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Introduction

Ductal adenocarcinoma of the pancreas (used synonymously 
with the term ‘pancreatic cancer’ throughout the following text) 
is the fourth most common cause of cancer-related mortality in 
the western world and one of the most devastating of human 
malignancies known to date. It is almost uniformly lethal even 
in early, organ-confined stages and accounts for approximately 
33,000 deaths in the United States every year.1 Its overall median 
5-y survival rate of less than 5% is among the worst of all human 
cancers.1,2 Although recent decades have seen concerted research 
efforts aimed at better understanding of the underlying etiologic 
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and pathophysiological mechanisms and at development of novel 
experimental therapeutic strategies, the overall prognosis of pan-
creatic cancer has not improved significantly and the extremely 
poor patient survival rates have remained largely unchanged. 
Therefore, development of novel experimental therapeutic strate-
gies directed against pancreatic cancer, assessment of their effi-
cacy in relevant preclinical in vivo models and rapid translation 
into clinical application is an urgent necessity.

Aberrant activation of cyclin-dependent kinases (CDKs) and 
dysregulation of cell cycle progression is a hallmark of many 
human cancers. Thus, manipulation of cell cycle progression by 
means of small molecule inhibitors has long been suggested as 
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Figure 1. Cyclin dependent kinase inhibitor SCH727965 reduces growth, colony formation and motility of pancreatic cancer cells in vitro. (A) Treat-
ment with SCH727965 causes dose-dependent growth retardation of pancreatic cancer cells in vitro as observed in MTT assays. (B) SCH727965 signifi-
cantly reduced colony formation of MIAPaCa-2 cells in soft agar at concentrations of 5 and 10 nM, respectively. Incubation with SCH727965 inhibited 
migration of MIAPaCa-2 and Pa20C cells in BD FluoroBlok migration assays (C), and Pa20C cells in wound healing assays (D).
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global mRNA expression profiles sug-
gests that resistance to this compound 
may be associated with activation of other 
oncogenic pathways in pancreatic cancer, 
including the Notch and Transforming 
Growth Factor-β (TGFβ) signaling 
pathways, providing the seedbed for 
potential combinatorial therapies to over-
come treatment resistance.

Results

SCH727965 inhibits growth of pancreatic cancer cells in 
vitro. The effects of SCH727965 treatment on viability and 
growth of pancreatic cancer cells in vitro were determined. In 
vitro cell growth of pancreatic cancer cells was inhibited by 
SCH727965 in a dose-dependent manner. Upon incubation 
with SCH727965 for 72 h, the GI50s were approximately 10 and 
20 nM for MIAPaCa-2 and Pa20C cells, respectively (Fig. 1A). 
These results are consistent with studies of SCH727965 in other 
cancer cell lines.5 In soft agar assays, 5 to 10 nM of SCH727965 
significantly reduced colony formation and anchorage indepen-
dent growth of MIAPaCa-2 cells (Fig. 1B). Moreover, in vitro 
cell migration of Pa20C and MIAPaCa-2 cells was significantly 
reduced by SCH727965-concentrations starting from 2–5 nM, 
as demonstrated using BD FluoroChrom, modified Boyden 
Chamber and wound healing assays (Figs. 1C, D and 2).

SCH727965 antagonizes activation of RalA. RalA is an 
effector of the Ras signal transduction pathway,8 and has been 
shown to be critically important for tumorigenicity of human 
pancreatic cancer cells.9,10 We have previously shown that acti-
vation of RalA can be blocked by functional inactivation of 
Cyclin-Dependent Kinase 5 (CDK5) in pancreatic cancer cells, 
possibly through interference with a proposed linear signaling 
axis via p35/CDK5-RalA/B downstream of oncogenic KRAS. 
We have shown that this decrease in Ral activation is at least par-
tially responsible for the decreased tumorigenicity we have found 
to result from inhibition of CDK5 in these cells.11 SCH727965 is 
a potent inhibor of CDK5 (IC

50
 1 nM).5 Therefore, we hypoth-

esized that SCH727965 treatment would lead to reduced RalA 
activation. We found that incubation of MIAPaCa-2 cells with 
2–10 nM of SCH727965 led to substantial reduction of active 
RalA-GTP levels. This effect was partially rescued by enforced 
overexpression of the constitutively active Ral guanine nucleo-
tide exchange factor Rgl2-CAAX in this in vitro model system 
(Fig. 3A). Since the Ral signal transduction pathway is a centrally 
important effector of dysregulated KRAS in pancreatic cancer,9,10 
this suggests that SCH727965 may inhibit RAS-Ral mediated 
tumorigenicity in pancreatic cancer.

