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Abstract
Membrane protrusion at the leading edge of migrating cells is driven by the polymerization of
actin. Recent studies using advanced imaging techniques raised a lively controversy about the
morphology of these filaments; however, common ground between the two sides now appears to
have been found. Here we discuss how the controversy has led to a deeper consideration of the
architecture of actin networks underlying cell migration, and has helped define new challenges
that lie ahead.
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Introduction
Cell motility is critically important for development, inflammation, and metastasis. To
migrate, cells extend sheet-like projections known as lamellipodia, which are filled with
polymerized actin filaments. Most of these filaments are oriented with their barbed (or fast-
growing) ends facing the leading edge and their less dynamic pointed ends toward the cell
interior [Pollard and Borisy 2003]. Polymerization is thought to occur exclusively at the
barbed ends, and as a result, the leading edge is pushed forward to accommodate the
growing filaments (Fig 1). In fact, in fast moving cells, the actin network stays relatively
stationary compared to the substratum as the cell moves [Theriot and Mitchison 1991],
showing that actin polymerization in the cell front exerts pushing forces which finally lead
to protrusion.

A wealth of genetic evidence shows that new actin filaments in the lamellipodium are
nucleated by the Arp2/3 complex together with activating proteins in the WASp/Scar/
WAVE family [Machesky and Insall 1998; Rogers et al. 2003]. In vitro, WASp and Arp2/3
complex associate with the side of a pre-existing “mother” filament, and subsequently
nucleate a new “daughter” filament which elongates at a 70° angle relative to the mother
(Fig 2A) [Mullins et al. 1998]. After nucleation, Arp2/3 complex remains associated with
the pointed end of the daughter filament and the side of the mother, creating a stable branch
junction. A similar mechanism involving Arp2/3 complex-mediated nucleation - activated
by ActA instead of WASp - underlies formation of the branched actin filament networks that
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propel the pathogen Listeria monocytogenes in infected cells [Theriot et al. 1992]. Motility
of this nature can further be reconstituted in vitro using a system of only five purified
proteins [Loisel et al. 1999; Wiesner et al. 2003], demonstrating that the basic machinery of
polymerization is sufficient to produce force. A similar system is believed to drive
internalization of endocytic vesicles in both yeast and mammals [Kaksonen et al. 2005; Liu
et al. 2009; Michelot et al. 2010], although the extent to which actin-based force generation
is required for endocytosis in mammalian cells is still being worked out [Boulant et al.
2011].

The Lamellipodium: Branched or Unbranched?
Nearly simultaneous with the discovery that Arp2/3 complex produces branched filaments in
vitro came in vivo electron micrographs from Tatyana Svitkina and colleagues [Svitkina et
al. 1997], revealing a dense network of branched actin filaments in lamellipodia (Fig 2B).
Further, Arp2/3 complex was localized to the branch junctions in these networks by
immuno-EM [Svitkina and Borisy 1999], and the branches adhered very closely to the 70°
angle observed in vitro. This remarkable similarity between the in vitro effects of Arp2/3
complex and the in vivo ultrastructure at leading edges gave traction to the “dendritic
nucleation” model [Mullins et al. 1998; Pollard et al. 2000], in which new filaments are
generated at the leading edge as branches. The model poses that WASp and a preexisting
filament together activate Arp2/3 complex, resulting in the formation of a branch [Machesky
et al. 1999]. This results in a dense gel of actin that resists deformation and leads to
collective protrusion of a wide cell edge rather than individual filopodial (or finger-like)
projections. In time, the network is disassembled at the rear of the lamellipodium, recycling
components for new rounds of assembly.

Last year, J.V. Small and colleagues employed state-of-the-art sample preparation and 3D
electron tomography techniques to determine actin architecture at the leading edges of four
different cell types, and challenged a key component of the dendritic nucleation hypothesis:
that any branching occurs in vivo at all [Urban et al. 2010]. Small suggested that the
branches seen in earlier studies were artifacts of the critical-point drying method of sample
preparation. For a while, it seemed as if differences in methodology might be the only
explanation for the disparate results [Higgs 2011]. However, in September of this year,
Svitkina’s group reported a reanalysis of the primary data from the Small study [Yang and
Svitkina 2011], and reported the presence of numerous branches in the raw images (Fig 2C).
Further, the branch angle adhered closely to the 70° angle observed previously in vitro and
in vivo using the critical-point drying technique. In addition, the branch junctions were of
bulbous shape, similar to cyro-EM structures of Arp2/3 complex junctions formed in vitro
[Rouiller et al. 2008]. In his response, Small conceded that - based on his reanalysis of the
data - all of these major points were correct [Small et al. 2011] but pointed out that branches
are still more infrequent than reported previously. They also pointed out that the array is
somewhat less dense than had been previously observed.

