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The c-Rel transcription factor is a unique member of the 
vertebrate nuclear factor κB (NF-κB) family, primarily 
because of its pervasive and specific role in mammalian B 
and T cell differentiation and function, as well as in human 
disease. As such, c-Rel is of interest to many researchers 
and clinicians studying mammalian immunology and 
human immunological disorders, especially autoimmune 
diseases and hematopoietic cancers. This broad-based 
review describes the attributes of c-Rel structure, function, 
and regulation that confer it with its normal and pathologi-
cal biological activities. In this review, c-Rel is used to refer 
generically to c-Rel proteins, whereas REL refers specifi-
cally to human c-Rel.

Structure of c-Rel and  
DNA-Binding Activity
Human REL is a 587–amino acid protein (Fig. 1). Like other 
mammalian NF-κB proteins (i.e., NFκB1/p50, NFκB2/p52, 
RelA/p65, RelB), REL contains a highly conserved N-termi-
nal DNA-binding/dimerization domain called the Rel homol-
ogy domain (RHD).1 The C-terminal half of REL is composed 
of sequences that affect its ability to activate transcription: 
That is, 2 C-terminal transactivation subdomains (TAD1 and 
2)2-4 are separated from the RHD by a transactivation inhibi-
tory domain (RID).5

REL has an optimal DNA-binding site preference for  
a target sequence that is slightly different from other  
NF-κB subunit homodimers. PCR-based site selection indi-
cates that c-Rel has a broader target sequence recognition 
ability than p65 and p50, with 5′-NGGRN(A/T)TTCC-3′ 

identified as the optimal c-Rel binding sequence.6 The 
X-ray crystal structure of REL bound to a κB site 
(5′AGAAATTCC3′) from the IL-2 enhancer shows that 
c-Rel uses residues to bind DNA that are distinct from other 
NF-κB proteins, a property that may endow REL with its 
different target sequence preference. Interestingly, certain 
amino acids in these c-Rel-specific DNA-binding sequences 
are mutated in v-Rel,7 the viral oncogenic version of avian 
c-Rel. Mutagenesis studies also indicate that c-Rel has 
DNA-binding residues that are distinct from other NF-κB 
proteins.8 In most cells, REL exists either as a homodimer 
or a heterodimer with p50, but c-Rel can also form dimers 
with p65 and NFκB2.

Protein Modifications and Protein-Protein 
Interactions of c-Rel
A number of posttranslational modifications of c-Rel 
have been described. Within the RHD, c-Rel has been 
shown to undergo phosphorylation, acetylation, and, 
within the C-terminal sequences, phosphorylation and 
ubiquitination. In most cases, the functional relevance of 
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these modifications is unclear. For example, PKA can 
phosphorylate a conserved site (R-R-X-S) in the c-Rel 
RHD domain,9,10 but whether and when such phosphoryla-
tion occurs in vivo is not known. Similarly, residues in the 
C-terminal half of c-Rel can be phosphorylated in vitro by 
IKKβ11-13 but have not been shown to be phosphorylated in 
vivo.13 Nevertheless, one of these IKK phosphorylation 
sites is mutated in some human B cell lymphomas.12 c-Rel 
has also been reported to be a substrate for NF-κB-inducing 
kinase (NIK)14 and a tyrosine kinase in myeloid cells fol-
lowing G-CSF stimulation.15 Although chicken c-Rel 
undergoes ubiquitin-mediated degradation due to modifica-
tion of C-terminal lysines,16 the absence of lysine residues 
in the C-terminal half of REL may indicate that this is a 
species-specific mode of c-Rel regulation. Finally, a con-
served Cys residue in a DNA-binding sequence of c-Rel 
allows for redox-sensitive DNA binding, where reduced 
REL binds DNA better than oxidized REL.17 The redox 
state of c-Rel also appears to affect its ability to be 
phosphorylated.17

c-Rel is also subject to posttranscriptional processing. 
For example, alternative splicing can remove part of the 
central transactivation inhibitory domain RID, which 
increases both the DNA-binding and transactivating activ-
ity of REL; of note, this alternatively spliced form of REL 
mRNA is overexpressed in B lymphoma cell lines.5 c-Rel 
can be a substrate for caspase-mediated cleavage, which 
renders it inactive,18 a process that may modulate its role as 
an anti-apoptotic regulator.

c-Rel has been shown to interact with several different 
types of proteins, in addition to those of the IκB and NF-κB 
families (Table 1). c-Rel-interacting proteins include tran-
scription factors and nuclear shuttling proteins, as well as 
signaling proteins such as protein kinases (e.g., PKA, NIK, 
IKKβ). In addition, c-Rel has been reported to be important 
for the transport of certain proteins to the nucleus. For 
example, REL transports an alternative form of tumor sup-
pressor p53 (ΔNP63α) into the nucleus in head and neck 
cancers to control proliferation19 and can transport the cell-
surface protein CD40 to the nucleus in some B lymphoma 
cells.20 Finally, one study suggested that c-Rel may have a 
direct role in regulating DNA replication.21

Direct c-Rel Target Genes

Although there is considerable overlap in the DNA 
sequences and genes bound by the various NF-κB dimers, 
some genes do appear to be preferred targets for c-Rel, 
whether bound by c-Rel homodimers or by c-Rel heterodi-
mers. Not surprisingly, based on the immune cell-specific 
functions of c-Rel (see below), many of these genes  
are involved in immune cell proliferation, survival (anti-
apoptotic), or function (Table 2).