Blockade of Rb-phosphorylation in vitro by SCH727965. 
The Retinoblastoma (Rb) protein is a well-known gate keeper 
of cell cycle progression. Not unexpectedly, treatment of 
MIAPaCa-2 cells with SCH727965 reduced phosphorylation 
of Rb at Ser807 and Ser811 in a dose-dependent manner, while 
GAPDH and total Rb levels remained unchanged, as observed 
using protein gel blot analysis (Fig. 3B).

a potential treatment option for rapidly dividing cancer cells.3 
However, unfavorable toxicity profiles and severe adverse effects 
have often prevented successful clinical application of candi-
date cell cycle inhibitors identified by means of in vitro assays.4 
SCH727965 (Dinaciclib) is a potent novel small molecule 
inhibitor designed to inhibit various cyclin-dependent kinases, 
including those involved in regulation of cell cycle progression. 
SCH727965 has been shown to inhibit CDK1, CDK2, CDK5 
and CDK9 with low nanomolar potency. It has shown a favor-
able safety profile and pharmacokinetics in mice, and has been 
shown to inhibit tumor growth in several preclinical xenograft 
models.5 In early clinical trials, SCH727965 has been well toler-
ated, and has shown PET evidence of activity.6,7 SCH727965 is 
currently in Phase II clinical evaluation for melanoma and mul-
tiple myeloma.

In the present study, we show that monotherapy with 
SCH727965 is highly active in diminishing pancreatic cancer 
growth in murine subcutaneous xenograft model systems, and 
that the combination with gemcitabine results in significant 
accentuation of tumor growth inhibition in the orthotopic set-
ting. Moreover, gene set enrichment analysis (GSEA) of basal 

Figure 2. Modified Boyden chamber assays show decreased in vitro cell motility of Pa20C cells 
after treatment with SCH727965 for 72 h.

Figure 3. In vitro inhibition of RalA activation and Rb-phosphorylation 
by SCH727965. SCH727965-treatment for 30 min blocks activation of 
RalA in MIAPaCa-2 cells; RalA activation is partially rescued by enforced 
expression of Rgl2-CAAX (A). SCH727965 incubation for 16 h reduces 
phosphorylation of Rb in a dose-dependent manner as shown using 
protein gel blot analysis (B).
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therapeutic efficacy of SCH727965 in pancreatic cancer mod-
els in vivo. Our group has previously described the suitability 
of patient-derived low-passage subcutaneous pancreatic cancer 

SCH727965 inhibits the in vivo growth of a panel of 
low-passage pancreatic cancer xenografts. These encour-
aging results prompted us to further study the potential 

Figure 4. Spectrum of in vivo growth inhibition by SCH727965 in a panel of ten subcutaneous low-passage pancreatic cancer xenografts. Ten low- 
passage subcutaneous pancreatic cancer xenografts were treated with SCH727965 (n = 10 per line) or solvent only (n = 10 in each line) for 4 weeks. 
Growth curves show varying degrees of xenograft growth inhibition upon SCH727965-treatment. The figure shows an example with little (A) and another 
case with high (B) sensitivity toward SCH727965. Representative examples of xenograft tumors harvested at the end of treatment are shown for the 
respective lines (left tumors: controls; right tumors: SCH727965-treated). Representative histologies of control (left) and SCH727965-treated tumors (right) 
are shown as H&E stained tissue sections. (C) Mean inhibition of xenograft growth upon treatment with SCH727965 as compared with mock-treated 
controls in 10 individual xenograft lines. The diagram represents means and standard deviations of growth inhibition for each respective xenograft line.
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but it results in overall median survival of only ~5–6 mo.14,15 We 
examined the combination efficacy of SCH727965 and gem-
citabine in an orthotopic xenograft model of pancreatic cancer 
(13), derived from Panc265, a low-passage xenograft that dem-
onstrates modest sensitivity to gemcitabine. Freshly harvested 
1–2 mm3 pieces of Panc265 were implanted orthotopically into 
the pancreata of nude mice under anesthesia, and xenograft 
establishment (“primary tumor”) was assessed by ultrasound. 
Mice were randomized into 4 treatment groups, for treatment 
with vehicle-only control, SCH727965, gemcitabine, or a com-
bination of SCH727965 and gemcitabine. Figure 6 shows that 
although the Panc265 xenograft is resistant to SCH727965 
monotherapy, the combination was significantly more effective 
than either SCH727965 or gemcitabine alone. There was little 
or no tumor growth in the group treated with both SCH727965 
and gemcitabine. This result suggests that the combination of 
SCH727965 and gemcitabine may be promising for treatment 
of pancreatic cancer.

