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ABSTRACT

Studies in humans and animal models link maternal infec-
tion and imbalanced levels of inflammatory mediators in the
foetal brain to the aetiology of neuropsychiatric disorders.
In a number of animal models, it was shown that exposure to
viral or bacterial agents during a period that corresponds
to the second trimester in human gestation triggers brain
and behavioural abnormalities in the offspring. However,
little is known about the early cellular and molecular events
elicited by inflammation in the foetal brain shortly after
maternal infection has occurred. In this study, maternal
infection was mimicked by two consecutive intraperitoneal
injections of 200 mg of LPS (lipopolysaccharide)/kg to timed-
pregnant rats at GD15 (gestational day 15) and GD16.
Increased thickness of the CP (cortical plate) and hippo-
campus together with abnormal distribution of immature
neuronal markers and decreased expression of markers for
neural progenitors were observed in the LPS-exposed foetal
forebrains at GD18. Such effects were accompanied
by decreased levels of reelin and the radial glial marker
GLAST (glial glutamate transporter), and elevated levels of
pro-inflammatory cytokines in maternal serum and foetal
forebrains. Foetal inflammation elicited by maternal injec-
tions of LPS has discrete detrimental effects on brain
development. The early biochemical and morphological
changes described in this work begin to explain the sequelae
of early events that underlie the neurobehavioural deficits
reported in humans and animals exposed to prenatal insults.

Key words: prenatal inflammation, lipopolysaccharide (LPS),
brain development, cytokine, maternal infection, neurode-
velopmental disorder.

INTRODUCTION

Previous studies suggest that modifications of the ‘in utero’

environment due to maternal bacterial or viral infections can

have disturbing effects on foetal brain development resulting

in lifelong intellectual and behavioural disorders, such as

schizophrenia and cerebral palsy (Rees and Harding, 2004;

Hagberg and Mallard, 2005; Rees et al., 2008; Fatemi and

Folsom, 2009; Meyer et al., 2009b; Patterson, 2009; Watanabe

et al., 2010). Animal models have been developed to study the

link(s) between functional deficits and cellular and morpho-

logical changes in the offspring’s brain following prenatal

exposure to agents known to stimulate the immune system,

such as LPS (lipopolysaccharide) or poly(I:C) (polyriboinosinic-

polyribocytidilic acid) (Nawa and Takei, 2006; Meyer et al.,

2009a; Boksa, 2010). These studies support the notion that

some gestational periods (e.g. early versus late pregnancy) offer

a higher risk for developing behavioural dysfunction following

maternal infections (Meyer et al., 2007). The foregoing results

are obviously dependent upon the neural cell types maturing

during the gestational window that would be targeted by the

events elicited during maternal immune activation.

The mechanism(s) that mediates the effects of maternal

infection on the developing brain has not been yet identified.
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Data from different groups have linked elevated cytokine

levels triggered by maternal infection to altered gene

expression and function in the maternal/foetal environments,

including the foetal brain, suggesting that inflammation

and its mediators interfere with normal development. In

fact, within hours (1–24 h) of LPS or poly(I:C) administration

to pregnant rodents, elevated expression levels of pro-

inflammatory cytokines were reported in the placenta and

the amniotic fluid as well as in the foetal plasma, liver

and brain (Urakubo et al., 2001; Bell et al., 2004; Ashdown

et al., 2006; Jonakait, 2007; Boksa, 2010). Cytokines have a

wide range of roles in the innate and adaptive immune

system and influence various neurodevelopmental processes,

including cell differentiation, maturation and survival (Zhao

and Schwartz, 1998; Deverman and Patterson, 2009;

Watanabe et al., 2010). Hence, fluctuations in their maternal

and foetal levels, due for instance to a maternal infection,

signify a disturbance that can impede the ongoing

neurodevelopmental processes, and subsequently affect

proper neural cell maturation (Jonakait, 2007; Meyer et al.,

2009a, 2009b). In support of a role for pro-inflammatory

cytokines in the brain, increased gliosis and apoptosis, and a

loss of pyramidal cells in the hippocampus were also trig-

gered by direct injection of the pro-inflammatory cytokine

IL-6 (interleukin-6) to the mother (Smith et al., 2007). Overall

these findings support the contention that immune activa-

tion at specific gestational times may have diverse effects on

the development of brain regions and further support the

hypothesis that some of the disturbances on brain develop-

ment are mediated by an increase in cytokines.

Notwithstanding major advances made on the long-term

effects of prenatal inflammation on postnatal brain functions

(Boksa, 2010), very few reports have investigated changes

occurring at prenatal stages of brain development shortly

after a maternal challenge (Meyer et al., 2008a; Cui et al.,

2009). Since these changes are more proximal than those

observed postnatally, studies of foetal brains exposed in utero

to maternal infection should be suited to identify the

upstream molecular events of brain pathology and may

eventually help to determine the underlying cause(s) of brain

malfunction later in young adults. The present study was

designed to investigate effects on the development of im-

mature neurons as well as neural progenitors associated with

foetal inflammation, and occurring shortly after maternal im-

mune system stimulation at mid–late gestation. Maternal

infection was mimicked by two consecutive intraperitoneal

injections of LPS (200 mg/kg) to timed-pregnant rats at

GD15 (gestational day 15) and GD16, such that the foetuses

were exposed to increased concentrations of inflammatory

mediators soon after the peak of neurogenesis (Sauvageot and

Stiles, 2002). We show that maternal injections of LPS

at mid–late gestation induced an increase in cytokines in the

foetal brain as well as changes in neural cell maturation

and patterning. These effects may be relevant to defects in

intellectual and behavioural functions described in adult

animals following prenatal exposure to inflammation.