Computational modeling of sequences upstream of c-Rel 
target genes suggests that the c-Rel regulatory module consists 
of multiple closely clustered c-Rel binding sites.22 Further-
more, c-Rel has been shown to bind cooperatively at certain 
promoters with other transcription factors; for example, c-Rel 
interacts with NFATc1 on the CD154 gene promoter.23

The C-terminal transactivation domain of c-Rel may 
have a specific role in regulating genes involved in B cell 

Table 1.  Non-NF-κB/IκB Proteins That Can Interact with c-Rel

Protein Reference

Transcription factors  
  C/EBP/β 133
  IRF-8 134
  NFATc 23
  Sp1 135
  Foxp3 136
  ΔNP63α 19
  Androgen receptor 137
  Estrogen receptor 138, 139
Transcription-mediating proteins  
  TBP 140
  TFIIB 140
  p300/CBP 108
  CAPERα 141
  Cdk2/cyclinE 142
  Aof1 143
Nuclear import  
  Importin alpha 144
Protein modifying/signaling  
  BAFF-R 145
  CD40 20
  Calmodulin 146, 147
  Myotrophin/V1 148
  Cot/Tpl2 149
  ABIN2 149
  PAPOLA 149
  Erbin 150
  JNK1 151
  NIK 152
  PKA-beta 153
  Protein phosphatase X 154
  Pin-1 155
Viral protein  
  HTLV-1 Tax 156

RHD RID TAD1 TAD2
1 305 323 425 490 518 587

NLS

Figure 1.  Generalized structure of the human REL protein. The numbers 
below the figure indicate the limits of each domain. RHD = Rel homology 
domain; NLS = nuclear localization signal; RID = REL inhibitory domain; 
TAD1 = transactivation domain 1; TAD2 = transactivation domain 2. The 
red box indicates the approximate position of residues 308-330, encoded 
by exon 9, that are deleted in an alternatively spliced form of REL, which 
is overrepresented in many B lymphoma cell lines.5



c-Rel in development and disease / Gilmore and Gerondakis	 697

proliferation. For example, the addition of the v-Rel trans-
activation domain onto the RelA RHD creates a transform-
ing protein in avian lymphoid cells, but the addition of the 
RelA transactivation domain onto the c-Rel RHD does 
not.24 Target genes of c-Rel that are involved in various 
developmental or disease processes are described in rele-
vant sections of the text below.

Role of c-Rel in Normal  
Immune Cell Function

c-Rel is expressed at the highest levels in a wide variety of 
hemopoietic cells.25-28 Nevertheless, studies using knockout 
mice have shown that c-Rel is generally not essential for 
normal hematopoiesis and lymphopoiesis.29 Instead, c-Rel 
is required for a number of specialized functions in mature 
T and B cells. A summary of the phenotypes reported in 
studies using c-rel knockout mice is presented in Table 3.

c-Rel plays a key role in the development of regulatory T 
cells. Several recent studies have shown that c-Rel is 
required for the development in the thymus of CD4 regula-
tory T cells (Tregs).30-37 Tregs, which consist of a subset of 
T lymphocytes that express the lineage-specific transcrip-
tion factor Foxp3, are required to suppress the activity of 
autoreactive T cells that escape negative selection and limit 
the duration and strength of normal T cell responses. In 
c-rel knockout mice (c-rel–/– mice), only ~15% of normal 
Treg numbers develop in the thymus.31 The reduced Treg 
population in c-rel–/– mice is due to a thymocyte-intrinsic 
defect that reflects the high level of c-Rel expression in 

Table 2.  Partial List of c-Rel Target Genes

Gene/Protein Protein Function References

Cell proliferation/cell growth
  c-Rel Transcription factor 157
  c-Myc Transcription factor 44, 158
  IRF-4 Transcription factor 159
  E2F3a Transcription factor 57
  EP300 Histone acetyltrans-

ferase
160

  CD21 Complement receptor 161
  CD40 Cell surface receptor 22
  SFN 14-3-3 protein 160
  GM-CSF Hematopoietic growth 

factor
22, 162, 163

  TGFβ Growth factor 160
  IL-2 Cytokine 22, 41, 163
  IL-4 T cell cytokine 22, 164
Apoptosis/cell survival
  Bcl-2 Anti-apoptotic 54, 165
  Bfl-1/A1 Anti-apoptotic 60, 61
  Bcl-XL Anti-apoptotic 62
  miR-21 Pro-apoptotic for β cells  228
Adhesion/cell architecture
  ICAM-1 Cell adhesion 166, 167
  Selectin Cell adhesion; binds 

sugars
160

  MMP-1 Metalloproteinase 160
  EPHB2 Receptor tyrosine 

kinase (repressed)
168

Immune cell function
  Gamma1 Ig heavy chain 63
  Gamma4 Ig heavy chain 64
  TNF-α Cytokine 22
  IL-12 p35 cytokine 169
  IL-13 Cytokine 22
  IL-21 Cytokine 52
  IL-23 Cytokine 170
  CD40L CD40 ligand 23
  BlyS/BAFF TNF-like cytokine 171
  IP-10 Chemokine 22
  Ligp1 GTPase 22
  MIG Macrophage cytokine 22
  Foxp3 Transcription factor 172
DNA repair/damage
  ATM Protein kinase 160
  Claspin Cell cycle kinase 173
  Skp2 S-phase kinase- 

associated factor
174

Table 3.  Phenotypes of c-rel Mouse Knockouts

Disrupted Genes Phenotype References

c-rel Reduced B cell prolifera-
tion, survival, and anti-
body expression

40

  Reduction in induced 
arthritis

75

  Sensitivity to Toxoplasma 
gondii

175

  Increased sepsis 176
  T cell defects 49, 177
  Dendritic cell defects 178, 179
  Reduction in induced 

diabetes
180

  Reduction in induced colitis 181
  Liver regeneration defect 182
  Reduced synaptic plasticity 