Basal global gene expression analysis and gene set enrich-
ment analysis (GSEA) identifies signaling pathways over-
represented in SCH727965-sensitive vs. resistant pancreatic 
cancer xenografts. Basal global gene expression analysis was 
performed on duplicate samples derived from each of the low-
passage pancreatic cancer xenografts used in this study by means 
of Affymetrix cDNA microarrays.16 Normalized global mRNA 
expression data of the 2 most SCH727965-sensitive xenografts 
(Panc286 and Panc219) were then compared with the teo most 
resistant lines (Panc291 and JH033) by means of the publicly 
available Gene Set Enrichment Analysis tool (http://www.
broadinstitute.org/gsea/). Of note, using this analysis, regula-
tion of cell cycle progression (HSA04110) was one of the top 
ten signaling pathways included in this analysis and identified 
as being overrepresented in terms of basal steady-state mRNA 
expression levels in sensitive xenografts (Table 2), supporting 
the validity of this analysis tool in this given setting. Likewise, 
the list of ten pathways receiving highest scores as likely being 
overrepresented in xenografts most resistant to treatment with 
SCH727965 in vivo included the Notch (HSA04330) and 
Transforming Growth Factor (TGF)β (HSA04350) signaling 
pathways (Table 3), which have previously been shown to be 
involved in pancreatic carcinogenesis and tumor progression, 
and have been demonstrated to be promising novel therapeutic 
targets for pancreatic cancer.17-20 Enrichment plots demonstrat-
ing overrepresentation of components of the Notch and TGFβ 
signaling pathways, respectively, in SCH727965-resistant as 
compared with SCH727965-sensitive low-passage pancreatic 
cancer xenografts are depicted in Figure 7. Average SMAD4 
mRNA was significantly higher in SCH727965 resistant ver-
sus sensitive xenografts. Moreover, in sensitive xenograft lines, 
higher SMAD4 mRNA expression was found after treat-
ment with SCH727965, compared to mock treated controls; 
this suggests induction or selection of SMAD4 expression by 
SCH727965 treatment (Fig. 8). It will therefore be a fascinat-
ing aim of future experimental studies to investigate whether 
therapeutic resistance to SCH727965 might be overcome by 
concomitant therapeutic blockade of either of these pathways.

xenografts as an effective platform model system for transla-
tional research and drug testing.12,13 Therefore we employed this 
valuable resource to further study the extent of growth inhibi-
tion achievable by SCH727965 treatment, and molecular mark-
ers associated with sensitivity and resistance. Treatment with 
SCH727965 given as twice weekly i.p. doses of 40 mg/kg for 
4 weeks caused significant tumor growth inhibition (TGI) in 
10/10 (100%) of low-passage subcutaneous xenografts tested. 
However, the extent of TGI varied considerably among differ-
ent xenografts studied (Fig. 4) A > 40% growth inhibition upon 
treatment with SCH727965 was observed in 8/10 xenograft 
models of pancreatic cancer (Fig. 4C). Relative growth inhibi-
tion at the end of treatment for each xenograft is given in Table 
1. Of interest, xenografts derived from less differentiated can-
cers had more pronounced growth inhibition upon SCH727965 
treatment than xenografts established from well-differentiated 
cases. However, growth retardation due to treatment with 
SCH727965 was not consistently accompanied by any discern-
ible morphological change in the tumor microarchitecture (data 
not shown).

