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ABSTRACT
A long member of the highly repeated long interspersed DNA

family LlMd (for Ll in Mus domesticus) has integrated by
transposition into a target site which lies between the two adult
beta globin genes of mouse. DNA hybridization and nucleotide
sequence analysis show that this target site, which is part of
the single copy DNA flanking the globin genes, is interrupted by
the Ll element in one chromosome but is uninterrupted in both
allelic and ancestral chromosomes. Other large DNA rearrangements
of the region between the two adult beta globin genes are also
associated with these allelic chromosomes, and include insertions
or deletions of both single copy DNA and simple and complex
repetitive DNA. This has caused extensive reorganization of this
intergenic region. However, the distance between the two genes
flanking this region remains conserved, suggesting that the
spacing of the globin genes may be subject to conservative
selection.

INTRODUCTION

A current problem of interest in genetics is to determine

the mechanisms by which intergenic DNA rearrangements might alter

the expression of nearby genes. In this regard we have examined

the kinds of DNA rearrangements that have taken place within a

typical gene cluster, the beta globin locus of the common

laboratory mouse, Mus domesticus.

The molecular cloning and analysis of the globin gene

cluster of two mouse haplotypes, Hbbd and Hbbs, has been

described previously (1,2). Comparison of these allelic gene

clusters has revealed that they are similar in structure over

most of their length, with the exceptions of an insertion of a

repeated sequence nearby an adult-type Hbbd pseudogene (3), and a

region of uncharacterized structural dissimilarities lying
between the two adult globin gene loci (2). Here we report that

the intergenic region between the two adult gene loci contains
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evidence of extensive sequence reorganization. The events which

comprise this reorganization include both a transposition of a

highly repeated mouse sequence into the region, and separate

insertions or deletions of large blocks of repetitive as well as

single copy intergenic DNA. Interestingly, these events have left

the intergenic distance between the adult genes conserved.

The transposition event we describe here involves a member

of a major family of mouse long interspersed sequences called

LlMd (for Ll in Mus domesticus) (4,5). Ll, which is repeated

roughly 100,000 times in mouse (6), is native not only to mouse

but to all mammals (5). There is a large body of indirect

evidence supporting the hypothesis that Ll and other highly
repeated DNA families are capable of sequence transposition. Such

evidence consists of the presence of short direct repeats

surrounding the putative inserted element (7), or the presence of

elements intercalated within other repetitive sequences

(8,9,10,3,11) or within a subset of multiply-duplicated gene loci

(12). However, direct evidence documenting a transposition event

is supplied only by a comparison of allelic variants of a single

target region which shows one of the allelic sites interrupted by

the mobile element (13,14,15,16). By the comparison of allelic

chromosomes this report presents direct evidence for

transposition of a member of a long interspersed family in the

mouse. Recently, a short Alu-like sequence has been documented to

have inserted by DNA transposition into an allele of the rat

prolactin gene locus by a similar analysis (13), and the L[
family has been shown to be mobile via transposition into the

canine c-myc locus (17).

METHODS

Nomenclature

The adult globin genes in this study are designated by the

nomenclature of Brown et al. (18), as modified by the Mouse

Globin Nomenclature Meeting, Jackson Laboratory, Maine, 1984. The

5'-ward adult beta globin gene locus is Hbb-bl, and the 3'-ward
adult beta globin gene locus is Hbb-b2. In Hbbd, the 5'-ward gene

is Hbb-bld, or 13dmaj in the old nomenclature, while the 3'-ward

gene is Hbb-b2d, or 3dmin in the old nomenclature (1). Their Hbbs
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haplotype alleles are Hbb-bls, or Os in the old nomenclature, and

Hbb-b2s, or ot in the old nomenclature (2).

The presence of LlMd sequences in the Hbbd globin locus has

been described elsewhere (19,3). In that study eight distinct
LlMd sequences were identified and labeled LlMd-l through LlMd-8.

Of these sequences, LlMd-5 and LlMd-6 comprise a part of the long
region of Hbbd repetitive sequences which we show is missing from

Hbbs. The long LlMd element which has inserted via transposition
into the Hbbs adult globin region is designated here as LlMd-9.

