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Nitrate reductase is a central enzyme 
of nitrogen assimilation in plants. 

In a recent work, we have revealed MPK6 
could phosphorylate Arabidopsis NIA2 
at the serine 627 in hinge 2 region, this 
phosphorylation may represent a rapid 
activation mechnism when plant need 
excessive nitrate reduction. Interestingly, 
all eukaryotic NRs have conserved dock-
ing sequence in their FAD domains, 
and many plant NR proteins have the 
conserved MAPK phosphorylation site. 
Those indicated that phosphorylation of 
NR protein by MAP kinase cascade may 
be conserved in different species. We 
noticed that the phosphorylation of S627 
residue by MPK6 have a specially influ-
ence on the NO generation. Although no 
homology of mammalian NOS has been 
identified in high plants, NR may still 
share a similar regulation mechanism 
with mammalian NOS.

Nitrogen assimilation is a vital process 
controlling plant growth and develop-
ment. In high plants, nitrate is the major 
nitrogen source, after taken up into plant 
cells, it must be reduced to ammonia 
for further usage. As the first enzyme in 
nitrate reduction pathway, the nitrate 
reductase (NR, NIA) is critical for regu-
lation of the nitrogen assimilation.1 It is 
well documented that the amount and 
activity of NR is tightly controlled at 
transcriptional and pos-transcriptional 
levels by nitrate, light and CO

2
 levels, 

circadian rhythms, nitrogen and carbon 
metabolites, phytohomones, etc. Post-
translational mechanisms could reversibly 
modulate NR activity within minutes and 
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permit quick responses to environmental 
and cellular metabolism changes, which 
is the dominant regulation mechanism of 
NR activity.

Generally, plant NR protein contains 
three catalytic domains: Mo-molybdopterin 
(Mo-MPT) and interface domain, cyto-
chrome b (Cyt b) domain, and FAD 
and NADH domain. Hinge 1 and hinge 
2 regions are localized between those 
domains and joined them together (Fig. 
1A).1 Emerging evidences have indicated 
that the phosphorylation of hinge 1 and 
hinge 2 regions have dominant influences 
on the NR activity. For example, phosphor-
ylation of hinge 1 region at serine residue 
in Arabidopsis (S534), spinach (S543) or 
tobacco (S521) inhibited NR activities.2-4 
The phosphorylation may coresponding 
to rapidly inactivate NR in response to 
severa1 signals, including dark, decrease 
in CO

2
 levels or increase in cytosolic 

pH.1,3 On the contrary, phosphorylation 
at hinge 2 region showed a positive effect 
on NR activity, site-directed mutagen-
esis of the serine (S627) to aspartic acid, 
which mimic the phosphyorylation form 
of NIA2, caused the increase of NR activi-
ties about 2.5-fold.5 Interestingly, applica-
tion of exgenous reactive oxygen species 
(ROS),5 or accumulation endogenous 
ROS in some condition, cause the rapid 
activation of NR via phosphorylation at 
this site. For example, during light-to-dark 
transitions, release of single oxygen is cou-
pled with activation of NR.6,7 Application 
of exogenous salicylic acid or accumula-
tion of endogenous salicylic acid in rcd1, 
induced the ROS generation, also could 
activate MPK6,8 and increase total NR 
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NIA2 also increased the NO generation 
dramatically in transgenic plants, but this 
modulation have different effects on NR 
activity and NO generation.5 For example, 
overexpression of NIA2 induced the NR 
activity more than eight-fold, but it only 
stimulated the NO generation slightly. 
On the contrary, application of exogenous 
H

2
O

2
 has a stronger effect on NO genera-

tion than NR activity in both wild-type 
and NIA2WT transgenic plants, but not in 
NIA2D and NIA2A plants. A possibility is 
that the phosphorylation of S627 by MPK6 
have a specially influence on the NO gen-
eration activity of NIA2. In mammalian, 
a serine/threonine protein kinase Akt (pro-
tein kinase B) can directly phosphorylate 
endothelial nitric oxide synthase (eNOS) 
on serine 1179 and activate the enzyme, 
leading to NO production.30,31 According 
to this, mpk6 mutant showed lower NO 
accumulation and enhanced lateral root 
development under the application of NO 
donor sodium nitroprusside (SNP) or 
H

2
O

2
. Although no homology of mam-

malian NOS has been identified in high 
plants,32 NR may still share a similar regu-
lation mechanism with mammalian NOS.

extracellular stimuli into intracellular 
responses in yeast and animal cells. In 
plant, MAP kinase also modulates various 
biological progresses. MPK6, one of well-
characterized MAPK in plant, mediated 
innate immunity,12,13 ethylene and jasmi-
nate signaling,14-17 abiotic stresses,18 leaf 
senescence,19 stomotal,20 anther,21 ovule22 
and root development.23 The diverse func-
tion of MPK6 suggested the central role 
of MAPK cascade in intracellular signal-
ing network. Our work indicated the con-
served signaling cascades also involved in 
lateral root development, by modulation of 
NR phosphorylation and NO synthesis.

The primary function of NR to is reduce 
nitrate to nitrite, somehow, it also catalyzes 
the nitric oxide (NO) production.24,25 NO 
generation induced by auxins, abscisic acid 
or stresses are dependent on NR activ-
ity.26-28 Recent works have addressed the 
relationship between mitogen-activated 
protein kinase (MAPK) cascades and NO 
generation in tobacco and Arabidopsis.5,29 
So far, details about the biochemical pro-
gresses and regulatory mechanisms of NR 
dependent NO generation are still largely 
unknown. However, phosphorylation of 

activity.9 Phosphorylation at S627 of NR 
by MPK6 may represent a rapid activa-
tion mechnism when plant need excessive 
nitrate reduction.

Interestingly, phosphorylation by 
MPK6 might be a conserved modification 
mechanism of NR. All eukaryotic NRs 
have conserved docking sequence in their 
FAD domain, which may be necessary for 
recognition of MAP kinase (Fig. 1B).10 
NR proteins in some dicots and monocots 
plant species, including Barssica, tobacco, 
Lotus, rice, Maize, Cichorium and spin-
ach, have the conserved MAPK phos-
phorylation site (SP residue, high lighted 
in Fig. 1B) at hinge 2 region. It has been 
reported that the hinge 2 evolved fastest 
in all domains in NR protein.11 High con-
servation of MAPK recognition and phos-
phorylation site in this region indicates 
the importance of the post-transcriptional 
regulation of NR activation, and the mod-
ulation at hinge 2 region by MAP kinase 
may be responsible for the accurate con-
trol of NR activity under certain internal 
or environmental conditions.

MAP kinase cascades are conserved 
signal transduction cascade that transduce 

Figure 1. maPK phosphorylation site and docking sequence are highly conserved in nr proteins. (a) Sequence model of the arabidopsis nia2 protein, 
phosphorylation sites S534 and S627 were marked. (B) amino acid sequence comparison around the putative maPK phosphorylation site and docking 
sequence (high lighted) of nr in high plants.
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