Skip to main content
. 2011 Nov 16;101(10):2445–2454. doi: 10.1016/j.bpj.2011.10.007

Table 1.

Rate constants for the model reactions

Rate constant Equation for rate constant
values in s−1
x Range values in nm
F1 = 111 −2.75 ≤ x ≤2.75
= 0 2.75 < x
R1 = F1/exp (−ΔG1/ b·θ) −2.75 ≤ x ≤12
F2 = R2 · exp (−ΔG2/ b·θ) −2.75 ≤ x ≤12
R2 = 1000 −2.75 ≤ x ≤12
F3 = R3 · exp (−ΔG3/ b·θ) −2.75 ≤ x ≤12
R3 = 1000 · [Pi] / 0.077 −2.75 ≤ x ≤12
F5b = 1372 · [ATP]/[ADP] −2.75 ≤ x ≤12
R5b = F5/exp (−ΔG5/ b·θ) −2.75 ≤ x ≤ 12
F6 = R6 · exp (−ΔG6/ b·θ) −2.75 ≤ x ≤ 2.75
= 436 2.75 < x
R6 = 185 −2.75 ≤ x ≤ 2.75
= F6/exp (−ΔG6/b·θ) 2.75 < x
F7 = 0 x < 0.016
= 74.6 · x – 1.2 0.016 ≤ x
R7 = F7/exp (−ΔG7/b·θ) −2.75 ≤ x ≤12

b Boltzmann's constant; and θ, temperature in degrees Kelvin. F1, F2, etc., are the forward rate constants, and R1, R2, etc., the reverse rate constants, for the numbered reactions in Fig. 5b. The formulas for the free energy changes (ΔG) are: ΔG1 = GA1 – GD1; ΔG2 = GA2 – GA1; ΔG3 = GA3 – GA2; ΔG5 = GD1GA3; ΔG6 = GD2 – GA1; and ΔG7 = GD2 – GA2. Reaction 8 remains in equilibrium with appKd = 15.8 μM.