Cloning and hybridization analysis
The genomic clones containing the adult beta globin genes of

Hbbd (CAll and CE14) and Hbbs (BA4 and BAl) have been described
previously (1,2). An EcoRI-HindIII 6 kb subfragment of CE14

containing the Hbb-b2d gene with 5'-ward flanking DNA was

subcloned into pBR322 to give clone pHE117. An M13 subclone of

the 5'-ward 1.35 kb EcoRI subfragment of CE14 was described
previously (19). The EcoRI 10.7 kb subfragment of BA4 containing

the Hbb-bls gene with flanking DNA was cloned into pBR322 to give
clone pHE402. This clone was a gift of Dr. Stephen Hardies.

The globin gene-flanking DNA probes "400", "900" and "A"
were prepared by purification of restriction fragments via

agarose electrophoresis and butanol DNA extraction (20). "900"
was further purified by subcloning into M13-mpl8, and

double-stranded insert DNA was used as probe. The repetitive
element probes "3" and "5" were described elsewhere (5). Nick
translations were done as described elsewhere (5). Restriction
digestions, southern blotting, and high and low stringency
hybridizations were done as described elsewhere (5). All work was

carried out under the prevailing NIH guidelines for recombinant
DNA research.

DNA sequence analysis
The HpaI-BamHI 980 bp subfragment of BA4 containing the 5'

end of LlMd-9 was cloned into M13-mpll and portions were

sequenced on both strands by a modified Sanger procedure (21).
Sequence analysis used homology search programs as described

elsewhere (5). The time of divergence of the HbbS and Hbbd
sequences was determined by the method of Miyata (22). The small

direct repeats flanking LlMd-9 in Hbbs and their single
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Figure 1. The intergenic DNA sequences between the Hbb-bl and
Hbb-b2 adult beta globin genes. The region between the adult beta
globin genes is shown for both the Hbba and Hbbs haplotypes. The
thickly outlined white boxes on both maps are repeated DNA
sequences that are not shared between the haplotypes. The white
box on the Hbbs map ("LlMd-9") represents a long member of the
repetitive LlMd family. Its subfragments are diagrammed "1", "2",
"3", "4", "CS1-5", and "5", as defined elsewhere (5). The white
boxes on the Hbbd map represent portions of a different long
repetitive region. Some of its subfragments are labeled "4",
"CS1-5", or "5", which indicate to which portion of LlMd they
hybridize. There are 3 to 4 separate repetitions of the small
"CS1-5" sequence and thus 3 to 4 short LlMd elements in this
structure. "LlMd-5" and "LlMd-6" are earlier designations (19)
for two of them. The 5' portion of this region contains the
repeated sequence LLrepl (24). Thick shaded boxes between the
maps represent a subset of restriction fragments which hybridize
between Hbbs and Hbbd. Like shading signifies homology between
the haplotypes. Two of these regions (the black and diagonally
striped boxes) were identified with the Hbbd region probes "400"
and "900" (shown below the Hbbd map), while a third homologous
region (the horizontally striped box) was determined previously
(2). Probe "A" was prepared from a single copy sequence lying
within the Hbbd long repetitive region. This sequence, previously
denoted "substitution A" ("Sub A"), is absent from Hbbs at this
position (2). "(AC)n" is a short stretch of alternating AC
nucleotides identified with synthesized (AC)n probe (not shown).
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Dashed lines represent the sizes and locations of restriction
fragments of total genomic DNA ("G DNA") which hybridize in
Figures 2 and 3 with the probes indicated in parentheses beside
each line. Solid lines below and above the maps designate the
extent of cloned regions. The thinly outlined white boxes on both
maps represent shared Bl repetitive elements. The stippled boxes
on both maps represent the two adult globin gene loci.
Restriction sites: B=BamHI, R=EcoRI, H=HpaI, A=AvaI, X=XbaI,
G=BglII, Z=HaeIII. H, A, X, and G sites have been mapped for both
alleles only in the first 4kb, thus are not shown elsewhere
except for the H sites that define the "400" region and its Hbbs
homolog. The single Z site shown is the 5' endpoint of the "900"
region.

counterpart in Hbbd were not included in this analysis, due to

their redundant alignment.