MATERIALS AND METHODS

Animals and treatment
Timed pregnant Sprague–Dawley rats were purchased from

Charles River and housed in AALAC-approved clean animal

facilities with a 12 h light/12 h dark regime. The animals were

divided into two groups: control (saline-treated) and LPS-

treated. The dams were injected intraperitoneally with either

saline or 200 mg of LPS/kg from Escherichia coli 055:B5 (List

Biological Laboratories) at GD15 and GD16. The dams were

observed daily to detect signs of distress and killed at dif-

ferent times after the first or second injection of LPS, or allowed

to give birth. The studies were performed in accordance with

the NIH guidelines for the Care and Use of Laboratory Animals,

and approved by the UCLA Chancellor’s Animal Research

Committee.

ELISA assay in maternal serum
To measure the levels of pro-inflammatory cytokines in

maternal serum, dams were injected intraperitoneally with

either saline or LPS and killed 4 h after the first injection (saline

n55; LPS n59) at GD15, 4 h after the second injection at GD16

(saline n56; LPS n510) or 2 days after the second injection

at GD18 (saline n59 or LPS n59). The amounts of pro-

inflammatory cytokines were assessed as previously reported

(Juarranz et al., 2005) using murine IL-6, IL-1b and TNFa

(tumour necrosis factor a) ELISA Development Kits (Peprotech).

Absorbance was measured at 450 nm on a microplate reader

(SPECTRA max M2; Molecular Devices).

Antibodies
The following mouse monoclonal antibodies were purchased

from the vendors indicated in parentheses: against Nestin and

Arc (activity-regulated cytoskeletal-associated protein; BD

Biosciences), against a-internexin (Millipore), against bIII-tubulin

(Covance) and against b-actin (Sigma). A mouse anti-rat

monoclonal against CD68 (clone ED1) was purchased from

Accurate Chemical and Scientific Corporation. The following

rabbit polyclonal antibodies were used: against doublecortin

(Cell Signaling), against a-internexin and reelin (Clones G10

and 142; Millipore), against bIII-tubulin (Covance), against

GFAP (glial fibrillary acidic protein; Dako). A guinea pig poly-

clonal antibody against GLAST (glial glutamate transporter)

was purchased from Millipore. Details are given in Sup-

plementary Table S1 (available at http://www.asnneuro.org/an/

003/an003e068add.htm).

Immunohistochemistry
Pregnant rats were killed at GD18, 2 days after the second

injection of saline or LPS. The foetuses were rapidly dissected

out, perfused with PBS and fixed overnight in 4% (w/v)
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PFA (paraformaldehyde) at 4 C̊. Newborn pups [postnatal day

(P)1] were perfused intracardially with 4% PFA. Brains were

dissected out, post-fixed in 4% PFA at 4 C̊ overnight, cryo-

protected in 15% sucrose and then embedded in Tissue Tek OCT

compound. Immunolabelling of frozen sections (20 mm) was

performed as previously described (Mattan et al., 2010). Briefly,

sections were fixed in 4% PFA for 15 min, blocked in carrier

solution (1% BSA and 0.3% Triton X-100) containing 20%

normal goat serum for 1 h and incubated overnight at 4 C̊

with primary antibodies diluted in carrier solution containing

5% normal goat serum. Sections were incubated with the

appropriate secondary antibodies conjugated to Cy3 (Jackson

ImmunoResearch Laboratories) or Alexa FluorH 488 (Molecular

Probes), and mounted in Vectashield mounting medium with

DAPI (49,6-diamidino-2-phenylindole; Vector Laboratories).

Immunostained sections were visualized using a Zeiss Axio

Imager 2 with an AxioCam MRm and the ApoTome imaging

system or an Olympus IX81 microscope equipped with a

Hamamatsu ORCA-ER CCD camera.

H&E (haematoxylin and eosin) staining and
measurements
GD18 and P1 brain structures were stained with H&E as

previously reported (Mattan et al., 2010) and inspected using

the Axiovision software on a Zeiss Axioskop with an Axiocam.

Measurements were performed on the third sagittal brain

slice, typically 1.5 mm from the midline, of three or four

consecutive slides from three to six animals. Neocortical

measurements were obtained from presumptive motor areas

slightly caudal to the anterior commissure, and near the level

of the posterior genu of the corpus callosum. Total neocor-

tical and laminar thickness were measured along a line (eyepiece

micrometer) orthogonal to the superficial pial and callosal

surfaces, and averaged across cases for comparisons between

groups. Hippocampal measurements were obtained in a com-

parable fashion from presumptive CA1 area, as evidenced

by its distinct pyramidal cell layer, immediately rostral and

superior to its transition from the dorsal subiculum.

Western-blot analysis
Rat cerebral cortices from GD18 foetuses were rapidly dis-

sected, and the two halves were frozen separately and used

for Western-blot analysis or qRT–PCR (quantitative real-time

PCR). Cortices were homogenized in lysis buffer containing 50

mM Tris/HCl, 0.25% (w/v) DOC (sodium deoxycholate), 150 mM

NaCl, 1 mM EDTA, 1% (w/v) Triton X-100, 0.1% (w/v) SDS,

1 mM Na3VO4 (sodium orthovanadate), 1 mM AEBSF [4-(2-

aminoethyl)benzenesulfonyl fluoride], 10 mg/ml aprotinin, 10

mg/ml leupeptin, 10 mg/ml pepstatin and 4 mM sodium fluoride.