Molecular surrogate markers of therapeutic response to 
SCH727965. SCH727965 is a multi-CDK inhibitor with the 
potential to inhibit cell proliferation and cell cycle progression.4 
In line with this mechanism, we found significant reduction of 
nuclear immunolabeling of the surrogate marker of prolifera-
tion Ki67 in SCH727965-treated Panc286 and Panc219 xeno-
grafts as compared with mock-treated control tumors (Fig. 5A). 
These two xenografts had shown the most pronounced thera-
peutic response in terms of growth retardation upon treatment 
with SCH727965 in our panel representing ten cases of pancre-
atic cancer (Fig. 4 and Table 1). As opposed to this, little to no 
reduction of Ki67 nuclear immunolabeling upon treatment with 
SCH727965 was found in the two most resistant pancreatic can-
cer xenografts, Panc291 and JH033 (Fig. 5A). Immunolabeling 
of phospho-Rb(Ser807/811) was significantly reduced both in 
sensitive Panc286 as well as—albeit to a lesser degree—in resis-
tant JH033 xenografts (Fig. 5B).

Combination treatment of orthotopic pancreatic cancer 
xenografts with SCH727965 and gemcitabine. Gemcitabine 
is currently the standard first line therapy for pancreatic cancer, 

Table 1. Relative growth inhibition at the end of treatment caused by 
SCH727965 treatment in low-passage xenografts

Name Relative growth inhibition [%]

Panc291 35

JH033 38

JH010 49

JH029 49

Panc253 52

Panc154 57

A6L 57

Panc374 60

Panc219 69

Panc286 77
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observations mark oncogenic Ras signaling as a prime thera-
peutic target in pancreatic cancer. In preclinical studies, disrup-
tion of KRAS2 function via RNA interference, antisense DNA 
or expression of dominant negative KRASN17 attenuates the 
tumorigenicity of pancreatic cancer cell lines.23-25 Unfortunately, 
strategies to inhibit the Ras pathway directly in patients have 
been largely unsuccessful, as exemplified by the lack of clinical 
activity of farnesyltransferase inhibitors (FTIs), which interfere 
with critical post-translational modification of RAS proteins.26 
Ras signaling through the Ral pathway has emerged as a criti-
cal mediator of the malignant phenotype in pancreatic cancer 
cells,9,10 but there have been no effective strategies to inhibit Ral 
signaling. Our data presented here indicate that SCH727965 
can block Ral activation in pancreatic cancer cells, potentially 
through inhibition of CDK5, which we have shown is an impor-
tant determinant of Ras-mediated Ral activation in pancreatic 
cancer cells.11

In vivo, SCH727965 treatment dramatically reduced growth 
of a panel of 10 low-passage pancreatic cancer xenografts. There 
was a considerable amount of variation in the growth inhibitory 

Discussion

Pancreatic cancer remains one of the worst killers among human 
cancers, and new therapeutic options are urgently needed. In 
the current study we show that the novel multi-CDK inhibitor 
SCH727965 has considerable inhibitory effects on human pan-
creatic cancer cells in both in vitro and in vivo model systems. In 
vitro, SCH727965 inhibited growth, migration and colony for-
mation of human pancreatic cancer cells through inhibition of 
cell cycle progression and decrease in Rb phosphorylation. These 
mechanisms were confirmed in vivo using immunohistochem-
istry on drug-treated low-passage subcutaneous pancreatic can-
cer xenograft tissue specimens. Important for pancreatic cancer, 
SCH727965 appears to significantly antagonize a critical effec-
tor pathway downstream of aberrant Ras signaling. Mutations 
within the KRAS2 gene are found in more than 90% of pan-
creatic cancers,21 and they are among the earliest genetic aberra-
tions observed in low-grade PanIN lesions during the multistep 
progression model culminating in the development of a fully 
invasive pancreatic cancer phenotype.22 Taken together, these 

Figure 5. Surrogate biomarker of growth retardation in pancreatic cancer xenografts treated with SCH727965. (A) Tissue specimens from xenografts 
that showed most vs. least pronounced growth retardation upon treatment with SCH727965 in vivo were stained for Ki67 expression by immuno-
histochemistry. The figure shows representative sections of mock-treated controls and SCH727965-treated xenografts for each case. (B) Phospho-
Rb(Ser807/811) staining of xenograft tissue specimens by IHC at cessation of treatment.