RESULTS

Alteration of the repetitive DNA profile in the region between

the adult beta globin genes

Mapping and hybridization studies (19 and data not shown)

indicated that both repetitive and single copy DNA sequences lay

between Hbb-bl, the 5'-ward adult beta globin gene locus, and

Hbb-b2, the 3'-ward adult beta globin gene locus (Figure 1).
While the region between the two adult genes seemed in both

haplotypes to consist of a stretch of single copy sequence within
which a single complex of repetitive sequences resides the nature

of the repetitive sequences in the two haplotypes appeared to tbe
quite different (Figure 1). To determine the nature of these

differences the s- and d- repetitive regions were compared to

each other by DNA hybridization. Probes comprising most of the 5'

half of the Hbbs repetitive region fail to hybridize to the Hbbd

repetitive region (probe "3", Figure 2 and probe "2", data not

shown), indicating that the repetitive sequences of the Hbbs and

Hbbd adult globin region are different in structure and are

unique to each haplotype.
The long Hbbs repetitive region has previously been shown

(5) to be a single member of the long repetitive element family
called LlMd (19, 5). Here we call this member LlMd-9. Its length

and structure is the same as that of the canonical long structure

of the LlMd family (5). However, both long and short members of

this family exist. The short elements are usually truncated at
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Figure 2. The s- and d- haplotype long repetitive sequences show
dissimilar hybridization patterns. Shown are southern blot
hybridizations. Sizes of bands are given in kilobases. "G", "R",
and "B" indicate cleavage of DNA samples with B 1II, EcoRI, or
BamHI, respectively. Lanes 1 and 2 show the hyb llization of the
allelic Hbbs clone BA4 (Figure 1) and Hbbd clone CAll (Figure 1)
to a probe containing a region of LlMd-9 (region "3", Figure 1).
Lanes 3 and 4 show the hybridization of BA4 and CAll to a probe
representing the 3' 1.3kb of the LlMd structure (region "5",
Figure 1). Lanes 5 and 6 show the hybridization of Mus domesticus
Hbbd and Hbbs total genomic DNA ("Ga" and "Gs") to the single
copy probe "A" (Figure 1), which lies within the Hbbd repetitive
region. The band in lane 5 corresponds to the region shown by a
dashed line below the Hbbd map in Figure 1. The faint background
smears and bands in lanes 5 and 6 are caused by contamination
introduced during agarose gel purification of probe "A" from a
clone containing both "A" and LlMd DNA fragments.

random distances from the 3' end of the canonical LlMd structure

(23,19) and can also apparently comprise larger clustered and

scrambled arrangements of repetitive DNA (6). The Hbbd repetitive

region, unlike LlMd-9, appears to contain a cluster of short and
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multiply repeated LlMd members. For example, a probe with

homology only to the 3' 1.3kb of LlMd-9 detects multiple

restriction fragments (.8kb, 1.3kb, and 1.6kb) within the Hbbd

repetitive region (Figure 2, lanes 2-3; the .3kb, .5kb and .9kb

bands lie elsewhere, within an LlMd member 5' to Hbb-bl). The

exact number of LlMd elements in this region is not known, but

since it contains three to four separate repetitions of a 300bp

subfragment of the LlMd structure (region "CS1-5", Figure 1), it

is likely that there are three to four distinct LlMd elements

making up this cluster.

The terminal short LlMd element in the Hbbd cluster of

repetitive elements contains an apparent insertion of 1.lkb first
identified by electron microscopy and called "substitution A"

(see "Sub A", Figure 1) (2). A probe prepared from this inserted
sequence (probe "A", Figure 1) hybridizes to a single restriction

fragment in Hbbd total genomic DNA (Figure 2, lane 5), indicating

that "substitution A" contains single copy DNA. Most of the

remainder of "substitution A" does not hybridize to

nick-translated genomic DNA probe (data not shown), which

suggests that it too is single copy. The genomic subfragment that

hybridizes with probe "A" in Hbbd is the same size as the

"A"-homologous fragment in the cloned globin locus (Figure 1),
indicating that the intercalation of this sequence within an LlMd

member is not a cloning artifact. This single copy sequence is

entirely absent from the Hbbs genome (Figure 2, lane 6).