and memory
183, 184

c-relΔCOOH Increased B cell numbers in 
lymph nodes

185

c-rel/nfkb1 B cell developmental 
defects, TLR signals 
impaired

186

  Impaired CD4+ T cell 
responses

50, 56, 179

c-rel/relA Embryonic lethal, multiple 
hematopoietic defects

44, 187

c-rel/relA/tnf Neonatal lethal, multiple 
epidermal defects

76
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Tregs.31 Although the total number of thymic Tregs is sub-
stantially reduced in c-rel–/– mice, the Tregs that do develop 
appear to possess normal T cell suppressive activity in cul-
ture and in vivo.31 This is consistent with the residual c-Rel-
deficient Tregs expressing normal levels of Foxp3, which is 
essential for maintaining the Treg lineage-specific pattern 
of gene expression required for the immune-modulating 
functions of these cells.38 Importantly, the absence of auto-
immune disease in c-rel–/– mice31 indicates that these 
remaining Tregs are sufficient to keep autoreactive T cells 
in check. Collectively, these findings point to c-Rel activity 
as being important, although not essential, for the develop-
ment of Treg cells in the thymus. Once Treg development is 
complete, c-Rel appears to be dispensable for the function 
of mature Treg cells, which instead is orchestrated by 
Foxp3. The localization of c-Rel to the cytoplasm of mature 
Foxp3-positive Tregs is consistent with such a model.31

Treg development proceeds via a 2-step process.39 The ini-
tial step involves the T cell receptor (TCR) plus CD28-depen-
dent generation of Treg precursors (CD25+GITR+Foxp3– CD4 
thymocytes) from CD4+CD8+ double-positive (DP) thymo-
cytes. These cells are then converted into functional Foxp3-
positive Tregs by the action of the common γ-chain cytokines 
IL-2 and IL-15. The role of c-Rel in the generation of Treg 
precursors is almost certainly linked with the process of T cell 
selection. Normally, DP thymocytes, the precursors of almost 
all T cells (including Tregs), receive a TCR signal, the strength 
of which dictates their developmental fate. DP thymocytes 
receiving antigen-dependent TCR signals that are deemed to 
be either too weak or too strong to be compatible with normal 
T cell function are eliminated during positive and negative 
selection, respectively, by apoptosis. Those cells expressing a 
TCR that delivers an antigen signal to developing thymocytes 
within a tolerated range are able to complete the differentia-
tion process. Although c-Rel is activated by TCR and CD28 
signals in mature conventional CD4 T cells,40 it remains to be 
determined whether the reduction in Treg precursor numbers 
in c-rel–/– mice is due to impaired signaling downstream of the 
TCR, CD28, or both receptors during selection. The reduction 
in Treg precursor numbers in c-rel–/– mice suggests that either 
the positive or negative selection of these cells is impaired. 
Although Bcl-2 transgene expression can override cell death 
in wild-type mice arising from both modes of selection, it can-
not rescue the loss of Treg cell numbers in c-rel–/– mice.31 That 
result indicates that instead of functioning in an anti-apoptotic 
capacity, c-Rel serves an instructive role promoting differen-
tiation in response to antigen signals encountered during posi-
tive selection. Given that thymocytes directed toward Treg 
development tolerate stronger TCR signals during selection 
than conventional T cells, the Tregs that develop in the 
absence of c-Rel are likely to represent cells receiving a TCR 
signal at either the stronger or weaker end of the spectrum 
compatible with Treg differentiation.

The second step in Treg development, the induction of 
foxp3 transcription, is dependent on common γ-chain cyto-
kine signals.39 Emerging evidence indicates that c-Rel 
directly controls the induction of foxp3 transcription during 
Treg differentiation. Within the foxp3 locus, there are c-Rel 
binding sites in the promoter,32,33,36 in a conserved element 
(CNS2) essential for stable foxp3 transcription,36 and in the 
CNS3 element, which like c-Rel is required for the devel-
opment of the majority of Foxp3-positive Tregs in the thy-
mus.36 The finding that Foxp3 expression in the residual 
c-rel–/– Tregs is normal31 suggests that c-Rel does not play a 
direct role in controlling the maintenance of foxp3 tran-
scription but instead that c-Rel is required to establish a 
chromatin structure within the foxp3 gene that allows other 
transcription factors access to the locus. Given that c-Rel is 
not activated by the common γ-chain cytokine signals 
required for the induction of Foxp3 expression, any remod-
eling of the foxp3 gene by c-Rel must precede the formation 
of the Treg precursors. Many questions as to how c-Rel dic-
tates Treg development remain to be answered, with the 
emerging data offering exciting insight into a previously 
unknown developmental role for c-Rel in mammalian cells 
that may provide mechanistic clues as to how c-Rel regu-
lates other normal as well as pathological processes.

c-Rel has multiple roles in mature T cell growth, proliferation, 
and survival. Naive T cells exiting the thymus are sustained 
in the periphery through a combination of cytokine and 
weak TCR signals induced by self-antigens,40 the latter at 
levels below the threshold required to promote cell cycle 
entry. Typically, the activation of naive T cells involves 
antigen-presenting cells (APCs) such as dendritic cells 
delivering dual antigen/MHC and B7 co-stimulatory sig-
nals via the TCR and CD28, respectively, with CD28 opti-
mizing TCR signals to reduce the threshold for 
antigen-dependent T cell activation. Depending on the type 
of cytokines that activated T cells receive from an APC, 
naive CD4 T cells can differentiate into Th1, Th2, Th17, 
and follicular helper T cells, each of which represents a dif-
ferent class of effector T cell.