604	 Cancer Biology & Therapy	 Volume 12 Issue 7

might prove to be a suitable strategy to overcome resistance to 
SCH727965 and enhance therapeutic potency in future studies.

In conclusion, these current data suggest that treatment 
with the novel, well-tolerated cyclin-dependent kinase inhibitor 
SCH727965 appears to be a promising new treatment option for 
pancreatic cancer with novel inhibitory effects on Ras-mediated 
Ral activation. Rapid evaluation of this strategy in a clinical set-
ting therefore appears to be well justified.

Materials and Methods

Cell lines. The pancreatic cancer cell line MIAPaCa-2 was 
obtained from the American Type Culture Collection (www.atcc.
org), and the low-passage cell lines Pa14C, Pa16C and Pa20C 
were generated at our institution.21 Cells were maintained in a 
humidified atmosphere supplemented with 5% CO

2
 in DMEM 

culture media containing 10% FBS (both Invitrogen, Carlsbad, 
CA), 1x MEM vitamins solution (Sigma-Aldrich, St. Louis, MO), 
1x non-essential amino acid solution (Biofluids, Camarillo, CA), 
1% sodium pyruvate solution, 1x Pen/Strep (both Biofluids) and 
5 μg/ml Plasmocin (Invivogen, San Diego, CA).

effect of SCH727965 between the individual low-passage xeno-
grafts included in this study. It is tempting to speculate whether 
these differences in therapeutic response reflect variations in the 
underlying genetic alterations that might cause differences in the 
basal proliferation rates. Our own group and others have previ-
ously demonstrated that therapeutic response to drug treatment 
can be predicted by analysis of global gene expression patterns in 
many cases.16,27-30 Here, we found that the publicly available Gene 
Set Enrichment Analysis tool (www.broadinstitute.org/gsea/) was 
able to readily identify control of cell cycle progression as one of 
the most highly enriched signaling pathways in SCH727965-
sensitive vs. -resistant subcutaneous pancreatic cancer xenografts. 
In the xenografts showing the least sensitivity toward SCH727965 
in terms of growth inhibition, the Notch- and TGFβ signaling 
pathways were among the top ten candidates thus identified. Both 
of these pathways are involved in pancreatic carcinogenesis and 
progression, and have long been suggested as promising therapeu-
tic targets in pancreatic as well as in many other cancers.17,19,31-34 
It is therefore tempting to speculate that concomitant pharmaco-
logical inhibition of either of these pathways, for which experim 
ental small molecule inhibitors are readily available to date, 

Figure 6. Combination treatment of orthotopic pancreatic cancer xenografts with SCH727965 and gemcitabine. The low passage pancreatic can-
cer xenograft Panc265 was implanted orthotopically into nude mice. Ten days later, tumor volume was measured by ultrasound, and mice (eight 
per group) were randomized into four treatment groups (vehicle-only control, SCH727965 only, gemcitabine only, and combination SCH727965 
and gemcitabine), and treatment was initiated. SCH727965 (40 mg/kg) and gemcitabine (20 mg/kg) were each given twice weekly, as described 
in Materials and Methods. After 3 weeks of treatment, tumors were harvested and weighed. (A) relative tumor growth, calculated as (final tumor 
volume minus initial tumor volume/initial tumor volume); (B) average tumor weight (in grams) upon culmination of therapy. *p < 0.05; **p < 0.01; 
***p < 0.001. (C) Representative macroscopic picture of mock treated intrapancreatic xenograft tumor (white arrowheads) at the end of treatment 
as compared with (D) combination treatment with SCH727965 plus gemcitabine. Note the different scales (indicated in mm at the right side of each 
image) in (C and D).
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11, 35 and 37. FluoroBlok migration assays (BD Biosciences, 
Bedford, MA) were performed following the standard procedure 
as recommended by the manufacturer.