In addition to containing at least three truncated LlMd

elements the Hbbd repetitive cluster contains two other classes

of repeated sequence. One is a simple (AC)n sequence (Figure 1),

and the other (Figure 1) is a member of a second complex

repetitive family called LLRepl (24). The region containing the

short LLRepl sequence (Figure 1) does not hybridize to LlMd

regions 2-5 (not shown). However, its homology (as well as that
of LLRepl itself) to the 5'-most 200bp of LlMd (region 1, Figure
1) has not been investigated.

Precise mapping of the locations of the repetitive sequences

between the adult genes in the Hbbd and Hbbs haplotypes indicates
that they are not in exactly the same position relative to the

adult globin genes (Figure 1). The long LlMd-9 element in Hbbs
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Figure 3. A single Hbbd sequence hybridizes to an interrupted
Hbbs counterpart which flanks LlMd-9. Shown are southern blot
hybridizations. Band sizes are in kilobases. "IR" and "B"
designate cleavage of the DNA samples with EcoRI or BamHI,
respectively. The probes "1400"1 and "1900"1 represent regions
containing the 5' flank and target site of the uninterrupted Hbbd
target site region, respectively (Figure 1). These probes were
hybridized to either cloned DNA or total g enomic DNA or both, and
they detect the target site region in Hbb~ (Panel A), in Hbbs
(Panel B), and in Mus caroli and Mus pahari (panel C). The
locations of the Hbb clones CAll and CE14 and their orthologous
Hbbs clones BA4 and BAl are shown in Figure 1. The pHE402 digest
in lane 10 is equivalent to that of BA4 cut with'amHI (Figure
1). "Gd" and "Gs" signify total Hbbd or Hbbs genomic DNA,
respectively. "CAR. G" and "PAH. G" signify total genomic DNA of
Mus caroli and Mus pahari, respectively. The genomic and cloned
DNA fragments shown for Hbbd and Hbbs correspond to the regions
shown by dashed lines inTW3lgure 1. Probe "1400"1 is contaminated as
described for probe "A" (Figure 2), thus causing faint repetitive
DNA signals in lanes 4 and 9. All the genomic DNA lanes shown
used 4 micrograms DNA. Because the cross-species genomic probings
(Panel C) gave weaker signal strengths, these probings were
repeated with 8 micrograms of DNA per lane (not shown) to confirm
that only one signal was present in each lane.

lies within 2.1 kb of DHbb-b2s, but is missing from the

corresponding region in the Hbbd chromosome. in turn, the 7.2kb
of repetitive sequence in Hbbd is located roughly 3.6kb 5'-ward
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of Hbb-b2d and is missing from the corresponding region in Hbbs.
Interruption of an intergenic sequence b the LlMd-9 element

The region where LlMd-9 lies in Hbbs is present in Hbbd as a

900 bp long restriction fragment located roughly 1.8 kb 5'-ward

of the Hbb-b2d gene (Figure 1). When this 900 bp region is used

as a probe ("900", Figure 1) to total Hbbd genomic DNA or globin
region clones, it hybridizes (Figure 3, panel A) only to the

single Hbbd sequence (3.6kb) from which the probe originated
(Figure 1). However, it hybridizes to two regions within total

Hbbs genomic DNA or globin region clones (Figure 3, panel B). One

of these regions (.7kb) is located the same distance from the

adult b2 gene in Hbbs as is the 900bp fragment from the b2 gene

in Hbbd, while the other (5.5kb) is displaced 6.3kb 5'-ward of

the location of the 900bp sequence (Figure 1). Also, a second

Hbbd probe taken from just 5' to the 900bp sequence, called

"400", hybridizes to a single sequence in either haplotype

(Figure 3, panels A and B), but in Hbbs this sequence is also

displaced 6.3kb 5'-ward (Figure 1). The 5'-ward displaced "400"-

and "900"- homologous sequences abut the 5' boundary of the 6.3

kb long LlMd-9 element (Figure 1), which suggests that LlMd-9 has

simply interrupted the "900"-homologous sequence by inserting
into it, thus displacing its 5' half.