Now that there seems to be consensus on this issue, we can ask, what have we learned and
what questions remain to be answered regarding actin ultrastructure at the leading edge?

Moving forward
How has our view of the lamellipodial cytoskeleton changed by the recent findings
mentioned above? Do all new filaments in the lamellipodium arise as branches? The
tomogram shown by Small and colleagues annotates 208 barbed ends at the leading edge
and 225 branch points in an area immediately adjacent to this. Small et al. also highlighted
subsets of interconnected filaments. The ratio of branches to filaments within this subset is
90% or more, further supporting the dendritic nucleation model of filament formation in
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which essentially every new filament originates as a branch off a pre-existing filament.
Thus, at this time, there does not seem to be any in vivo data supporting a mechanism for
new filament nucleation other than that proposed by the original dendritic nucleation model.

Nevertheless, the magnificent quality of the EM-tomograms presented by Small and
colleagues has shifted our focus to additional aspects of the dendritic nucleation model: (1)
The abundance of filament overlaps relative to branch junctions places a renewed emphasis
on the role of cross-linking proteins as key mechanical elements of the lamellipodium,
perhaps more important than the role Arp2/3 complex has been suggested to play in this
capacity. (2) Long segments of filaments lacking branches suggests that filament elongation
may be quite rapid compared to branching, highlighting the importance of filament
elongation factors such as Ena/VASP proteins and formins at the leading edge. (3) Using
the branches identified by Small et al., we have determined that branch density decreases
with distance from the leading edge (Fig 3), suggesting that debranching factors may have
a prominent role in pruning the dendritic network as it flows back in the lamellipodium.
Each of these three major points is discussed in greater detail below and is depicted in an
inclusive model (Fig 4).

Cross-linking proteins
The new data have shifted our view on the biophysics of motility. In silico modeling of cell
motility depends on a dense gel of actin driving a load forward [Dayel et al. 2009; Ditlev et
al. 2009]. Networks of long uncoupled filaments do not exhibit the mechanical integrity of
the in vivo cytoskeleton [Palmer et al. 1999], nor do they sustain motility [Loisel et al.
1999]. Likely, the cross-over points observed by Small’s group are stabilized by cross-
linking proteins that act as girders to rigidify the actin meshwork. While a variety of actin
cross-linking proteins with seemingly overlapping functions (e.g. α-actinin, fascin, fimbrin,
filamin, and myosin) could act synergistically to strengthen and maintain network integrity
[Tseng et al. 2002], filamin is most suited to generating the criss-crossed filaments observed.
Filamin has long been known to induce gelation of actin filaments, even at low molar ratio
[Janmey et al. 1990], and is necessary for motility in vivo [Cox et al. 1995; Cunningham et
al. 1992]. Arp2/3 complex and filamin could therefore serve complementary roles in
filament nucleation and mechanical strengthening, respectively, in the lamellipodium
[Flanagan et al. 2001; Nakamura et al. 2002]. Another factor to consider is Coronin, which
has in vitro bundling activity [Cai et al. 2007; Goode et al. 1999] and in vivo localizes by
immuno-EM to filament ‘junctions’, presumed to be branches [Cai et al. 2008]. However,
since critical-point drying was used in this study, it is possible that some of these junctions
instead represent filament cross over points. Answering these questions will require
biophysical modeling studies as well as the marriage of electron tomography with protein
localization studies and/or super-resolution light microscopy to identify the specific factors
present at filament crossovers.