Colony formation assays. Colony formation in soft agar was 
assessed as previously described in reference 17 and 35. In brief, 

In vitro cell growth assays. 3-(4,5-dimethylthiazolyl-2)-2,5-
diphenyltetrazolium bromide (MTT) assays (Promega, Madison, 
WI) were done as previously described in reference 35 and 36.

Migration assays. Wound healing and modified Boyden 
chamber assays were done as previously described in reference 

Table 2. Top ten signaling pathways overrepresented in pancreatic cancer xenograft lines sensitive to SCH727965

Name Size ES NES NOM p-val FDR q-val
FWER 
p-val

Rank 
at max

Leading edge

HSA00020_CITRATE_CYCLE 26 -0.61390764 -1.9201561 0 0.045759372 0.04 6936
tags = 65%, list = 34%, 

signal = 98%

HSA00970_AMINOACYL_
TRNA_BIOSYNTHESIS

31 -0.5890802 -1.917871 0 0.024163265 0.042 7009
tags = 65%, list = 34%, 

signal = 98%

HSA00790_FOLATE_
BIOSYNTHESIS

39 -0.55365455 -1.8789957 0 0.022909002 0.06 3620
tags = 44%, list = 18%, 

signal = 53%

HSA00620_PYRUVATE_
METABOLISM

42 -0.53437865 -1.8652918 0.003937008 0.019398287 0.068 4769
tags = 48%, list = 23%, 

signal = 62%

HSA00100_BIOSYNTHESIS_OF_
STEROIDS

24 -0.583661 -1.7591836 0 0.043604653 0.178 2701
tags = 29%, list = 13%, 

signal = 34%

HSA00240_PYRIMIDINE_
METABOLISM

85 -0.41035947 -1.6635686 0.003787879 0.094076924 0.382 3482
tags = 31%, list = 17%, 

signal = 37%

HSA03020_RNA_POLYMERASE 23 -0.52076936 -1.6180923 0.016460905 0.120430574 0.522 6427
tags = 61%, list = 31%, 

signal = 88%

HSA00280_VALINE_
LEUCINE_AND_ISOLEUCINE_

DEGRADATION
43 -0.46374542 -1.6132011 0.003952569 0.108416975 0.532 3479

tags = 33%, list = 17%, 
signal = 39%

HSA03022_BASAL_
TRANSCRIPTION_FACTORS

31 -0.48343912 -1.5674667 0.01171875 0.13757516 0.676 3822
tags = 45%, list = 19%, 

signal = 55%

HSA04110_CELL_CYCLE 110 -0.37117663 -1.5618807 0 0.13017757 0.7 3191
tags = 25%, list = 15%, 

signal = 29%

Table 3. Top ten signaling pathways overrepresented in pancreatic cancer xenograft lines resistant to SCH727965

Name Size ES NES NOM p-val FDR q-val
FWER 
p-val

Rank 
at max

Leading edge

HSA00040_PENTOSE_AND_
GLUCURONATE_INTERCONVERSIONS

16 0.64284337 1.7385656 0.003816794 0.19642629 0.214 1825
tags = 31%, list = 9%, 

signal = 34%

HSA04350_TGF_BETA_SIGNALING_
PATHWAY

86 0.3732366 1.4930247 0.012 0.929893 0.876 3389
tags = 29%, list = 16%, 

signal = 35%

HSA00980_METABOLISM_OF_
XENOBIOTICS_BY_CYTOCHROME_

P450
60 0.39338198 1.4794687 0.015810277 0.687322 0.902 4077

tags = 35%, list = 20%, 
signal = 44%

HSA00150_ANDROGEN_AND_
ESTROGEN_METABOLISM

44 0.42112887 1.473067 0.02909091 0.5366695 0.91 2004
tags = 25%, list = 10%, 

signal = 28%

HSA04080_NEUROACTIVE_LIGAND_
RECEPTOR_INTERACTION

250 0.31550065 1.4510776 0.003831418 0.4888537 0.942 4618
tags = 33%, list = 22%, 