That this apparent insertion of LlMd-9 into Hbbs is not

rather a precise deletion of LlMd-9 from Hbbd can be tested by

determining which arrangement is ancestral to the other. This was

done by examining whether the target site is interrupted by
LlMd-9 or uninterrupted in animals, such as Mus caroli or Mus

pahari, which diverged from Mus domesticus (25,26) before our

estimation of the time of the LlMd-9 rearrangement (see

DISCUSSION). When the "900" probe representing the uninterrupted
target site region is hybridized to various restriction digests
of Mus caroli or Mus pahari total genomic DNA (Figure 3, panel C)

just one homologous genomic fragment is seen rather than two, and

the size of the fragment in each case (1.9kb, 3.0kb, or 5.9kb) is

too small to contain the 6.3kb LlMd-9 element. This indicates
that the ancestral target site region contained no LlMd-9

sequence and therefore that the LlMd-9 sequence seen in Hbbs
resulted from an insertion. The poorer homology that these
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Figure 4. DNA transposition of the long LlMd-9 element. Panel A
diagrams the globin-region target site for both s- and d-
haplotype chromosomes, the inserted Hbbs LlMd-9 element, and the
areas ("1", "2", and "3") for which nucleotide sequence is shown
in Panel B. The thick boxes which diagram homologous restriction
fragments are shown as in Figure 1. Locations of probes are shown
as in Figure 1. Sequence "1" is from positions 90 bp to 153 bp
5'-ward of the 3' BamHI site of the HpaI-BamHI 980 fragment in
the Hbbs clone BA4 (Figure 1). The location of sequence "2" is
from positions 182 bp to 245 bp 5'-ward of the 5' BamHI site of
the 2.35 kb BamHI fragment shown in Hbbs clone pHE405 (Figure 1).
The location of sequence "3" is from positions 185 bp to 278 bp
5'-ward of the 5' BamHI site of the 5'-ward 1.1 kb BamHI fragment
shown in Hbbd clone pHE117 (Figure 1).

Insertion of the LlMd element has led to the generation of a
13 nucleotide imperfect direct repeat of the Hbbs target
sequence, whereas this sequence is seen only once in Hbbd. Panel
B shows these allelic target sequences (which are underlined) as
well as 40 nucleotides of both 5'-ward and 3'-ward flanking
sequence (labeled "1", "2", and "3" as in panel A). Also shown
are 10 nucleotides of both the 5' and 3' ends of the LlMd-9
element in Hbbs (in parentheses). Sequence "1" was generated as
described in the methods section. Sequences "2" and "3" were
generated by Shyman et al. (32).
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species' genomic DNA samples exhibit to the 900bp target site

probe than that shown by genomic DNA from either domesticus

haplotype (Figure 3) is consistent with the divergence of Mus

caroli and Mus pahari from Mus domesticus prior to the divergence
of Hbbs from Hbbd.

Transposition of the LlMd-9 element

There are distinct restriction site similarities between the
allelic counterparts of the target region for LlMd-9 (Figure 4,

panel A). This suggested that these allelic sequences were quite

homologous and would thus be easy to align at the nucleotide

level in order to trace the effects of the LlMd-9 insertion.

Subsequent alignment of the nucleotide sequences bordering LlMd-9

with their homologous sequences in Hbbd documents that LlMd-9 is

surrounded by a 13bp imperfect direct repeat of a sequence

present only once in the Hbbd target region (Figure 4, panel B).
The presence of this direct repeat, apparently generated by

duplication of the single allelic sequence, is consistent with

the hypothesis that LlMd-9 entered the globin locus via

transposition. Currently the 13 base pair direct repeat is

imperfect due to the presence of two nucleotide substitutions,

which were presumably introduced during or after the

transposition event.