Nuclear NF-κB activity in naive T cells is minimal, and 
c-Rel is only present at low levels in the cytoplasm of rest-
ing T cells.41 With the homeostatic maintenance of naive T 
cells unaffected by the absence of c-Rel,42 the preexisting 
c-Rel does not appear to serve a critical “housekeeping” 
function. Although TCR signals rapidly activate preexisting 
RelA in resting T cells, the cytoplasmic stores of c-Rel are 
not readily mobilized. This difference reflects the type of 
IκB proteins that bind to RelA versus c-Rel. RelA associ-
ates with IκBα, which is degraded in response to TCR sig-
nals, whereas c-Rel is bound to IκBβ, which is relatively 
resistant to degradation following TCR stimulation.43 
Instead, TCR signals promote a delayed induction of c-Rel 
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expression, resulting from NFAT-mediated activation of 
c-rel transcription.44,45 The different kinetics of c-Rel and 
RelA recruitment to the nucleus is indicative of a need to acti-
vate distinct NF-κB transcriptional targets in a temporally 
ordered manner during T cell activation. Why RelA, like 
NFAT, is in the first wave of transcription factors mobilized 
by TCR signals, whereas c-Rel is a secondary transcriptional 
effector, is still not known, and this temporal order contrasts 
with B cells, where c-Rel is among the first transcription 
factors activated by B cell antigen receptor (BCR) signaling.

IL-2, which is required for autocrine-dependent T cell 
proliferation, is induced by c-Rel in response to TCR and 
CD28 signaling.41,46 c-Rel controls il2 gene transcription by 
remodeling the chromatin structure of the locus to make it 
permissive for transcription,41 which is similar to the way 
that c-Rel is thought to control foxp3 transcription in Treg 
cells,36 suggesting that chromatin remodeling is a general 
feature of c-Rel-dependent transcriptional regulation. 
Although c-rel–/– T cells display a TCR plus CD28- 
dependent proliferative defect in culture due to a failure to 
express IL-2,46 the relatively normal IL-2-dependent T cell 
functions found in c-rel–/– mice in vivo suggest that IL-2 can 
be effectively regulated by c-Rel-independent pathways. 
Aside from its restricted role in controlling IL-2 transcrip-
tion, c-Rel does not appear to serve a general, nonredundant 
function during T cell proliferation. Rather, the role of c-Rel 
in T cell expansion appears to be stimulus dependent. For 
example, c-Rel promotes the clonal expansion of Th1 effec-
tors in a T cell–intrinsic manner during the immune response 
to Toxoplasma gondii47 but is dispensable for influenza-
specific CD8 T cell division in infected mice.48 This differ-
ential need for c-Rel during T cell activation presumably 
reflects the type of stimulatory signals invoked by specific 
pathogens. Notwithstanding the different stimulus-specific 
requirements for c-Rel in T cell proliferation, T cells (like B 
cells) use c-Rel in an overlapping manner with another 
NF-κB transcription factor, in this case RelA, to induce the 
c-Myc-dependent growth of mitogen-activated T cells.44 
Although c-Myc rescues the c-rel–/–/rela–/– T cell growth 
defect, the failure of these cells to proliferate in response to 
TCR signals indicates that c-Rel and RelA play additional 
roles in the cell cycle that are independent of cell growth.

TCR-activated CD4 and CD8 T cells display a differen-
tial dependence on c-Rel for survival. Whereas TCR acti-
vation of PKCθ employs c-Rel to promote the survival of 
CD8 T cells, the PKCθ/c-Rel pathway is dispensable for 
CD4 T cell survival.49 However, c-Rel in combination with 
NFκB1 is critical for the survival of activated CD4 T cells.50 
This emphasizes how c-Rel is differentially employed by 
CD4 and CD8 T cells to provide TCR-induced survival 
functions.40

c-Rel also controls the differentiation of CD4 Th cells 
during diverse immune responses that include central 

nervous system inflammation, islet allograft rejection, and 
microbial challenge by using both T cell autonomous and 
nonautonomous mechanisms.29 For example, Th1 cell 
development in experimental autoimmune encephalopathy 
involves c-Rel-induced expression of IL-12 by APC, yet in 
T. gondii infection, this aspect of Th1 differentiation is dis-
pensable, with c-Rel instead serving a T cell–intrinsic role. 
Follicular helper (FH) T cells are required for the formation 
and maintenance of germinal centers and play a key role in 
plasma cell and memory B cell differentiation.51 IL-21, a 
cytokine produced by activated CD4 T cells that is impor-
tant for the expansion and differentiation of FH T cells, 
requires c-Rel for the transcription of the il21 gene.52 Con-
sistent with this finding, c-rel–/– mice exhibit defective FH 
T cell development and germinal center formation.52 
Although IL-21 administration rescues the defect in develop-
ment of c-rel–/– FH T cells, germinal center formation in c-rel–/– 
mice remains impaired,52 indicating an IL-21-independent 
role for c-Rel in the formation of these crucial secondary 
lymphoid structures.

Finally, c-Rel is important in the regulation of cytokine 
expression by activated T cells. In addition to promoting the 
T cell–specific expression of IL-2, GM-CSF, IL-3, IFN-γ, 
and IL-21 (Table 2), in naive CD4 T cells exposed to inflam-
matory cytokines, an exchange of the IκB factor that tethers 
c-Rel in the cytoplasm from IκBβ to IκBα creates a T cell 
that expresses cytokines at a faster rate and in larger 
amounts during subsequent TCR activation.53 This c-Rel 
priming mechanism that permits a T cell to respond rapidly 
and efficiently in an antigen-specific manner may serve as 
a temporary stop gap role during an immune response while 
a more robust T effector response has time to evolve.

c-Rel plays a role in activated B cell growth, proliferation, and 
survival. In keeping with c-Rel being dispensable for the 
antigen-independent B cell development that occurs in the 
bone marrow,54 c-Rel levels are low in B cell precursors, 
and p50/RelA is the major NF-κB dimer found in these 
cells.55 However, during the developmental transition from 
a pre–B cell to a naive mature B lymphocyte, an up-regula-
tion of c-Rel and p50 expression causes p50/c-Rel to 
become the predominant NF-κB dimer in peripheral IgM-
positive B lymphocytes. This shift to c-Rel-dominated 
NF-κB heterodimers in mature B cells highlights the impor-
tance of c-Rel in the events linked to the immune activation 
and differentiation of mature peripheral B cells.

