex optimization (Nocedal and Wright, 1999), both simulated and real-data
comparisons in Sections 3 and 4, respectively, demonstrate that our procedure often
improves over existing methods in both estimation and variable selection.
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Figure 1.
Analysis of eQTL data set of Brem and Kruglyak (2005). (a) Cook-Weisberg plots and (b)
residual squared vs. fitted variance plots with HHR (AIC) estimates for six genes at various
Breusch-Pagan/Cook-Weisberg p-values.
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Table 4

Analysis of eQTL data set from Brem and Kruglyak (2005). Numbers and proportions of cases out of 5,428
genes with significant heteroscedasticity using the Breusch-Pagan/Cook-Weisberg test.

p-value No. Proportion

1e-32 > p-value 239 4.4%

1e-16 > p-value ≥ 1e-32 537 9.9%

1e-10 > p-value ≥ 1e-16 626 11.5%

1e-6 > p-value ≥ 1e-10 842 15.5%

Total 2,244 41.3%
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Table 5

eQTL analysis of three genes (YAR050W, YER187W, YNL145W) where genetic variants led to differences
in error variances and three genes (YNL335W, YIL120W, YMR312W) where outliers were detected. Results
are based on 25 training/testing partitions with n = 90 number of training observations and ntest ≤ 22 number
of testing observations trimmed for outliers at the 0.1 level. p – 1 = 585. q – 1 = 585 for YAR050W,
YER187W, YNL145W; and q – 1 = 90 for YNL335W, YIL120W, YMR312W.

Method Test error β no. selected α no. selected

YAR050W
(p-value = 4.25e-145)

Ridge 0.387 (0.073)

Lasso (AIC) 0.944 (0.082) 79.0 (0.6)

Lasso (BIC) 0.368 (0.046) 1.0 (0.0)

LAD-Lasso (AIC) 0.524 (0.111) 43.0 (11.6)

LAD-Lasso (BIC) 0.388 (0.105) 15.0 (14.8)

HHR (AIC) 0.164 (0.033) 11.0 (1.7) 28.0 (2.2)

HHR (BIC) 0.269 (0.046) 2.0 (0.1) 13.0 (2.8)

YER187W
(p-value = 2.39e-15)

Ridge 0.796 (0.043)

Lasso (AIC) 0.838 (0.066) 64.0 (1.1)

Lasso (BIC) 0.817 (0.059) 64.0 (1.1)

LAD-Lasso (AIC) 0.824 (0.060) 81.0 (19.5)

LAD-Lasso (BIC) 0.735 (0.058) 75.0 (30.9)

HHR (AIC) 0.393 (0.064) 16.0 (1.3) 15.0 (2.1)

HHR (BIC) 0.480 (0.053) 6.0 (0.8) 6.0 (1.9)

YNL145W
(p-value = 6.91e-10)

Ridge 0.665 (0.033)

Lasso (AIC) 0.267 (0.029) 51.0 (1.6)

Lasso (BIC) 0.225 (0.036) 2.0 (0.0)

LAD-Lasso (AIC) 0.293 (0.060) 19.0 (5.8)

LAD-Lasso (BIC) 0.262 (0.050) 2.0 (5.5)

HHR (AIC) 0.224 (0.037) 2.0 (0.6) 9.0 (0.5)

HHR (BIC) 0.224 (0.037) 2.0 (0.4) 7.0 (1.9)

YNL335W
(p-value = 2.65e-129)

Ridge 0.423 (0.028)

Lasso (AIC) 0.725 (0.074) 77.0 (1.4)

Lasso (BIC) 0.435 (0.032) 1.0 (0.6)

LAD-Lasso (AIC) 0.526 (0.048) 83.0 (3.6)

LAD-Lasso (BIC) 0.473 (0.035) 77.0 (6.4)

HHR (AIC) 0.305 (0.015) 39.0 (1.1) 12.0 (2.4)

HHR (BIC) 0.321 (0.020) 5.0 (0.8) 2.0 (0.4)

YIL120W
(p-value = 8.23e-18)

Ridge 0.551 (0.034)

Lasso (AIC) 0.788 (0.058) 74.0 (0.6)

Lasso (BIC) 0.549 (0.021) 2.0 (0.7)

LAD-Lasso (AIC) 0.680 (0.074) 53.0 (4.6)

LAD-Lasso (BIC) 0.582 (0.047) 15.0 (4.8)

HHR (AIC) 0.454 (0.034) 33.0 (1.8) 16.0 (2.7)
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Method Test error β no. selected α no. selected

HHR (BIC) 0.443 (0.029) 8.0 (1.2) 2.0 (0.5)

YMR312W
(p-value = 1.67e-10)

Ridge 0.872 (0.061)

Lasso (AIC) 1.603 (0.093) 74.0 (1.2)

Lasso (BIC) 0.778 (0.053) 2.0 (0.4)

LAD-Lasso (AIC) 1.614 (0.135) 41.0 (1.8)

LAD-Lasso (BIC) 0.867 (0.066) 5.0 (1.0)

HHR (AIC) 0.792 (0.053) 46.0 (1.6) 7.0 (0.9)

HHR (BIC) 0.812 (0.045) 2.0 (0.4) 4.0 (0.3)
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