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There has recently been a resurgence of interest in the 
metabolism of cancer cells.1,2 A mechanistic understanding 
of the regulation of these metabolic pathways may lead to 
new strategies for cancer therapy and/or prevention. Otto 
Warburg first reported in the 1920s that cancer cells display 
altered metabolism.3 He showed that most cancer cells, 
unlike normal cells that derive their adenosine triphosphate 
(ATP) from mitochondrial oxidative phosphorylation, gen-
erate the majority of their ATP by glycolysis, regardless of 
the availability of oxygen. Thus, cancers exhibit elevated 
uptake of glucose and produce large amounts of lactate. 
More recently, it has been shown that unlike nonlipogenic 
normal cells that preferentially derive fatty acids from the 
diet via the circulation, cancer cells derive their supply of 
fatty acids from de novo synthesis.4 Thus, nontransformed 
cells express only low levels of fatty acid synthase (FAS), 
whereas most cancer cells express high levels of this 
enzyme.

Specificity protein 1 (Sp1), one of the first eukaryotic 
transactivators to be identified, is now known to be a mem-
ber of the large multigene family of Sp/Kruppel-like factor 
(KLF) transcription factors (at least 20 in mammals).5,6 
These proteins share a highly conserved DNA binding 
domain. Through 3 adjacent C

2
H

2
-type zinc fingers at the 

C-terminus, they bind to GC boxes, CACCC boxes (also 
called GT boxes), and basic transcription elements, collec-
tively known as “‘Sp1 sites.” Sp/KLF proteins are subject 
to a number of posttranslational modifications including 
phosphorylation, glycosylation, and acetylation, enabling 
fine tuning of the regulation of gene transcription. Sp1 
through Sp4 form a subgroup that contains glutamine-rich 
transactivating domains (TADs). Sp1, Sp3, and Sp4 have 2 

TADs, whereas Sp2 has only 1 such domain and exhibits 
different DNA binding specificity. Sp5-9 are structurally 
similar but lack N-terminal glutamine-rich TADs. Sp1 and 
Sp3 are expressed ubiquitously, whereas Sp4 is expressed 
primarily in neural cells. Numerous mammalian genes are 
regulated by Sp proteins, often in cooperation with other 
transcription factors, and Sp proteins play important roles 
in a variety of physiological processes including cell cycle 
regulation and growth control, hormonal activation, apop-
tosis, and angiogenesis.5,6 Sp1 generally activates gene 
transcription, whereas Sp3 has both transcriptional repres-
sor and activating properties. These activities depend on the 
promoter context, the cellular background, epigenetic fac-
tors, and interactions with other nuclear proteins.7,8 A vari-
ety of cancers have been shown to overexpress Sp proteins, 
particularly Sp1 and to a lesser extent Sp3 and Sp4.7 Sp 
proteins are known to play a role in the regulation of mul-
tiple oncogenes and tumor suppressor genes as well as a 
number of cell cycle, apoptosis, and angiogenesis genes.5,7 
Here, the evidence will be reviewed for a role for Sp tran-
scription factors, primarily Sp1 and Sp3, possibly in con-
junction with the constitutive activation of the PI3K/Akt 
signaling pathway, in regulating the abnormal glycolytic 
and lipogenic activity of cancer cells.
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Abstract
Cancer cells exhibit altered metabolism characterized by the generation of adenosine triphosphate by glycolysis and generation of fatty acids by de novo 
synthesis. The majority of genes involved in these pathways have binding sites for specificity protein (Sp) transcription factors in their promoters. Studies 
showing that Sp transcription factors, particularly Sp1, are involved in the regulation in cancer cells of hexokinase, pyruvate kinase, lactate dehydrogenase, 
fatty acid synthase, and hypoxia-inducible factor-1α are reviewed. Glycolysis and lipogenesis in cancers are also known to be stimulated by the constitutive 
activation of the PI3K/Akt signaling pathway. Evidence is presented for the notion that Sp transcription factors may act in concert with Akt to regulate 
the abnormal metabolism of cancer cells.
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Glycolysis