Western blottings were performed as previously described

(Ghiani and Gallo, 2001; Ghiani et al., 2010). Then 25–35 mg of

total proteins were loaded on to a 4–20% Tris-glycine gel

(Invitrogen). Protein bands were detected by chemilumin-

escence using the Amersham ECL kit (GE Healthcare) with HRP

(horseradish peroxidase)-conjugated secondary antibodies

(Cell Signaling). Relative intensities of the protein bands were

quantified by scanning densitometry using the NIH Image

Software (Image J, http://rsb.info.nih.gov/ij/). Equal protein

loading was verified by Ponceau S solution (Sigma) reversible

staining of the blots, and each extract was also analysed for

relative protein levels of b-actin. For the comparison of relative

protein levels in GD18 cerebral cortices of foetuses from

saline- and LPS-injected dams, each background-corrected

value was normalized according to the relative b-actin level of

the sample, and then referred to the average of the saline

values calculated from the same immunoblot image.

Real-time RT–PCR
Total RNA was extracted using TRIzolH (Invitrogen), following

the manufacturer’s protocol. Samples were further purified by

treatment with TURBO DNA-freeTM (Ambion), followed by a

second extraction with phenol/chloroform. RNA was reverse

transcribed using iScript cDNA Synthesis Kit (Bio-Rad

Laboratories) then analysed for various transcript expressions

(see Supplementary Table S2 available at http://www.asnneuro.

org/an/003/an003e068add.htm). The primers for Egr-1 were

part of the Qiagen QuantiTectH Primer Assay (Qiagen). qRT–

PCR was set up using iQ SYBRH Green Supermix (Bio-Rad

Laboratories) and performed in triplicate as previously

described (Ghiani et al., 2006; Mattan et al., 2010) on an

iCycler MyiQ Real Time PCR machine (Bio-Rad Laboratories).

Negative controls (samples in which reverse transcriptase was

omitted) were amplified individually using the same primer

sets (Supplementary Table S2) to ensure the absence of geno-

mic DNA contamination. PCR amplification resulted in the

generation of single bands. Amplification specificity was

assessed by melting curve and standard curves made from

serial dilutions of control RNA were used for quantifica-

tion. Data were normalized to the internal control GAPDH

(glyceraldehyde-3-phosphate dehydrogenase).

Statistical analysis
Statistical analysis was performed using GraphPad Prism 4.01

(GraphPad Software) by Student’s t test or one-way ANOVA

followed by Bonferroni’s multiple comparison test when three

or more experimental groups were compared.

RESULTS

Maternal injections of LPS elicited an
inflammatory response in the foetal brain
Maternal bacterial infection was modelled in timed-pregnant

rats at GD15 and GD16 by administering two consecutive

injections of LPS (200 mg/kg intraperitoneally) to study the

Early effects of maternal LPS on brain development
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impact of the maternal and foetal inflammatory response on

brain development. The dose was chosen based on previous

reports showing a minimal rate of foetal re-absorption (Bell

and Hallenbeck, 2002). Such a model is known to induce

cellular and behavioural deficits in adult rodents, although

little is known about the cellular and molecular events that

take place in the foetal brain shortly after activation of the

maternal immune system has occurred (Jonakait, 2007; Meyer

et al., 2008b, 2009a; Boksa, 2010).

In order to determine if administration of LPS elicited a

response in the dams, the levels of three pro-inflammatory

cytokines (IL-6, IL-1b and TNFa), previously associated with

the maternal and foetal response triggered by activators

of the immune system, were analysed by ELISA in the maternal

serum. The levels of these cytokines were significantly in-

creased in the serum of LPS-injected dams (Figure 1A) 4 h after

the first LPS-injection at GD15 as compared with saline-

injected dams. Similar changes in cytokine gene expression

Figure 1 Maternal injections of LPS elicited an inflammatory response in the foetal forebrain
(A) Cytokine levels were significantly increased in maternal serum 4 h after the first injection of LPS (200 mg/kg, intraperitoneally)
Dams were injected at GD15 and GD16 and killed 4 h after the first (4 h) or the second LPS-injection (28 h). Results were plotted as
the means¡S.E.M. for five or six saline-injected dams and nine or ten LPS-injected dams per time point. *P,0.05 versus respective
control (saline-injected dams), One-way ANOVA followed by Bonferroni’s multiple comparison test. (B) Pro-inflammatory cytokine
expression levels were increased in the foetal forebrain at different time-points after maternal injections of LPS. Cytokine expression
levels were measured in the foetal cerebral cortex by qRT–PCR at GD15, 4 h after the first (4 h) maternal injection of LPS or saline; at
GD16, 4 h after the second injection (28 h), and at GD18, 48 h after the second maternal injection of LPS or saline (72 h). At least
three foetuses/dam/group/time-point were analysed. Levels were normalized to GAPDH. Histograms represent the means¡S.E.M. of
9–30 foetuses from five or six saline-injected dams and eight to ten LPS-injected dams per time point. *P,0.05, **P,0.01 versus
respective saline-exposed foetuses, One-way ANOVA followed by Bonferroni’s multiple comparison test. (C–F) Dams received two
consecutive injections of LPS (200 mg/kg, intraperitoneally) at GD15 and GD16 and were killed at GD18. (C) The microglial marker
CD68 was strongly expressed in the LPS-exposed foetal forebrain at GD18. LV, lateral ventricle. Scale bar550 mm. (D) A significant
increase in GFAP protein levels was found at GD18 in LPS-exposed foetal cerebral cortex. Values derived from the densitometric
analysis were corrected for the background, normalized to b-actin and are shown as a percentage of the value for saline-exposed
foetuses. The histogram shows represents the means¡S.E.M. for 11–12 foetuses from seven saline-injected and seven LPS-injected
dams. *P,0.05 versus saline-exposed foetuses, Student’s t test. (E) GFAP immunoreactivity was mainly localized in the IZ in both
LPS- and saline-exposed foetuses. Scale bar550 mm. (F) Higher magnification of the insets in (B) shows that GFAP-positive cells
display a reactive phenotype in the IZ of LPS-exposed foetuses (arrow). Nuclei were identified by DAPI staining. Scale bar520 mm.
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were observed in the foetal forebrains at corresponding times