B cell activation in response to antigens, Toll-like recep-
tor (TLR) ligands, or T cell (CD40 ligand) signals typically 
promotes cell cycle entry and cell division, which are 
accompanied by isotype switching and antibody secretion. 
Entry of a mature B lymphocyte into the cell cycle requires 
a quiescent cell to initiate and coordinate multiple biochem-
ical processes. If a B cell is not primed to enter the cell 



700		  Genes & Cancer / vol 2 no 7 (2011)

cycle when it receives an activation signal, then pro-
grammed cell death appears to be initiated as a default 
option to eliminate any inappropriately stimulated cells. 
Indeed, upwards of 30% of normal B cells undergo apopto-
sis following BCR engagement,56 suggesting that, at any 
given time, a significant proportion of quiescent B cells are 
not correctly poised to respond to mitogenic signals. To 
counteract this situation, it has been proposed that activated 
B cells engage a survival pathway that provides a window 
of protection from apoptosis to those cells that are able to be 
biochemically or metabolically reconfigured to success-
fully enter the cell cycle.

In mature B cells, c-Rel serves a dual role of promoting 
cell division and survival when these cells are activated.29 
Although BCR, CD40, TLR4, and TLR9 signals all rapidly 
mobilize c-Rel dimers in resting B cells,40 studies with 
c-rel–/– mice have established that the requirement of c-Rel 
for mitogen-induced B cell division and survival is stimulus 
dependent.56 Whereas c-Rel is largely dispensable for pro-
moting these functions in TLR9-stimulated B lymphocytes 
(S. Gerondakis, unpublished results), c-Rel is essential  
for these roles in antigen receptor–activated cells.56 c-Rel 
has two distinct cell cycle functions in B cells. In BCR-
activated cells, c-Rel promotes the transition from G1- to 
S-phase.56 The genes that c-Rel directly regulates to control 
this phase of the cycle remain to be determined, although 
c-Rel induction of transcription factor E2F3a and cyclin E 
have been proposed to play a role in G1-to-S phase progres-
sion.57,58 c-Rel also promotes cell growth during G1 by up-
regulating c-myc transcription,59 a step associated with 
ribosome biosynthesis that is essential for subsequent cell 
division. Once BCR-activated B cells enter S-phase, c-Rel 
appears to be dispensable for progression through the 
remainder of the cell cycle.56 Although the combined roles 
of c-Rel and p50 in B cell growth appear to be a common 
requirement for all mitogenic signals,59 the need for c-Rel 
to promote S-phase entry is more selective, with its impor-
tance in the hierarchy of mitogenic stimuli headed by BCR 
signaling.56

In the absence of c-Rel, mitogen-activated B cells dis-
play elevated levels of apoptosis.56,60 c-Rel promotes the 
survival of these cells by inhibiting a cell intrinsic death 
pathway through the direct transcriptional induction of 
genes encoding the Bcl-2 family pro-survival proteins A1/
Blf-160,61 and Bcl-xL.60-62 With Bcl-2 transgene expression 
able to block the apoptosis of activated c-rel–/– B cells,56 
coexpression of the closely related pro-survival proteins A1 
and Bcl-XL in activated B cells could represent a fail-safe 
mechanism. However, enforced expression of A1 alone 
only confers partial protection to BCR-activated c-rel–/– 
cells,60 indicating that A1 and Bcl-xL serve distinct survival 
roles. That A1 and Bcl-xL have distinct roles in BCR-acti-
vated cell survival is supported by their kinetics of induc-
tion in these cells. A1 expression is rapidly induced with 

kinetics that coincide with the initial nuclear induction of 
c-Rel, whereas Bcl-xL expression is delayed, instead track-
ing with the second wave of nuclear c-Rel expression 
observed in mitogen-activated B cells.55 Different survival 
roles for A1 and Bcl-xL in B cell activation could involve 
A1 protecting cells from apoptosis during cell cycle entry 
(G0-to-G1 transition), whereas Bcl-xL may protect B cells 
later in the cell cycle or during DNA rearrangement events 
linked to isotype switching.

Mitogenic activation, in conjunction with cytokine sig-
nals such as IL-4 or IFN-γ, promotes isotype switching in a 
process whereby the assembled V

H
 gene is expressed in 

conjunction with Cµ and different C
H
 regions. This process 

uses nonhomologous DNA rearrangement between regions 
of repetitive sequence (switch or S-regions) that flank Cµ 
and downstream C

H
 genes. TLR4 and cytokine signals spe-

cifically target different C
H
 genes for rearrangement by 

using transcription to allow the switch recombination 
machinery access to the S-regions upstream of targeted C

H
 

loci. A 3′IgH enhancer located downstream of the C
H
 locus 

also controls isotype switching, albeit via mechanisms that 
remain to be determined. c-Rel is necessary for efficient 
switching to IgG1 and IgE,46 with c-Rel promoting S-region 
transcription prior to DNA rearrangement.63,64 c-Rel inter-
action with the 3′IgH enhancer65 may also contribute to the 
efficiency of the switching process. Although DNA rear-
rangement during switching depends on B cell prolifera-
tion, a general role for c-Rel in B cell division is difficult to 
reconcile with the differential impact that the loss of c-Rel 
has on switching to specific isotypes. However, a genome-
wide scan has shown that c-Rel is enriched on DNA at sites 
of recombination.66

Role of c-Rel in Human Disease
REL as a susceptibility locus in human immune diseases. 

Multiple reports have recently linked SNPs (single-nucleo-
tide polymorphisms) within or near the REL locus with an 
increased susceptibility to certain human autoimmune dis-
eases and cancer. These REL-associated diseases include 
rheumatoid arthritis,67-69 celiac disease,70 psoriasis,71 ulcer-
ative colitis,72 primary sclerosing cholangitis,73 and B cell 
lymphoma74 (Table 4).