The glycolytic pathway involves the metabolism of glucose 
to 2 molecules of lactate with a net gain of 2 molecules of 
ATP. The enzymes involved are illustrated in Fig. 1. How 
the metabolic requirements of proliferating cancer cells are 
fulfilled by glycolysis has been reviewed recently.9 Since 
normal mitochondrial respiration cannot occur without 
oxygen, tumor hypoxia will cause a shift to glycolysis. 
Tumor cells, however, carry out aerobic glycolysis and, 
indeed, switch to glycolysis before hypoxia develops. The 
reactions catalyzed by hexokinase, phosphofructokinase, 
and pyruvate kinase are the major sites of regulation of gly-
colysis. These 3 reactions are exergonic and physiologi-
cally irreversible.

Hexokinase
Of the 4 mammalian hexokinases, type II (HKII), which is 
bound to the outer mitochondrial membrane, is frequently 
expressed at levels more than 100-fold higher in rapidly 
growing tumors than in nontransformed cells.10,11 HKII is 
often the major isoform overexpressed and is required to 
maintain high levels of glycolysis. Indeed, the hyperactivity 
of HKII in tumors is the basis of positron emission tomog-
raphy that is used for cancer detection.10

Most of our knowledge of the regulation of HKII in can-
cer has come from studies in rat tumors. In highly glyco-
lytic rat hepatomas, gene amplification12 and promoter 

activation13 have been shown to contribute significantly to 
HKII overexpression. Using rat hepatoma cells cultured in 
medium containing a serum supplement and glucose to 
simulate conditions in a well-vascularized tumor or within 
the peritoneal cavity, Lee and Pedersen,10 using reporter 
gene assays, showed that a short segment of the promoter 
(–281 to –35 of the proximal region) contributes most to 
activation of HKII. They showed that 4 GC boxes, a CCAAT 
box, an inverted CCAAT box, and a cAMP-response ele-
ment (CRE) are involved in promoter activation. Electro-
phoretic mobility shift assays (EMSAs) demonstrated 
binding of Sp1, Sp2, and Sp3 to 2 of the GC boxes and 
binding of Sp1 and Sp2 to the other 2 boxes. In addition, 
Lee and Pedersen10 showed that NF-Y bound to the CCAAT 
box, and cAMP-response element-binding protein (CREB), 
activating transcription factor-1 (ATF1), and cAMP-
response element modulator (CREM) bound to the CRE. 
Transfection studies showed that Sp1, Sp2, Sp3, CREB, 
and NF-Y are promoter activators that probably contribute 
to HKII overexpression in cancers.

Phosphofructokinase
6-phosphofructo-1-kinase (PFK-1) is the major rate-limiting 
step of glycolysis. Three isoforms of mammalian PFK-1 
encoded by different genes have been identified P (high lev-
els in brain), M (only form in muscle), and L (major form in 
liver). PFK-1 activity is controlled by the intracellular ATP/
AMP ratio—high levels of ATP inhibit PFK-1 activity. 
Fructose 2,6-bisphosphate (F2,6BP) is a powerful allosteric 
regulator that acts by increasing the affinity of PFK-1 for 
fructose 6-phosphate and decreasing the inhibitory effect of 
ATP.14 The bifunctional enzyme 6-phosphofructo-2-kinase/
fructose-2,6-bisphosphatase (PFK-2/FBPase) determines 
the steady-state concentration of F2,6BP. PFK-2/FBPase is 
expressed in several tissue-specific isoforms encoded by at 
least 4 genes (PFKB1-4) that are all stimulated by hypoxia 
through hypoxia-response elements in their promoters.15

PFK-1 is known to be expressed in human lymphomas 
and gliomas,16,17 and PFK-1 activity is higher in breast cancer 
metastases than in the primary tumors.18 Expression of the 
PFK-1L isoform has been shown to correlate with the glyco-
lytic activity of human breast cancer cell lines19 and is prefer-
entially expressed in gliomas.17 A number of cancer cell lines 
produce elevated levels of F2,6BP compared with normal 
cells, suggesting that PFK-2/FBPase is activated or overex-
pressed.20 PFKFB3 is known to be highly expressed and play 
an important role in the metabolic regulation of human can-
cers and cancer cell lines.21,22 Likewise, PFKFB4 is overex-
pressed in several tumors, including breast tumors.23