by qRT–PCR (Figure 1B), indicating that a foetal inflam-

matory response was taking place in response to maternal

injections of LPS. In particular, IL-6 gene expression dis-

played a time-dependent increase. Its levels were significantly

increased not only 4 h after the first and the second maternal

injections (28 h), but were still greatly elevated 72 h after

the first injection, i.e. on GD18, which suggested that high

levels of this inflammatory mediator persisted in the foetal

forebrain (Figure 1B), albeit no changes in the maternal

serum IL-6 were seen at this time (results not shown). Gene

expression levels of IL-1b and TNFa in the foetal cerebral

cortex were significantly increased 4 h after the second

maternal injection of LPS (28 h; Figure 1B), but not 4 h after

the first LPS injection. TNFa levels in experimental animals

reverted to saline levels by 72 h (GD18), whereas IL-1b gene

expression levels were still elevated, although this increase

was not statistically significant (Figure 1B). In agreement with

an up-regulation of the expression levels of inflammatory-

related genes in the forebrain of foetuses from LPS-injected

dams, increased immunoreactivity for CD68, a marker for

microglia/macrophages, was seen 72 h after maternal

injections of LPS (GD18; Figure 1C). These data appear to

indicate that an extended foetal response was induced, as

maternal levels of reactive cytokines decreased rapidly, while

foetal levels remained elevated well after exposure to LPS.

A hallmark of the response of the CNS (central nervous

system) to injury or inflammation is the presence of reac-

tive astrocytes, characterized by increased expression of the

specific marker GFAP. Western-blot analysis of GD18 saline-

and LPS-exposed foetal cerebral cortices at 72 h revealed a

40% increase in GFAP protein levels in the latter group

(Figure 1D). Furthermore, even though GFAP immunoreacti-

vity could be seen in both the forebrains of LPS-exposed

and control groups, and was mainly localized in the IZ

(intermediate zone), a stronger signal was present in the LPS-

exposed forebrains (Figure 1E), where GFAP-positive cells

displayed the characteristic morphology of reactive astrocytes,

which appear as hypertrophic process-bearing cells (Figure 1F,

arrow).

Figure 2 Maternal injections of LPS hindered the development of brain structures
(A) H&E staining of GD18 foetal forebrain showed a significant enlargement of the CP in the forming cerebral cortex of LPS-exposed
foetuses compared with saline-exposed foetuses. No significant differences were found in the thickness of other laminae of the
cerebral cortex or in the total thickness of the cortex. (B) The hippocampus of LPS-exposed foetuses was significantly larger than in
control animals. (C) Quantifications of the differences in the thickness of the forebrain, CP and hippocampus. Histograms represent
the means¡S.E.M. for six rat foetuses from six saline-injected and six LPS-injected dams. *P,0.05 versus saline-exposed foetuses,
Student’s t test. MgZ, marginal zone; IZ, intermediate zone; VZ/SVZ, ventricular zone/subventricular zone.
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Maternal injections of LPS impaired brain
morphogenesis
To determine whether activation of the maternal immune

system triggered by LPS affected the cellular and laminar

organization of the neocortex, coronal sections from LPS-

exposed and control foetal forebrains collected at GD18 were

analysed using H&E staining. Despite the fact that the total

thickness of the forebrains, measured at the level of the

parietal neocortex, was not significantly different between

LPS-treated and control foetuses, analysis of the various

laminae of the foetal cerebral cortex revealed a significant

enlargement (24%) of the CP (cortical plate) in the neocortex

of LPS-exposed foetuses compared with saline-injected

animals (Figures 2A and 2C). No significant changes were

seen in the MgZ (marginal zone), IZ or SVZ/VZ (subventricular

zone/ventricular zone). Additionally, LPS-exposed foetuses

displayed significantly thickened hippocampi (15%) as

compared with controls animals (Figures 2B and 2C). These

data suggest that activation of the maternal immune res-

ponse affected development of foetal brain cytoarchitecture.

Maternal injections of LPS altered the expression
pattern of immature neuronal markers
In rats, cortical neurogenesis begins around GD11 and GD12,

peaks at GD14, and declines through the remainder of

gestation into the postnatal period (Bayer and Altman, 1991;

Sauvageot and Stiles, 2002). At the time of the LPS injections,

GD15 and GD16, neurons destined to settle in the infra-

granular layers VI and V are being generated followed by

neurons destined to settle in the supragranular layers IV–II at

later stages (GD17–21) (Bayer and Altman, 1991). We surmised

that foetal inflammation could affect those neurons whose

generation and migration coincided with the time of the in-

jections or soon after and were ordained to settle in the

supragranular layers. To address this possibility, the expression

of doublecortin, a microtubule-associated protein expressed in

immature neurons and involved in the regulation of neuronal

migration, was investigated. In control foetuses, doublecortin

positive cells were detected in both the IZ and CP (Figure 3A).