The 2 REL polymorphisms associated with increased 
susceptibility to autoimmune disease are located within 
REL introns: one within intron 4 has been linked to rheuma-
toid arthritis and Crohn’s disease, whereas the SNP in intron 
2 is associated with celiac disease. If these SNPs are rele-
vant to these human diseases, their presence within REL 
introns implies that altered REL transcription or mRNA 
maturation increases susceptibility to autoimmune disor-
ders. In one study of potential celiac disease patients, the 
REL polymorphism did correlate with increased REL pro-
tein expression.227 However, the ability to find a change in 
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REL expression that is associated with these SNPs is com-
plicated by not knowing the cell type or the stage in disease 
development (initiation or maintenance) for which a change 
in REL expression is important. For example, although 
c-Rel has been shown to be required in mouse models of 
arthritis,75 the relative contribution of c-Rel expression in 
immune infiltrates (T cells, neutrophils, and eosinophils) 
versus stromal cells is unclear. Even though c-Rel expres-
sion is perceived as being strictly linked with hematopoietic 
cells, it is also normally expressed at low levels in endothe-
lial and epithelial cells. In the case of skin epithelium, the 
loss of NF-κB activity of which c-Rel is one component 
leads to the development of potent inflammatory skin 
lesions,76 highlighting the possibility that a loss or reduc-
tion of c-Rel expression in certain cell types, including  
epithelial cells, increases susceptibility to autoimmune 
disease.

If these REL polymorphisms do alter REL protein 
expression, one might guess that their impact on autoim-
mune disease is due to a change in the expression of REL 
target genes or to the altered expression of non-REL targets 
arising from an overall imbalance in the NF-κB complexes 
caused by a change in REL levels. Furthermore, the pene-
trance of REL SNPs in the susceptibility to autoimmune 
disease will almost certainly be influenced by multiple loci. 
The finding that tnfaip3, which encodes the de-ubiquitinase 
A20, a key terminator of NF-κB signaling, is another  
rheumatoid arthritis and celiac disease–associated locus77 
indicates that polymorphisms in the NF-κB pathway are 
likely to become increasingly important in human disease 
susceptibility.

Role of c-Rel in Lymphoid Cell Cancer
In vitro transformation of lymphoid cells. Based on the abil-

ity of the viral oncoprotein v-Rel to transform a variety of 
avian hematopoietic cells in culture,78 it is not surprising 
that chicken, mouse, and human c-Rel also have this trans-
forming activity in primary chicken spleen cell cultures.79,80 

Although full-length versions of chicken and human c-Rel 
can transform chicken lymphoid cells in vitro, their trans-
forming activity is enhanced when either of the 2 C-termi-
nal transactivation domains is removed.4,81 In contrast, 
removal of the entire transactivation domain of c-Rel or 
mutations that abolish DNA binding inactivates c-Rel’s 
transforming activity.4 Taken together, such studies indicate 
that c-Rel must bind to DNA and activate target genes  
to effect transformation and that chronic low-level  
induction of target gene expression—such as occurs with 
certain transactivation domain deletions—is optimal for 
transformation.4,82

In contrast to c-Rel, overexpression of p50, p52, RelB, 
RelA, and a constitutively active version of IKKβ is not 
transforming in avian lymphoid cells.82 However, substitu-
tion of the RelA transactivation domain with that of v-Rel 
can confer transforming activity onto the RelA-v-Rel 
hybrid, even though the reciprocal hybrid protein (v-Rel-
RelA) cannot transform chicken lymphoid cells.82 This 
result suggests that the unique ability of c-Rel to transform 
avian lymphoid cells in culture resides in its C-terminal 
transactivation domain. Nevertheless, there is clearly flexi-
bility in the type of transactivation domain that can induce 
avian lymphoid cell transformation when fused to an appro-
priate RHD, given that there is only about 10% sequence 
identity between the transactivation domains of chicken 
and human c-Rel and that the herpes virus activator protein 
VP16 can also substitute for the REL transactivation domain 
in transforming assays.4

There have been no reports of v-Rel or c-Rel being able 
to transform mouse lymphoid cells in culture. Overexpres-
sion of a human REL mutant (RELΔTAD1) missing one 
transactivation domain can, however, enhance the onco-
genic properties of the human B lymphoma cell line 
BJAB.83 Furthermore, RELΔTAD1 changes the GCB-like 
mRNA expression profile of BJAB cells into one more sim-
ilar to the ABC-like DLBCLs, including increasing the 
expression of REL targets such as BCL2, IRF4, and miR-
155,83 as well as reducing the expression of the GCB-like 
marker CD10.84 These results provide strong support for 
REL contributing to oncogenesis in human B cells.

REL gene amplifications in human B and T cell malignancies. 
The REL gene is located at human chromosomal position 
2p16.1-15, which is a common site of gene amplification in 
a variety of B and T cell malignancies (Table 5). Among B 
cell lymphomas, amplifications of REL have been found at 
relatively high frequency in Hodgkin’s lymphoma (~46%) 
and non-Hodgkin’s B cell lymphomas, such as diffuse large 
B cell lymphoma (DLBCL) (~15%), Burkitt’s lymphoma 
(~7%), and follicular (~17%) and mediastinal (~21%) lym-
phoma. At least for DLBCL, REL appears to be the only 
gene in the minimally amplified region.85 In one follicular 
lymphoma, double minute chromosome amplification of 

Table 4. Association of REL Alterations with Human Disease

Disease Changes

Celiac disease SNPa

Inflammatory bowel disease SNP
Psoriasis SNP
Rheumatoid arthritis SNP
Sclerlosing cholangitis SNP
Leukemia/lymphoma Gene amplification, chromosomal  

rearrangement, mutation, SNP
Oral carcinoma Gene deletion, gene amplification
Metastatic lung cancer Gene amplification

aSNP = single-nucleotide polymorphism associated with the disease.
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REL has also been reported.86 Overall, REL gene amplifica-
tions occur primarily in lymphomas with a mature B cell 
phenotype, which corresponds to the stage in development 
where c-Rel plays a major role in normal B cell function. 
Surprisingly, only one B lymphoma cell line has been 
reported to have REL gene amplification.87 REL gene 
amplifications have also been found in some leukemias 
(chronic lymphocytic leukemia) and T cell lymphomas 
(peripheral T cell, anaplastic large cell, natural killer).