Elongation Factors
As Small and colleagues show, many of the actin filaments in lamellipodia are over a
micron in length. This is in contrast to the original version of the dendritic nucleation model
which proposed that, after nucleation by Arp2/3 complex, filaments grew briefly at their
barbed ends before being capped by capping proteins [Pollard et al. 2000]. The identification
of long filaments by EM, and of filament elongation factors (formins and Ena/VASP
proteins) at the leading edge calls for a reconsideration of this view. Formins processively
cap the barbed ends of growing actin filaments [Evangelista et al. 2002; Kovar and Pollard
2004; Moseley et al. 2004; Zigmond et al. 2003], and in the presence of profilin, formins can
accelerate barbed end growth many fold over growth at free barbed ends [Kovar 2006;
Romero et al. 2004]. This makes formins strong candidates for generating some of the long
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filaments observed by EM. However, the role of formins in lamellipodial protrusion remains
poorly understood. The only members of the formin family that have been identified at the
lamellipodial leading edge at endogenous expression levels are mDia1 and mDia2
[Watanabe et al. 1997; Yang et al. 2007], and both have been shown to promote cell motility
[Shi et al. 2009; Yang et al. 2007]. Although some other formins such as FMNL2, DAAM1
and FHOD1 are also implicated in cell migration [Ju et al. 2010; Kitzing et al. 2010; Koka et
al. 2003], their endogenous localization patterns and potential functional roles in
lamellipodia remain unknown. In addition, potential roles at the leading edge for the other
ten mammalian formins remain open. By comparison, proteins in the Ena/VASP family are
well established as integral components of the actin-machinery at the leading edge. Early
studies showed that members of this family are strongly enriched at the lamellipodial plasma
membrane [Rottner et al. 1999], and that localization correlates directly with rate of
lamellipodium protrusion [Bear et al. 2000; Bear et al. 2002; Rottner et al. 1999]. Moreover,
targeting of Ena/VASP proteins to the leading edge led to the formation of longer filaments
and reduced filament branching densities [Bear et al. 2002]. Recently, biochemical analyses
showed that Ena/VASP proteins greatly accelerate filament elongation, comparable to
formins, and that they protect barbed end growth from capping proteins when clustered on
surfaces [Breitsprecher et al. 2008; Breitsprecher et al. 2011; Hansen and Mullins 2010].
Thus, enhanced elongation of filaments may be responsible for the correlation between Ena/
VASP localization at the leading edge and rate of lamellipodial protrusion. In the future, it
will be a great challenge to physicists, biochemists and cell biologists to unravel the
complex interplay between nucleation and elongation factors, and to determine how
regulated changes in their local activation and attenuation might produce differing actin
architectures and forces.

Debranching Factors
The data from Small and colleagues reveal that there are surprisingly few short branches,
and that branch density in the actin networks decreases with distance inward from the
leading edge (Fig 3). This suggests that filaments must be debranched as the network
matures. Branched filaments generated by Arp2/3 complex in vitro are highly stable over
many minutes, suggesting that rapid debranching in vivo would require additional factors
[Gandhi et al. 2010]. At least three different classes of proteins have been implicated in
removing Arp2/3 complex branch junctions in vitro: the actin severing/disassembly protein
ADF/cofilin [Blanchoin et al. 2000; Chan et al. 2009], a structural cousin of ADF/cofilin
that binds Arp2/3 complex instead of actin, GMF (glia maturation factor) [Gandhi et al.
2010; Nakano et al. 2010], and the filament-bundling and Arp2/3 complex-interacting
protein Coronin [Cai et al. 2008]. In addition, there is evidence that nucleotide hydrolysis on
the Arp2 and Arp3 subunits of Arp2/3 complex is a prerequisite for debranching [Martin et
al. 2006]. What remains to be seen is whether debranching is simply a byproduct of global
disassembly that occurs in the network or occurs as a separate remodeling phase prior to
filament disassembly. A related question is how the lamellipodium becomes remodeled into
the unbranched lamellum [Burnette et al. 2011; Hotulainen and Lappalainen 2006]. Yeast
GMF has a very potent debranching effect on Arp2/3 complex generated networks [Gandhi
et al. 2010; Nakano et al. 2010], but it is not yet known whether mammalian GMFs have the
same activity. It will also be important to determine whether mammalian GMF co-localizes
with ADF/cofilin and cooperates in the disassembly phase of lamellipodial dynamics, or
localizes closer to the leading edge and has a role in earlier remodeling events. Another
possibility is that different GMF proteins contribute to each of these processes, and indeed
there are two GMF paralogues expressed in mammals, GMF-β and GMF-γ, which appear to
be differentially regulated [Ikeda et al. 2006; Nakano et al. 2010]. Like GMF, ADF/cofilin
exhibits a strong debranching activity in vitro [Blanchoin et al. 2000; Chan et al. 2009]. As
ADF/Cofilin severs and depolymerizes filaments in vivo and in vitro [Carlier et al. 1997;
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Hotulainen et al. 2005; Lappalainen and Drubin 1997; Maciver et al. 1998], it remains to be
seen whether it works specifically on Arp2/3 complex-actin contacts or changes actin
structure in a manner refractory to maintaining the branch. Finally, Coronin exhibits a
weaker effect on debranching, increasing the frequency of debranching events only 2–3 fold
[Cai et al. 2008], but nonetheless may contribute to this process in vivo. In particular, it will
be critical to examine how these three factors, GMF, ADF/cofilin, and Coronin function
together in debranching.