In contrast, in the foetal forebrains from LPS-injected dams,

doublecortin-positive cells were predominantly found in the IZ

and were nearly absent in the CP (Figure 3A). Likewise

abnormal distributions of cells that expressed the immature

neuronal markers a-internexin and bIII-tubulin were seen in

the neocortex (Figures 3B and 3C, respectively). In fact, similar

to the expression pattern of doublecortin (Figure 3A), a-

internexin- and bIII-tubulin-positive cells (Figures 3B and 3C,

respectively) populated both the CP and the IZ in the forming

the neocortex of foetuses from saline-injected dams. In the

forebrains of LPS-exposed foetuses, cells positive for these

markers were mainly concentrated in the IZ with notably fewer

immunoreactive cells detected in the CP (Figures 3B and 3C).

Nonetheless, as shown in Figure 3(D), the total protein levels of

a-internexin and bIII-tubulin were not significantly changed,

suggesting that foetal inflammation predominantly affected

the distribution pattern of neuronal cells.

The cellular and molecular machinery involved in
neuronal migration is perturbed in LPS-exposed
foetal forebrains
Proper migration of immature neurons to their final des-

tination in the CP is essential for the development of a

functioning CNS. Neuronal migration is a complex process

that occurs with a defined temporal pattern and is regulated

by soluble cues as well as interactions between migratory

neurons and other cell types (Gupta et al., 2002; Nadarajah

and Parnavelas, 2002). During this period in brain develop-

ment, the majority of the neurons, destined to form the

different layers of the CP migrate along specialized cells

named radial glia. At GD9 and GD10 radial glial processes

span the cortical wall from the VZ to the pial surface. Radial

glial cells serve as both progenitor cells and a primitive

migratory scaffold for post-mitotic neurons (Campbell and

Gotz, 2002). To further ascertain the cellular changes

occurring in GD18 LPS-exposed foetal forebrains that might

underlie the defect in neuronal patterning, we examined

the expression levels and distribution of GLAST, a marker for

radial glia. In the developing neocortex of control foetuses,

cell fibres positive for GLAST extended throughout the IZ

and the CP, up to the pial surface (Figure 4A). GLAST

immunoreactivity displayed a marked decrease in the IZ of

LPS-exposed foetuses and was practically absent in the CP,

where fewer positive processes could be seen (Figure 4A,

arrows in left lower panel). Furthermore, GLAST protein levels

showed a 30% decrease in the forebrain of GD18 foetuses

from LPS-injected dams as compared with saline-injected

foetuses (Figure 4B), potentially suggesting a weakening of

the migratory scaffold formed by radial glia.

Among the factors involved in the regulation of radial glia

development, maintenance of the radial glia scaffold as

well as proper orientation of the radial glia processes is the

glycoprotein reelin (Hartfuss et al., 2003; Forster et al., 2010).

In the mammalian brain, reelin has different roles depending

upon the developmental stage. Prenatally, it is secreted by

the Cajal-Retzius cells in the MgZ and plays major roles

in the regulation of neuronal migration and cortical layer

formation; whereas, in the adult brain, reelin is secreted by

GABAergic interneurons and participates in synaptic plasticity

and memory formation (Fatemi, 2005; Forster et al., 2010).

In addition to its proposed role as a susceptibility gene

for neuropsychiatric disorders, such as schizophrenia and

autism, its levels were reported to be decreased in adult mice

following exposure to antenatal insults such as maternal viral

infection (Fatemi, 2005). Reelin expression was analysed in

foetuses from LPS- and saline-injected dams at GD18 by both

immunohistochemistry and Western-blot analysis. Reelin

expression was present in the Cajal-Retzius cells of the MgZ

in both animal groups, even though its immunoreactivity was

lower in the LPS-exposed foetuses compared with controls
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(Figure 4C). These results were further confirmed by Western-

blot analysis. Reelin exists in various isoforms, which are

generated by cleavage of the 400 kDa isoform, considered to

be the full form and the others proteolytic products (Ignatova

et al., 2004; Jossin et al., 2004, 2007). Three main isoforms

(400, 330 and 180 kDa) were revealed by Western blotting in

the cerebral cortex of LPS-exposed foetuses and controls. A

significant decrease (30%) in the protein levels of the 180

kDa form was found in the LPS-exposed foetuses (Figure 4D)

as compared with controls, whilst the other bands displayed

no significant changes, suggesting that foetal inflammation

may interfere with cleavage of reelin.

The expression of neural progenitor cell markers
is altered by inflammation
Brain development from GD17 to GD20 is characterized

by the presence of actively proliferating precursor cell

populations, which will give rise to late-born neurons and

cells of the glial lineage. Maturation of neural precursors is

tightly regulated by both cell specific, intrinsic and extrin-

sic factors (Berger-Sweeney and Hohmann, 1997; Cameron

et al., 1998; Pomeroy and Kim, 2000; Nguyen et al., 2001;

Sauvageot and Stiles, 2002). Because of the documented role

of radial glial cells as neural progenitors (Campbell and Gotz,

2002; Pinto and Gotz, 2007), and the decrease in GLAST

levels found in LPS-exposed foetuses (Figures 4A and 4B),

we reasoned that activation of the foetal inflammatory

response might also affect progenitor cell development.