Gene expression profiling studies indicate that increased 
NF-κB target gene expression and sensitivity to NF-κB 
pathway inhibitors can be used to classify one class of 
aggressive DLBCL—namely, the so-called activated B 
cell–like (ABC) DLBCL.88,89 Curiously, REL gene amplifi-
cations have been reported in one study to be confined to 
the germinal center B (GCB) subtype of DLBCL, which 
does not have particularly high NF-κB target gene expres-
sion and is generally resistant to NF-κB inhibitors.90,91 The 
restriction of REL gene amplifications to GCB-like DLBCL 
led Shaffer et al.92 to suggest that increased REL activity, as 
provided by REL gene amplification, is required at an early 
initiation stage of GCB DLBCL development but not for 
late-stage maintenance of tumor cell growth. However, 
independent analyses of DLBCL samples have found REL 
gene amplifications equally distributed among both the 
ABC and GCB molecular subtypes93,94 and have suggested 
that REL amplifications are more strongly associated with 
MYC gene rearrangements than with either the ABC or 
GCB subtype.94 Alternatively, REL gene amplification may 
be required for GCB-like DLBCL cell growth in vivo but 
not in vitro. Of note, there are no human DLBCL cell lines 
with high-level REL gene amplification, indicating that 
high-level REL gene/protein expression may be incompati-
ble with in vitro DLBCL cell growth. Indeed, in some situ-
ations, high-level expression of REL can induce cell cycle 
arrest.95 Overall, the frequency of REL gene amplification 
in human lymphoma is striking; nevertheless, the role that 
REL gene amplification plays in DLBCL is still not entirely 
clear.

REL gene rearrangements and point mutations in B cell lym-
phoma. Experiments in chickens and mice established that 
the c-rel gene could be activated by retroviral insertional 
mutagenesis in B cell lymphoma.96-98 REL gene rearrange-
ments and mutations have also been detected in human B 
lymphoma samples and cell lines. The RC-K8 DLBCL cell 
line has a large deletion on chromosome 2, which results in 
the expression of a chimeric REL protein (REL-NRG) in 
which the REL DNA-binding/dimerization domain is fused 
to sequences of unknown function (Non-Rel-Gene).99,100 
Similarly, in one Hodgkin’s lymphoma sample, a genomic 
alteration near the 3′ end of REL results in the expression of 
a C terminally truncated REL protein that is constitutively 
nuclear.101 In another Hodgkin’s lymphoma sample, REL is 

translocated to a position near the light chain enhancer,102 
and in a third Hodgkin’s lymphoma cell line, an EBV 
genome has integrated near to REL, resulting in increased 
REL mRNA expression.103 Lastly, a point mutation that 
converts Ser-to-Pro at amino acid 525 within the transacti-
vation domain of REL has been detected in 2 human B cell 
lymphomas.12 In one lymphoma patient, the S525P muta-
tion is a germ-line mutation, suggesting that it is a predis-
posing mutation for lymphoma. The REL-S525P protein 
shows increased transforming ability in chicken spleen 
cells and altered transactivation properties.12 It would not 
be surprising if other human B cell lymphomas, with or 
without REL gene amplification, have activating mutations 
in REL, especially given that a variety of point mutations 
and deletions within the REL transactivation domain can 
enhance the in vitro transforming activity of REL.4,104

Of particular interest, the RC-K8 DCLBL cell line has 
(at least) 4 mutational events that affect the REL/NF-κB 
pathway: (1) a deletion that results in the expression of the 
chimeric REL-NRG protein99,100; (2) inactivating mutations 
in the gene encoding IκBα105; (3) inactivating mutations in 
A20, an upstream negative regulator of NF-κB signal-
ing106,107; and (4) a disabling mutation in the REL transcrip-
tional co-activator p300.108,109 As a consequence of these 
mutations, RC-K8 cells contain high levels of nuclear κB 
site DNA-binding complexes consisting of wild-type REL 
and REL-NRG, and several REL target genes, including 
BCL-x, TRAF1, Bfl-1/A1, and ICAM-1, are expressed at 
high levels.105 Reexpression of IκBα blocks the prolifera-
tion of RC-K8 cells.105 On the basis of these findings, it has 
been proposed that constitutive REL-directed gene expres-
sion is required for the growth and survival of RC-K8 cells 
and that this chronic gene induction is tuned to an optimal 
oncogenic level by cooperation with nonactivating REL-
NRG dimers and defective p300 protein.108

REL mRNA and protein expression in B cell lymphoma. The 
findings described above suggest that the aberrant and 
chronic REL-induced gene expression seen in B cell lym-
phoma leads to enhanced mature B cell proliferation and 
survival. In some cases, this simple hypothesis is supported 
by experimental data. For example, many REL target genes 
are overexpressed in de novo DLBCLs,110 and increased 
REL mRNA expression has been correlated with a poorer 
prognosis in splenic marginal B cell lymphoma.111 More-
over, down-regulation of REL expression by siRNA or 
chemical inhibitors has been shown to block B cell lym-
phoma growth.112 However, Kluiver et al.113 did not find a 
correlation between REL amplification and high-level REL 
mRNA expression in classical Hodgkin’s lymphoma.