Conclusions and Perspectives

The basic mechanism of Arp2/3 complex-dependent nucleation and branching has been
conserved in organisms as diverse as yeast and humans. This raises an important
question, which is how the lamellipodium diverged from simpler Arp2/3 complex- and
actin-containing structures such as yeast endocytic patches. It is tempting to speculate
that the more complex actin structures such as a lamellipodium evolved through
modification of branch frequency and filament length, as well as through the expression
of new and diverse filament cross-linkers. This underscores the importance of studying
the architectures of cytoskeletal networks in a wide range of model systems. Only
through such comparisons will the basic design principles of network formation be
revealed, and the relevant molecular differences between networks that account for the
major differences in their organization and physical properties. These questions pose
exciting challenges for the coming years. Further, this recent debate serves as an
important reminder that seemingly irreconcilable views can in fact reveal deeper truth,
when both sides relentlessly pursue to that end.
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Fig. 1.
(A) Model of actin ultrastructure in the lamellipodium. From the network of cortical actin
filaments (black), dendritic nucleation and polymerization pushes the cell membrane (blue)
forward. Filaments are debranched and disassembled at the rear of the protruding
lamellipodium. Regions of assembly (green plus signs) and disassembly (red minus signs)
are shown. (B) Fluorescence light micrograph of a migrating Xenopus laevis fibroblast that
was fixed and stained with Rhodamine-phalloidin. Reproduced with permission from
Svitkina and Borisy [Svitkina and Borisy 1999]. A small region of the lamellipodium
represented by the cartoon in A is indicated (white box).
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Fig. 2.
Electron micrographs of actin filaments assembled by Arp2/3 complex in vitro and branched
actin networks at the leading edge of cells. (A) Arp2/3 complex-containing actin filament
branches assembled in vitro using purified proteins. Reproduced from [Rouiller et al. 2008]
with permission. (Top) Tomogram of a branch junction formed by purified A. castellanii
Arp2/3 complex. (Bottom) Branch 3D reconstruction based on EM-tomography data. (B)
Lamellipodium architecture visualized by EM tomography in Urban et al [Urban et al.
2010]. Lamellipodium architecture visualized by EM after critical-point drying in Yang et al
[Yang et al. 2007]. Scale = 100 nM, for both images. Reproduced with permission.
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Fig. 3.
Distribution of actin filament branch junctions in the lamellipodium of an NIH 3T3 cell. (A)
Cartoon representation of architecture in the lamellipodium. Black nodes represent filament
branch junctions. (B) Variation in branch density with increasing distance from the cell
edge, calculated from the images in Small et al [Small et al. 2011].
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Fig. 4.
Model for regulation of actin filament architecture at the lamellipodium. Filaments are
nucleated at the cell edge as dendritic branches by Arp2/3 complex and plasma membrane-
associated WASp/Scar (not shown). Many of the free barbed ends generated are capped by
capping protein binds, which terminates filament growth. Filament crossovers are stabilized
by cross-linking proteins such as filamin. As the dendritic network ages and is left behind by
the advancing leading edge, disassembly factors such as ADF/cofilin, GMF, and Coronin,
debranch Arp2/3 complex-nucleated filaments. Severed filaments at the rear of the
lamellipodium are either completely disassembled by ADF/cofilin, working together with
Coronin and other factors (e.g. Aip1 and Srv2/CAP, not shown) or cross-linked by fimbrin,
α-actinin, and myosin II (not shown) to generate the actin bundles and arcs found in the
lamella.
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