Hence, the expression of markers for neural progenitors was

analysed.

The effects of foetal brain inflammation on neural pro-

genitor cells were investigated by examining the distribution

and protein levels of nestin, an intermediate neurofilament

typically found in neural progenitors. As shown in Figure 5(A),

nestin immunoreactivity was decreased in the neocortex of

Figure 3 Abnormal distribution of markers for immature neurons in the foetal forebrain after maternal injections of LPS
(A) Doublecortin immunoreactivity was seen in both the CP and IZ in GD18 foetuses from saline-injected dams. Conversely,
doublecortin-positive cells were mostly detected in the IZ of age-matched foetuses exposed to LPS, while the CP displayed lower
immunoreactivity. Lower panels are higher magnifications of the area marked by the two arrows showing the atypical distribution of
doublecortin positive cells in the CP and IZ of LPS-exposed animals. (B) Expression of the immature neuronal marker a-internexin
could be seen in the IZ of GD18 LPS-exposed foetuses and was almost absent in the CP as compared with age-matched control
(Saline). (C) Expression of bIII-tubulin could be observed throughout the cerebral cortex in GD18 saline-exposed foetuses. In the
cerebral cortex of LPS-exposed foetuses, immunoreactivity for this marker was mainly found in the IZ, while it was almost absent in
the CP. Lower panels are higher magnifications of the area marked by the two arrows. Scale bar550 mm. LV, lateral ventricle. (D) No
differences were found in the protein levels of a-internexin and bIII-tubulin measured in whole tissue lysates prepared from cerebral
cortices of GD18 saline- and LPS-exposed foetuses. Values derived from the densitometric analysis were corrected for the back-
ground, normalized to b-actin and are shown as a percentage of the value for saline-exposed animals. Histograms are the
means¡S.E.M. for 17 foetuses from seven dams injected with saline and 18 foetuses from eight LPS-injected dams.
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LPS-exposed foetuses compared with controls. In agreement

with this finding, decreased protein levels (25%) for nestin

were found in forebrains of LPS-exposed animals (Figure 5B).

Finally, expression of Sox2, a transcription factor expressed in

neural precursors, was measured by qRT–PCR and found to be

significantly decreased (15%) in the forebrain of LPS-exposed

animals compared with foetuses from saline-injected dams

(Figure 5C).

Figure 4 Altered expression levels of GLAST and Reelin in the foetal forebrain after maternal immune system activation with LPS
(A) Processes immunopositive for GLAST were observed throughout the IZ and the CP of GD18 saline-exposed foetuses, whereas they
were evidently decreased in the corresponding areas of GD18 LPS-exposed animals. Nuclei were identified by DAPI staining. (B) The total
protein levels of GLAST were significantly decreased in the cerebral cortex of GD18 LPS-exposed foetuses compared with control. Values
derived from the densitometric analysis were corrected for the background, normalized to b-actin, and are shown as a percentage of the
value for saline-exposed animals. Histograms are the means¡S.E.M. for 12 foetuses from seven dams injected with saline and 15
foetuses from eight LPS-injected dams. *P,0.05 versus saline-exposed foetuses, Student’s t test. (C) Immunoreactivity of the
glycoprotein protein reelin was decreased in the Cajal-Retzius cells in the MgZ of forebrains from GD18 LPS-exposed foetuses compared
with saline. Scale bars550 mm. (D) Representative immunoblots showing that the protein levels of the 180 kDa isoform of reelin were
significantly decreased in whole tissue lysates from the cerebral cortex of GD18 LPS-exposed foetuses. Values are shown as a
percentage of the value for saline-exposed animals. Histograms are the means¡S.E.M. for five foetuses from three dams injected with
saline and five foetuses from three LPS-injected dams. *P,0.05 versus saline-exposed foetuses, Student’s t test.
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The expression levels of the immediate early gene
Arc are influenced by maternal injections of LPS
IEGs (immediate early genes) are among the most highly

expressed genes during CNS development and their activation

in response to neuronal activity is fundamental for con-

trolling downstream genes involved in specification and

maturation of neural progenitors in the neocortex as well as

in other brain areas (Herdegen and Leah, 1998; Kaufmann

and Worley, 1999). We sought to determine whether the

anomalous neuronal patterning seen in GD18 foetal fore-

brains after maternal injections of LPS at GD15 and GD16 was

accompanied by abnormal expression levels of IEGs. The

activity-regulated IEGs Ania-3, cfos, and Egr-1 showed a

trend towards decrease, although such changes were not

significant. Conversely, Arc displayed a significant decrease in

gene expression levels (20%) in the neocortex of LPS-exposed

foetuses as compared with controls (Figure 6A). Furthermore,

a significant decrease in the total protein levels of Arc was

found (27%) in forebrains of LPS-exposed foetuses when

compared with control (Figure 6B).