REL protein expression or nuclear activity in primary 
human B cell lymphomas has been less thoroughly ana-
lyzed than REL mRNA expression. Curry et al.114 analyzed 
68 newly diagnosed DLBCL samples and found that 65% 
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showed nuclear REL expression. Moreover, those patients 
with nuclear REL and the GCB-like gene expression profile 
had a worse overall survival. Houldsworth et al.93 did not 
find a correlation between nuclear REL expression and REL 
gene amplification—that is, some DLBCL samples with 
high-level REL gene amplification had less nuclear REL 
staining than some DLBCL samples with no REL gene 
amplification. Enhanced nuclear REL staining has, however, 
been reported to be a marker for certain types and stages of B 
cell lymphoma, as nuclear REL staining was reported in 
~85% of Reed-Sternberg cells of classic Hodgkin’s lym-
phoma,115 in a majority of Hodgkin’s-like large cell lym-
phoma,116 and in mediastinal large B cell lymphoma.117,118 
Furthermore, Rodig et al.119,120 presented data indicating that 
nuclear REL staining and high-level expression of the adap-
tor protein TRAF1, a possible REL target gene product, can 
be used to distinguish classical Hodgkin’s lymphoma cells 
from other types of B cell lymphomas, such as anaplastic 
large cell lymphoma, lymphocyte-predominant Hodgkin’s 
lymphoma, and nonmediastinal DLBCL. Nevertheless, 
given that c-Rel complexes are normally in the nucleus of 
mature B cells, one cannot determine by immunolocalization 
whether nuclear REL staining in specific human B cell lym-
phomas is driving malignancy or is simply a marker for the 
developmental stage of the given tumor.

REL in nonlymphoid cancers. Alterations in the REL gene 
or REL protein activity have been detected in nonlymphoid 
human cancers. Amplification of the gene encoding IKKε 
occurs in many breast cancers, and the resultant increased 
IKKε activity leads to enhanced nuclear accumulation  
of REL.121 Similarly, transgenic mice in which c-Rel  
is expressed from a mammary cell–specific promoter 
develop mammary tumors.122 In one study, REL gene 

deletions were detected in 7 of 7 oral carcinomas,123 but 
REL amplifications were found in these cancers in another 
study.124 REL gene amplifications have also been found in 
about 10% of metastatic lung cancers.125 In cell-based stud-
ies, inhibition of c-Rel by shRNA slowed lung cancer cell 
growth126 and decreased REL protein expression correlated 
with reduced pancreatic cancer stem cell growth in a com-
bination drug treatment regimen.127 Finally, nuclear REL 
staining was seen in 50% of endometrial cancer samples128 
and is enhanced in retinoblastomas129 and a mouse squa-
mous cell epithelial cancer model.130

Modulation of REL Activity  
for Therapeutic Purposes
Given the role of REL in human cancer and autoimmune 
disease, modulation of REL activity or its transcriptional 
output could provide a therapeutic target. That inhibition of 
REL activity might prove a relevant strategy is bolstered by 
the facts that c-Rel expression is generally restricted to 
immune cells and that c-Rel knockout mice are fully viable 
(see above). Indeed, siRNA-mediated inhibition of c-Rel can 
block the growth of certain mouse B lymphoma cells,112 
and knockdown of c-Rel can affect lung cancer cell growth 
in vitro.126 Moreover, c-Rel knockout mice show increased 
resistance to experimentally induced arthritis.75

In principle, specific inhibition of c-Rel could be 
achieved by down-regulation of c-Rel expression (e.g.,  
by siRNA), by inhibition of a protein that is required  
for c-Rel expression or activity, or by inhibition of c-Rel 
transactivation activity (see Table 6). One compound with 
anti-inflammatory activity in clinical trials (STA-5326) has 
been reported to be a selective inhibitor of c-Rel nuclear 
translocation.131 Also, the immunosuppressant FK506 can 

Table 5.  REL Gene Amplification in Human Lymphoma/Leukemia

Lymphoma/Leukemia Type % Amplified REL (Total Cases Analyzed) References

B cell malignancies
  Hodgkin’s 46 (175) 101, 188-192
  DLBCL 15 (1379) 90, 91, 94, 118, 193-207
  Follicular 17 (310) 99, 193, 197, 208-212
  Primary mediastinal 21 (136) 91, 118, 199, 202, 213, 214
  Cutaneous B cell 63 (31) 215
  CLL 5 (525) 193, 211, 216-219
  Lymphoplasmacytic 10 (10) 211
  Burkitt’s 7 (45) 193, 220, 221
  Marginal zone 7 (42) 195, 211
  Pythorax associated 28 (7) 198
T cell malignancies
  Peripheral T cell 11 (47) 222
  Cutaneous CD30+ anaplastic large cell 75 (8) 223
  Natural killer T cell 40 (5) 224

CLL = chronic lymphocytic leukemia; DLBCL = diffuse large B cell lymphoma.
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specifically block c-Rel nuclear translocation in some cell 
systems.132,133 Direct inhibitors of c-Rel activity have not 
been identified. Given the similarity within the RHD 
between REL and other NF-κB family members, it is 
unlikely that sequences within the RHD could provide a 
specific therapeutic target; however, the REL transactiva-
tion domain, which is required for REL’s oncogenic and 
immune cell functions, might provide a specific target for 
inhibition. Finally, induction of REL activity could serve as 
a means of inducing Treg cell development to suppress 
autoimmune disease.

Concluding Remarks
c-Rel is an important component of the mammalian immune 
system, especially in terms of its roles in the development 
of regulatory T cells and in the regulation of mature T and 
B cell proliferation (Fig. 2). Moreover, the REL gene and its 
downstream pathway are altered in many T and B cell 
malignancies and autoimmune diseases. It seems likely that 
future genome-wide mutational screenings of other human 
lymphoid cell malignancies, with or without REL gene 
amplification, will uncover mutations in REL. Therefore, 
direct or downstream inhibitors of REL signaling may have 
therapeutic uses in human immune cell diseases.
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