DISCUSSION

We have shown that the majority of Ll sequences in mouse

(19) and other mammals (5) are short pseudogene copies of an as

yet unisolated protein-encoding gene (27,5). It has been

suggested that this highly repeated family undergoes concerted

evolution at least in part by periodic transposition of new short

or long L[ sequences into the genome (25,28). In addition we have

argued that there must be an ongoing deletion mechanism which
removes old sequences (28). Recently a short Ll member was 3hown
to have undergone transposition (17). Here we show that a long
and potentially full-length Ll member has also undergone

transposition, and we have identified other short Ll DNA

sequences whose absence in mouse from the Hbbs haplotype globin

locus may well be due to the deletion mechanism mentioned above.

It is apparent from evolutionary analysis of the aligned
target site DNA of the s- and d- chromosomes (see METHODS) that
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the divergence of the s- and d- target sequences, and thus the

sequence rearrangement involving LlMd-9, happened quite recently

in evolutionary history. The total mismatch of these sequences

between the s- and d- haplotypes is only 1 out of 80, or 1.2%.

This corresponds to a time of divergence roughly 1.2 million

years (Myr) ago. The LlMd-9 rearrangement has occurred since then

if we assume that gene conversion cannot have homologized these

target sequences after their interruption by LlMd-9. There are

two models we have considered which explain the absence of LlMd-9

in the d-haplotype and its presence in the s-haplotype. The first

simply presumes that LlMd-9 transposed into the s-haplotype

globin locus after the s/d split. The other model we have

considered also presumes the LlMd-9 transposition, but dates it

earlier -- before the s/d split and after the split of domesticus

from the other mouse species studied here. In this model both s-

and d- haplotypes would have originally possessed the LlMd-9

element. In such a model, the LlMd-9 sequence would have

precisely deleted from Hbbd via homologous recombination within

its flanking 13bp direct repeats. There is some precedence for

such deletions, since in E. coli deletions have been shown to

occur between directly repeated sequences of five or more base

pairs (29), and a similar association of short direct repeats

with deletion endpoints has been proposed for eukaryotic cells

(30).
The relatively recent time of the LlMd-9 rearrangement

corresponds well with the estimated 1.7 Myr half-life for

particular L[ sequences during their concerted evolution (28).

This is consistent with the model that the rapid rate of L[

sequence turnover involves actual transpositions and deletions of

these sequences, not just sequence conversion.

It seems likely that the periodic transposition and
deletion of members of this highly repeated sequence family is

capable of modulating gene expression. This could occur in two

ways. One would be by introducing or removing Ll-specific

regulatory sequences that activate or suppress the transcription

of nearby genes. An unusual feature of L[ in this regard is that

it can transpose different structural subsets of its full-length

sequence, which presumably could cause different regulatory

effects. As an example of this model, it has been proposed that a
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truncated dog Ll sequence may have enhanced the transcription of

a nearby c-myc gene (17). Regarding the mouse beta globin locus,
the s- and d- alleles of the adult genes appear to be regulated

in a similar fashion (31) even though markedly different LlMd

structures lie within their vicinity.

The second way in which Ll transpositions or deletions could

affect gene expression would be by altering the distance between

these genes and other regulatory elements. Interestingly, the

overall distance between Hbb-bl and Hbb-b2 is nearly the same for

both the s- and d- haplotypes even though nearly 13 kilobases of

DNA has been inserted or deleted within the intergenic region,

involving four or five LlMd elements as well as other repeated

and single copy DNA sequences. In fact, given the estimated rate

of Li sequence turnover (28) and assuming this to be totally due

to transposition and deletion events one would expect the spacing

between the adult genes to be different. This raises the

possibility of natural selection for a particular gene distance.

The examination of the intergenic distance between the adult beta

globin genes of related mouse species should reveal whether or

not the retention of the 14-15 kb distance seen in this study is

a consistent feature of rodent beta globin loci.
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