Postnatal effects of maternal injections of LPS at
GD15 and GD16
In order to investigate if the changes in brain structures and

neural cell development identified at GD18 were still present

postnatally and to assess whether foetal inflammation

elicited long-lasting effects, the brains of offspring from

saline- and LPS-injected dams were analysed at P1. H&E

staining of P1 brains revealed lack of differences in the size of

the CP between pups born to dams injected with LPS or saline

at GD15 and GD16 (Figures 7A, 7B and 7G). However, the

total thickness of the neocortex was significantly enlarged

(17%; Figure 7G) when compared with control pups and the

cells appeared to be more closely aggregated than in control

(Figures 7C and 7D). The mean value of the hippocampal

areas, measured at the transition between CA1 and CA2 areas,

were increased in the LPS-exposed pups, although this dif-

ference was not significant (Figures 7E–7G). Furthermore, the

expression pattern of bIII-tubulin (Supplementary Figures S1A

and S1B available at http://www.asnneuro.org/an/003/an003

e068add.htm) and doublecortin (Supplementary Figures S1C

and S1D) was still altered in P1 cerebral cortex of pups born to

LPS-injected dams compared with control pups.

DISCUSSION

Among many proposed environmental factors, epidemiologi-

cal data support an association between maternal infections

Figure 5 Expression of neural progenitor cells markers in the foetal forebrain is disturbed after maternal injections of LPS
(A) Immunoreactivity for nestin, a marker for neural progenitors, was decreased at GD18 in the foetal cerebral cortex of LPS-exposed
foetuses compared with foetuses from saline-injected dams. Upper panels: double immunostaining for nestin in green and GLAST in
red; lower panels: single immunostaining for nestin. Scale bar550 mm. (B) Representative immunoblots showing that nestin protein
levels were significantly decreased in whole tissue lysates from the cerebral cortex of GD18 LPS-exposed foetuses. Values derived
from densitometric analysis were corrected for the background, normalized to b-actin, and are shown as a percentage of the value
for saline-exposed animals. Histograms are the means¡S.E.M. for ten foetuses from five dams injected with saline and ten foetuses
from five LPS-injected dams. *P,0.05 versus saline-exposed foetuses, Student’s t test. (C) The gene expression levels of the
transcription factor Sox2 were decreased in the foetal cerebral cortex after maternal injections of LPS. Sox2 expression was
measured by qRT–PCR in the cerebral cortex of GD18 foetuses from saline and LPS-injected dams. The levels were normalized to
GAPDH. Histograms represent the means¡S.E.M. for 15 foetuses from seven saline-injected dams and 15 foetuses from seven LPS-
injected dams. *P,0.05 versus saline-exposed foetuses, Student’s t test.
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and neuropsychiatric disorders (Mednick et al., 1988; Brown,

2006; Ellman and Susser, 2009). Here, we present evidence

that maternal infection, mimicked by injections of LPS, and

subsequent foetal inflammation during mid–late gestation in

rats (equivalent to mid-second trimester in human) con-

siderably perturbed brain development, shortly after the

inflammatory response was triggered in the foetus, by

interfering with signalling pathways involved in neuronal cell

distribution pattern. Enhanced microglia activation, reactive

astroglia and increased expression of pro-inflammatory

cytokines were detected in the foetal brain after maternal

exposure to LPS, suggesting that the observed effects might, at

least in part, be generated by these immune mediators.

Previous studies have reported increased levels of pro-

inflammatory cytokines in the maternal serum as well as at

the maternal/foetal interface (amniotic fluid, placenta) after

stimulation of the maternal immune system with different

agents [LPS, poly(I:C), etc.] (Boksa, 2010). Altogether these

findings advocate for a role of these immune mediators in the

morphological and neurobehavioural changes in offspring

exposed to prenatal inflammation.

Studies in humans as well as in accepted animal models of

maternal infection have described a series of abnormalities in

adult brain cytoarchitecture, including decreased dendritic

arborization and aberrant neuronal migration (Fatemi and

Folsom, 2009; Deutsch et al., 2010), pointing at a neurodeve-

lopmental origin of severe psychiatric disorders and implying

that certain defects are present before the onset of the

disorder. Alterations in normal cortical development caused by

small disturbances of neurogenesis and neuronal migration

may elicit maldevelopment of these areas, affecting the

formation of neuronal networks and resulting in the neuro-

pathological defects described in the post-mortem brain of

persons affected by schizophrenia and other neurodevelop-

mental disorders. Perhaps some pathways active in the adult

brain are already dysregulated during foetal life by maternal

conditions leading to the formation of malfunctioning

neuronal circuits in the adolescent and adult brain. In the

present study, an enlarged CP and abnormal expression of

markers for immature neurons were observed in the neocor-

tex of LPS-exposed foetuses at GD18, i.e. 2 days after LPS

exposure, in comparison with the brains of age-matched

control foetuses. In addition, a number of important molecules,

including reelin, GLAST and Arc, were decreased in foetal brains

following LPS exposure. Finally, at P1, the cerebral cortex of

LPS-exposed animals was significantly larger than in age-

matched control offspring and the cells appeared to be more

compact, resulting in a reduction of the space these cells have

available to extend processes compared with control.