There are no reports of the involvement of Sp transcrip-
tion factors in the expression of PFK-1 in cancer. However, 
PFK-1P is highly abundant in brain, and the PKF-1P gene 

Figure 1. Overview of glycolysis and lipogenesis pathways. Genes 
known to be regulated by Sp transcription factors are shown in bold; 
proteins known to be aberrant in cancer cells are italicized. *Aldolase, 
glyceraldehyde-3-phosphate dehydrogenase, phosphoglycerate kinase, 
phosphoglycerate mutase, enolase. ATP = adenosine triphosphate; CoA = 
co-enzyme A; TCA = tricarboxylic acid.
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has been shown to contain 7 Sp binding sites in its pro-
moter.24 Sp1 and Sp3 were shown to bind to most of these 
sites, and deletion and mutation analysis suggested that 
they contribute positively to promoter activity. The exis-
tence of an Sp1 binding site in a promoter, however, does 
not necessarily imply that an Sp family member is involved 
in the regulation of that gene. Indeed, the promoter of the 
human placental form of PFK-2/FBPase contains Sp1 
binding sites that appear not to be essential for transcription 
of the gene.25

Pyruvate Kinase
Pyruvate kinase (PK) is the final rate-limiting step of gly-
colysis. In mammals, there are 4 PK isoforms (L, R, M1, 
and M2) encoded by 2 genes, PKL encoding the L and R 
isoforms and PKM encoding the M1 and M2 isoforms. PKL 
and PKR are mainly expressed in liver and red blood cells. 
PKM1 is expressed mainly in muscle and brain, whereas 
PKM2 is expressed during embryonic development.26 Both 
the rat and human genes contain 12 exons and 11 introns, 
exons 9 and 10 containing sequences specific to the M1 and 
M2 isoforms, respectively.27 It appears, therefore, that  
tissue-specific, mutually exclusive, alternative splicing 
selects exons 9 and 10 to produce the 2 isoforms from a 
common primary transcript.28 In contrast to differentiated 
cells, proliferating tumor cells express exclusively PKM2.26 
Indeed, it has recently been shown that switching PKM2 
expression to PKM1 in tumor cells reverses the Warburg 
effect and reduces the ability of the cells to form tumors in 
nude mice, indicating that PKM2 expression is necessary 
for aerobic glycolysis and maximal tumor growth.26 It has 
also recently been shown that tyrosine kinase signaling 
regulates PKM2 activity.29

The 5′-flanking region of the human PKM gene contains 
putative Sp1 binding sites.27 A series of studies in rat thy-
mocytes30 showed that the PKM promoter has 5 Sp binding 
sites, 3 of which were functional in transfection assays and 
were stimulated by Sp1 and Sp3. In rat hepatoma cells that 
have high glycolytic activity, glucose treatment caused 
increased binding of Sp1 to its consensus sequence because 
of its dephosphorylation, resulting in the transcriptional 
activation of PKM.31 The same mechanism of transcrip-
tional activation was also reported for aldolase A. Disher  
et al32 showed that transient transcription of a reporter gene 
directed by the PKM promoter was activated when trans-
fected myocytes were exposed to hypoxia. The promoter, 
however, does not contain a hypoxia-inducible factor-1 
binding site, and the hypoxia response was localized to a 
conserved GC-rich element that bound Sp1 and Sp3. 
Hypoxia caused depletion of Sp3, whereas Sp1 levels 
remained unchanged, suggesting that hypoxia activates 
PKM by down-regulating Sp3, thereby removing its tran-
scriptional repression.