signal = 42%

HSA04330_NOTCH_SIGNALING_
PATHWAY

43 0.3931385 1.3815392 0.062240664 0.66589737 1 3201
tags = 23%, list = 16%, 

signal = 27%

HSA00512_O_GLYCAN_
BIOSYNTHESIS

31 0.42668453 1.363438 0.049618322 0.64243215 1 3801
tags = 35%, list = 18%, 

signal = 43%

HSA04320_DORSO_VENTRAL_AXIS_
FORMATION

27 0.42628312 1.3450578 0.11278196 0.6346693 1 4924
tags = 41%, list = 24%, 

signal = 53%

HSA04514_CELL_ADHESION_
MOLECULES

125 0.31904364 1.3338836 0.034749035 0.60663086 1 5982
tags = 37%, list = 29%, 

signal = 52%

HSA00591_LINOLEIC_ACID_
METABOLISM

31 0.4042889 1.3159131 0.08988764 0.6104479 1 5218
tags = 52%, list = 25%, 

signal = 69%
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soft agar assays were set up in 6-well plates, each well containing 
a bottom layer of 1% agarose (Invitrogen), a middle layer of 0.6% 
agarose including 10,000 cells, and a top layer of medium only. 
Mixtures in each well were supplemented with SCH727965 at the 
indicated concentrations or solvent only, and the plates were incu-
bated for 3 weeks. Next, 1.5 ml of 0.5% Wright’s staining solution 
was added to each well. After incubation at 4°C overnight, colo-
nies were visualized by trans-UV illumination and counted using 
analysis software QuantityOne (BioRad, Hercules, CA).

RalA activation assays. RalA activation assays were done as 
previously described in reference 11. In brief, subconfluent cells 
were serum starved at 0.5% FBS over night and treated with 
SCH727965 for 30 min. Protein extraction and RalA activation 
assays were then performed using the RalA activation assay kit 
following the standard procedure recommended by the manufac-
turer (Upstate, Temecula, CA).

Protein gel blot analysis. Protein gel blot analyses were per-
formed as described previously in reference 11. Antibodies used 
for protein gel blotting were Phospho-Rb(Ser807/811) (#9308), 
Rb (#9313) and GAPDH (#2118; all Cell Signaling Technology, 
Danvers, MA).

Generation of subcutaneous and orthotopic xenografts and 
drug treatment. All animal experiments conformed to the guide-
lines of the Animal Care and Use Committee of Johns Hopkins 

Figure 7. Gene Set Enrichment Analysis (GSEA) shows enrichment of the Notch and TGFβ pathways in SCH727965-resistant xenografts. Top, the pri-
mary result of the gene set enrichment analysis is the enrichment score (ES). GSEA calculates the ES by walking down the ranked-ordered list of genes, 
increasing a running-sum statistic when a gene is in the gene set and decreasing it when it is not. Middle, rank ordered list of genes (horizontal line in 
red and blue color). The top of this list (red color) contains genes upregulated in resistant cases. The bottom of the list (blue color) contains downregu-
lated genes in sensitive cases. Anytime a gene from the gene set is found along the list, a vertical black bar is plotted (hit). If most of the hits are at the 
top of the list, then this gene set is enriched in resistant cases, if they are found at the bottom of the list then they are enriched in sensitive cases; if, 
however, they are distributed homogenously across the rank ordered list of genes, then that gene set is not enriched in any of the gene expression 
profiles (resistant vs. sensitive). These figures show enrichment of the TGFβ and Notch pathways in resistant cases. Bottom, value of the ranking metric 
along the list of the ranked genes.