Our results suggest an effect on the cleavage of reelin

triggered by inflammation and the consequent cascade of

events. In the developing mammalian brain, reelin has a

pivotal role in cortical layer formation by regulating neuronal

migration (Fatemi, 2005; Forster et al., 2010). In adult brain,

this glycoprotein participates in synaptic plasticity and

memory formation and is considered a susceptibility gene

for neuropsychiatric disorders, such as schizophrenia and

autism (Fatemi, 2005; Forster et al., 2010). Proteolytic cleavage

of reelin produces five fragments, among them the central

fragment was shown to mimic reelin functions in vitro. The

function(s) of the full-length and shorter fragments of reelin

has hitherto not been completely elucidated, albeit it was

reported that inhibition of reelin processing in vivo prevents

signalling and hampers development in cortical embryonic

slices (Jossin et al., 2004, 2007). Cleavage appears to be

required for reelin to be released in the intercellular space and

to bind to its receptors on receptive cells. In reeler Orleans

(relnorl/orl) mice, lack of reelin signalling is due to abnormal

protein processing and expression of a truncated, non-

releasable reelin fragment (de Bergeyck et al., 1997; Derer

et al., 2001). In contrast with the C-terminus fragments, both

the N-terminus and the central fragments have been detected

in the CP and are considered important for reelin function.

Moreover, Jossin et al. (2007) showed that, while the larger

fragments as well as the full length could be only detected in

Figure 6 Gene and protein expression levels of IEG in the foetal forebrain
following maternal immune system activation with LPS
(A) Only the gene expression levels of Arc were significantly decreased in the
cerebral cortex of GD18 foetuses from LPS-treated dams compared with
control. Changes in gene expression levels of Arc, cfos, Ania-3 and Egr-1 were
measured by qRT–PCR in the cerebral cortex of foetuses from saline and LPS-
injected dams. The levels were normalized to GAPDH. Histograms represent
the means¡S.E.M. for 16 foetuses from five saline-injected dams and 14 from
five LPS-injected dams. *P,0.05 versus saline-exposed foetuses, Student’s
t test. (B) The total protein levels of Arc were decreased in whole tissue lysates
from GD18 foetal cerebral cortex after maternal injections of LPS. Values
derived from densitometric analysis were corrected for the background,
normalized to b-actin, and are shown as a percentage of the value for saline-
exposed animals. Histograms are the means¡S.E.M. for ten foetuses from five
dams injected with saline and 11 from five LPS-injected dams. *P,0.05 versus
saline-exposed foetuses, Student’s t test.
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the proximity of the MgZ, antibodies, raised against the N-

terminal region or the central fragment, detected reelin among

the cells of the CP. Hence, reelin processing seems important

for his diffusion, which might be influenced by the fragments’

size (ranging from 100 to 330 kDa), i.e. the smaller N-terminal

and central fragments may diffuse farther into the CP and

influence late born neurons which are at a greater distance

from the MgZ. These differences would create a gradient of

reelin throughout the developing cortex (Zhao and Frotscher,

2010). The decreased levels of the 180 kDa isoform reported

in this study suggest an impairment of reelin processing,

which could, at least in part, explain the increased presence of

doublecortin and bIII-tubulin positive cells in the IZ in the LPS-

exposed foetuses compared with controls.

During brain development, proper synaptic activity must

activate a cascade of genes involved in transforming immature

neuronal connections into functional circuits. IEGs are highly

expressed during CNS development and have important

roles in the adult brain. Their expression is developmentally

regulated and influenced by exogenous signals such as neuro-

transmitters and second messenger signalling pathways. IEG

activation in response to neural activity is fundamental for

controlling expression of downstream genes and their

products, which are involved in specification and maturation

of neural progenitors in the cerebral cortex as well as in other

brain areas (Herdegen and Leah, 1998; Kaufmann and Worley,

1999). Interference with the early expression and activity of

IEGs, such as Arc, likely plays a role in the brain maldevelopment

Figure 7 Changes in the offspring forebrain after prenatal foetal and maternal immune activation with LPS
Dams received two consecutive injections of LPS (200 mg/kg, intraperitoneally) at GD15 and GD16 and the offspring were killed at
postnatal day (P)1. (A, B) H&E staining revealed lack of significant differences in the thickness of the CP in P1 rats born to dams
injected with saline or LPS; conversely, a significant enlargement of the cerebral cortex was found in P1 rats born to LPS-injected
dams. (C, D) Higher magnification images showing increased cell density in the CP of P1 rats prenatally exposed to the effects of
maternal injections of LPS. (E, F) No significant differences were found in the thickness of the hippocampus measured at the
transition between the CA1 and CA2 areas. White bars indicate where the measurements were performed. LV, lateral ventricle.
(G) Quantifications of the differences in the thickness of the cerebral cortex, CP and hippocampus. Histograms represent the
means¡S.E.M. for three P1 control (saline) and three P1 rats prenatally exposed to LPS. *P,0.05 versus saline-exposed P1 rats,
Student’s t test.
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found in individuals with schizophrenia. As a consequence,

synaptic transmission and plasticity are affected in young

adulthood, when refinement of synaptic connections requires

higher activity potentially leading to a loss of synaptic plasticity

(Fatemi and Folsom, 2009).

These findings portray an intricate process by which foetal

inflammation perturbs neuronal patterning and cortical

development contributing to cognitive and/or psychotic

manifestations later in adulthood. Such a process acts upon

a number of different pathways, a number of which then have

additional roles in mediating some of the experience-

dependent plasticity in the adult brain. Based on these results,

we surmise that the formation of neuronal networks in

offspring from LPS-injected dams is altered, and such abnor-

malities may represent a major underlying pathophysiology of

psychiatric disorders with a neurodevelopmental origin.

The LPS model used in this study does not fully recapitulate

the events triggered by bacterial pathogens and their toxins

in the foetal brain, and reproduces only part of the

inflammation-mediated effects. Nonetheless, our study has

set the stage to unravel the sequelae of events that underlie

the neurobehavioural deficits reported in animals exposed to

an antenatal insult.
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