Other Genes of the Glycolytic Pathway

A number of other genes in the glycolytic pathway have 
been shown to have Sp1 sites in their promoters. including 
human glucose phosphate isomerase,33 rat and human 
aldolase A,30,31,34 and aldolase C35,36 and the following 
human genes: phosphoglycerate kinase-137 and phosphoglyc-
erate kinase-2,38 α-enolase,39 β-enolase,32 and enolase-3.40 
The actual involvement of Sp1 in the regulation of these 
genes, however, appears not to have been investigated. Fur-
thermore, a number of them are expressed in a tissue-spe-
cific manner. Recently, the human testis-specific lactate 
dehydrogenase c gene (hLdhc), which is highly expressed 
in human lung cancer, melanoma and breast cancer,41 was 
shown to be regulated in cancer cells by Sp1 as well as by a 
CRE and CpG island methylation.42

Lipogenesis
Cellular synthesis of long chain fatty acids involves the 
rate-limiting conversion of acetyl–co-enzyme A (CoA) into 
malonyl-CoA by the enzyme acetyl-CoA carboxylase 
(ACC), followed by the FAS-catalyzed condensation of 1 
mole of acetyl-CoA and 7 moles of malonyl-CoA to form 1 
mole of palmitate; ATP citrate lyase (ACL) catalyzes the 
conversion of citrate to acetyl-CoA, thereby linking gly-
colysis and lipogenesis (Fig. 1).

Fatty Acid Synthase
FAS is down-regulated in most normal human tissues by 
the uptake of circulating fatty acids from the diet. Highly 
proliferating cancer cells derive their fatty acids for mem-
brane production and posttranslational modification of pro-
teins from elevated, deregulated de novo synthesis.43 
Inhibition of FAS suppresses cell proliferation and tumor 
growth in xenograft models of breast and ovarian cancers 
and pleural mesothelioma44-46 and suppresses growth and 
induces apoptosis in various cancer cell lines.43 Overex-
pression of FAS has been shown in numerous cancers, 
including those of the prostate, ovary, colon, lung, endome-
trium, and stomach.4 Furthermore, poor prognosis is often 
associated with elevated FAS expression.4

Control of expression of the FAS gene in lipogenic tissues 
such as liver and adipose tissue by dietary and hormonal sig-
nals is accomplished via several transcription factors that are 
known to bind to defined regions within the FAS promoter. 
These include SREBP-1c, Sp1, and NF-Y.47,48 SREBP-1c is a 
relatively weak transcriptional activator but functions effi-
ciently in concert with NF-Y and Sp1.47

A recent report suggests that Sp1 plays a role in regulat-
ing both proliferation and de novo lipogenesis in cancer 
cells.49 In MCF-7 human breast cancer cells transfected 
with Sp1 small interfering (siRNA), decreased Sp1 levels 
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were associated with a decrease in growth rate and CDC25A 
expression with an inhibition of G1/S transition and S phase 
progression. FAS expression was also significantly sup-
pressed in the transfected cells. Although Sp3 and Sp4 were 
shown to inhibit proliferation and CDC25A expression in 
MCF-7 cells, FAS expression was not affected. Treatment 
of MCF-7 cells with mithramycin, a compound that is 
known to block GC-rich promoter regions and suppress 
Sp1 activity,50 decreased proliferation and inhibited 
CDC25A and FAS expression. Using chromatin immuno-
precipitation (ChIP) assays, the investigators showed that 
Sp1 binding to the promoters of both CDC25A and FAS 
genes was significantly inhibited by mithramycin.

Many reports show that SREBP-1c regulates FAS 
expression in normal cells47 as well as cancer cells.51 Deng 
et al,52 however, showed that insulin-stimulated SREBP-1c 
expression in rat hepatocytes is mediated by Sp1. In MCF-7 
cells, transfection with Sp1 siRNA or treatment with mith-
ramycin suppressed SREBP-1c expression, suggesting that 
Sp1 regulates FAS by a dual mechanism involving SREBP-
1c and direct binding.49 Neither Sp3 nor Sp4 siRNAs 
affected SREBP-1c.

It is well documented that Sp1 mediates gene expression 
in response to various hormones.53 Lu and Archer49 showed 
that MCF-7 cells treated with estradiol increased their 
expression of CDC25A and FAS with increased binding of 
Sp1 to the promoters of the 2 genes, without any increase in 
the expression of Sp1. Swinnen et al54 showed that andro-
gens stimulate the expression and activity of FAS in LNCaP 
cells via the androgen receptor (AR). Since the AR and Sp1 
can complex with each other, recruiting co-activators and 
general transcription factors,55 it seems likely that androgen 
stimulation of FAS involves Sp1.