University and animals were maintained in accordance to guide-
lines of the American Association of Laboratory Animal Care. 
Subcutaneous murine xenografts of low-passage patient-derived 
human pancreatic cancers were generated as previously described 
elsewhere in reference 11 and 13. Xenografts from ten different 
cases were randomly picked and tumor tissues were serially trans-
planted into both flanks of ten male CD1 nu/nu athymic mice 
each (n = 20 xenograft tumors per case). Ten days after subcuta-
neous implantation, mice for each case were randomized into two 
groups of five mice with similar average xenograft tumor volumes 
and assigned to receive treatment with SCH727965 or solvent 
only (n = 10 xenografts per arm). In the treatment arm, 40 mg/
kg SCH727965 in 20% (w/v) hydroxypropyl-β-cyclodextrin 
(HPBCD) were given by intraperitoneal injection twice weekly. 
Mice in the control arms received mock treatment with solvent 
only. Total body weights were determined weekly, and xenograft 
tumor volumes were measured weekly using digital callipers as 
previously described in reference 38. After 4 weeks of treatment, 
all mice were euthanized and tumor tissues harvested. Relative 
growth inhibition (GI) of xenograft tumors was calculated as:



www.landesbioscience.com	 Cancer Biology & Therapy	 607

Figure 8. SMAD4 mRNA expression in xenograft tissue specimens 
at the end of treatment. (A) Steady-state SMAD4 mRNA levels were 
significantly higher in mock-treated xenografts that were resistant to 
SCH727965 (Panc291 and JH033) as compared with xenografts that 
were SCH727965 sensitive (Panc286 and Panc219). Ten tissue samples 
from each xenograft line were included in the analysis and mRNA 
expression levels were determined by means of quantitative real-time 
RT-PCR. (B) SMAD4 mRNA expression levels in sensitive and (C) resistant 
xenografts after treatment with SCH727965 or solvent, respectively.

with TuV
EOT

: = average tumor volume at the end of treatment.
For studies examining the effect of SCH727965 and gem-

citabine in pancreatic cancer, low passage xenograft tissue from 
a modestly gemcitabine sensitive pancreatic cancer, Panc265, 
was minced and implanted orthotopically in the pancreas of 
athymic nude mice, as described in reference 35. Mice were ran-
domized by tumor size, estimated by ultrasound immediately 
preceding initiation of therapy (day 10 post-implantation), into 4 
groups (n = 8 per group): control, gemcitabine, SCH727965 and 
SCH727965 + gemcitabine. Control mice received solvent only, 
SCH727965 in HPBCD was administered at 40 mg/kg twice 
weekly (Monday and Thursday), gemcitabine was given at 20 
mg/kg twice weekly (Tuesday and Friday), and the combination 
group received both gemcitabine and SCH727965. All dosing 
was done intraperitoneally for 3 weeks; tumors were harvested 
and weighed at the end of treatment.

Tissue samples were preserved in formalin solution for his-
tology and immunohistochemistry, for RNA-extraction and 
subsequent quantitative real-time RT-PCR analysis tissue speci-
mens were snap-frozen in liquid nitrogen and stored at -80°C 
until used.

Immunohistochemistry. For Ki67 (MIB1) staining of 
formalin-fixed paraffin-embedded tissue sections, anti-Ki67 
primary antibody (clone K2, Ventana Medical Systems, 
Tucson, AZ) was used in combination with a Ventana 
Benchmark Autostainer as described in reference 39. Phospho-
Rb(Ser807/811) was stained using a rabbit anti-human poly-
clonal antibody (#9308, CellSignaling Technology, Danvers, 
MA) at a dilution of 1:300 following the standard recommen-
dations provided by the manufacturer.

Expression microarrays and gene set enrichment analysis. 
Basal whole genome mRNA expression patterns were assessed 
using Affymetrix U133A Plus 2.0 expression microarrays and ana-
lyzed using the publicly available Gene Set Enrichment Analysis 
(GSEA) tool29 as previously described in reference 11 and 16.

Quantitative real-time RT-PCR analysis. RNA extraction, 
reverse transcription and quantitative real-time PCR were per-
formed as previously described elsewhere in reference 35, 36 and 
40. Primer sequences are available upon request. Relative quanti-
fication of mRNA transcript levels was done using the 2deltaCt 
method.41

Statistical analysis. Kruskal-Wallis analysis was performed 
using SPSS version 15.0.1 for Microsoft Windows, 2-tailed t-test 
was performed using GraphPad Prism for Windows version 5. 
p < 0.05 was regarded as statistically significant. Results in bar 
diagrams are plotted as means and standard deviations if not oth-
erwise indicated.
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