In an extension of their studies, Lu and Archer49 investi-
gated whether Sp1 plays a role in regulating FAS expres-
sion and proliferation in colon and prostate cancer cells. 
Treatment of colon cells with Sp1 siRNA inhibited prolif-
eration as well as FAS and SREBP-1c expression but not 
CDC25A expression. In prostate cells, Sp1 siRNA treat-
ment suppressed proliferation and FAS and CDC25A 
expression but not SREBP-1c expression. These results 
indicate cell type specificity in the actions of Sp1. Overall, 
the studies of Lu and Archer suggest that Sp1 may coordi-
nately regulate fatty acid synthesis and proliferation in can-
cer cells.

Another report links FAS and Sp1, albeit somewhat indi-
rectly, in cancer cells. Choi et al56 showed that the transcrip-
tion factor/proto-oncogene FBI-1 (Pokemon/ZBTB7A) and 
SREBP-1 synergistically activate transcription of FAS. 
Electrophoretic mobility shift and ChIP assays showed that 
SREBP-1, Sp1, and FBI-1 bind to the GC and SRE boxes of 
the FAS promoter. Binding competition among the 3 tran-
scription factors appears to be important in the transcrip-
tional regulation.

ATP Citrate Lyase and Acetyl-CoA Carboxylase
In addition to elevated FAS, elevated ACC and ACL expres-
sion and activity have been reported in cancer cells.57 Sp1 
sites are known to be present in the promoters of these 
genes.58-60 In Drosophila SL2 cells, Sp1 and Sp3 together 
with SREBP-1 transcriptionally activate ACC and FAS pro-
moters.61 Glucose induces an increase in Sp1 binding to ACC 
in adipocytes by dephosphorylation of nuclear Sp1.59 In 
human hepatoma cells, Sp1 and Sp3 have been shown to play 
an important role in the regulation of ACL by glucose.58

Other Genes Involved in Regulating 
Cancer Cell Metabolism
Glucose Transporters
Although not strictly part of the classical glycolytic pathway, 
glucose transport in the tumor cell is clearly necessary for 
glycolysis to take place. Specific glucose transporters medi-
ate glucose entry into most glucose-sensitive tissues. In a 
wide variety of human tumor samples examined, GLUT1, 2, 
and 5 (fructose transporter) were the main transporters 
detected in 58%, 31%, and 27% of samples, respectively.62,63 
GLUT3 and GLUT12 are overexpressed in some tumors.62 
Transcriptional regulation of the GLUT isoforms involved in 
cancers has not been studied. However, the rat GLUT1 and 
GLUT2 promoters contain Sp1 sites that may be responsible 
for regulation of basal transcription rates in a number of tis-
sues.64,65 It has also been shown that Sp1 and Sp3 bind to the 
mouse GLUT3 gene, Sp1 mediating suppression and Sp3 
mediating activation of expression of this gene in murine 
neuroblasts and trophoblasts.66

Hypoxia-Inducible Factor-1α (HIF-1α)
HIF-1α is a transcription factor that is an important regula-
tor of the response of tumors to hypoxia, including resis-
tance to apoptosis and increased angiogenesis. Importantly, 
HIF-1α increases the expression of a number of genes that 
encode glycolytic enzymes67 as well as GLUT1,68 and in 
human breast cancer cell lines, the FAS gene is up-regulated 
by phosphorylation of Akt followed by activation of HIF-
1α then induction of SREBP-1.69

The HIF-1α promoter contains binding sites for several 
transcription factors, including Sp1.70 Koshikawa et al71 
showed that the constitutive up-regulation of HIF-1α in 
highly metastatic mouse Lewis lung carcinoma cells is 
abolished by mithramycin, although luciferase reporter and 
ChIP assays showed that Sp1 was necessary but not suffi-
cient for HIF-1α mRNA overexpression. In support of these 
observations, Kim and Park72 recently showed that in PC3 
human prostate cancer cells, HIF-1α transcription is depen-
dent on Sp1. Thus, HIF-1α transcription was suppressed in 
cells treated with mithramycin and enhanced HIF-1α 
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transcription was observed in cells treated with trichostatin 
A, which induces Sp1 activation.73 Kim and Park also  
found that siRNA knockdown of mitochondrial NADP+-
dependent isocitrate dehydrogenase (IDPm) suppressed 
hypoxia-induced stimulation of HIF-1α in PC3 cells. In 
cells transfected with an Sp1-responsive luciferase reporter 
gene, knockdown of IDPm inhibited Sp1-mediated lucifer-
ase activity, providing further evidence that HIF-1α tran-
scription is dependent on Sp1.

Altered Cancer Cell Metabolism May Be 
Mediated by Both Sp Proteins and Akt
Sp proteins are regulated by, or interact with, a number of 
oncogenes and tumor suppressor genes that play a role in 
controlling the metabolic switch caused by malignant trans-
formation.5,6,74 More specifically, glycolysis and lipogene-
sis are known to be stimulated by the constitutive activation 
of the PI3K/Akt signaling pathway that is present in a large 
proportion of human cancers.75,76 Indeed, Akt has been 
shown to be sufficient to stimulate the switch to aerobic 
glycolysis in cancer cells, and their survival and continued 
growth depend on aerobic glycolysis induced by Akt.77 
Likewise, Akt signaling modulates FAS expression in can-
cer cells, at least in part via activation of SREBP-178 and 
possibly in concert with Sp1 (vide supra). Indeed, constitu-
tive activation of the Akt pathway protects against cell 
death induced by FAS inhibitors,79 and, conversely, inhibi-
tion of Akt sensitizes cancer cells to apoptosis induced by 
inhibitors of FAS.80 Overexpression of FAS in prostate can-
cer has been shown to be linked to the phosphorylation and 
nuclear accumulation of Akt.81

The evidence for a role for both Sp1 and Akt in regulating 
the altered metabolism of cancer cells suggests they may be 
mechanistically linked. This notion is supported by a rela-
tively large number of examples in which Sp1 is required for 
the transactivation of various genes in cancer cells by the 
PI3K/Akt pathway. Thus, Mireuta et al82 recently showed 
that IGFBP-2 expression in MCF-7 human breast cancer 
cells is regulated by PI3K/Akt through an Sp1-induced 
increase in transcription. Other examples of an Sp1-Akt link 
include the regulation of β1,4-galactosyltransferase in glio-
mas,83 membrane-type-1 matrix metalloproteinase (MMP-
1) in prostate cancer cells,84 MMP-2 in renal clear cell 
carcinoma cells,85 HIF-1α in Lewis lung carcinoma cells,71 
and the stress-response gene Redd 1 in HeLa cells.86 It seems 
likely, therefore, that the alterations in cell metabolism 
caused by malignant transformation are mediated, at least in 
part, by both Sp1 and Akt.

Conclusions
The majority of genes in cancer cells that are involved in 
the generation of ATP by glycolysis and the abnormal 

generation of fatty acids by de novo synthesis have binding 
sites for Sp transcription factors in their promoters, and 
there is evidence that these transcription factors are involved 
in the regulation of a number of metabolic genes in cancers, 
including hexokinase, pyruvate kinase, lactate dehydroge-
nase, fatty acid synthase, and hypoxia-inducible factor-1α. 
This suggests that Sp proteins play an important role in 
regulating cancer cell metabolism. Glycolysis and lipogen-
esis in cancer cells are known to be stimulated by the con-
stitutive activation of PI3K/Akt signaling, and there is 
evidence for the notion that Sp transcription factors, par-
ticularly Sp1, may act in concert with Akt to regulate the 
alterations in cell metabolism caused by malignant transfor-
mation. Increased understanding of the mechanism by 
which Sp transcription factors, together with Akt, are 
involved in the regulation of human cancer cell metabolism 
may lead to novel therapeutic approaches to control the 
disease.
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