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Abstract
Controlling the spatiotemporal firing pattern of an intricately connected network of neurons
through microstimulation is highly desirable in many applications. We investigated in this paper
the feasibility of using a model-based approach to the analysis and control of a Basal Ganglia
(BG) network model of Hodgkin–Huxley (HH) spiking neurons through microstimulation.
Detailed analysis of this network model suggests that it can reproduce the experimentally observed
characteristics of BG neurons under a normal and a pathological Parkinsonian state. A simplified
neuronal firing rate model, identified from the detailed HH network model, is shown to capture the
essential network dynamics. Mathematical analysis of the simplified model reveals the presence of
a systematic relationship between the network’s structure and its dynamic response to
spatiotemporally patterned microstimulation. We show that both the network synaptic
organization and the local mechanism of microstimulation can impose tight constraints on the
possible spatiotemporal firing patterns that can be generated by the microstimulated network,
which may hinder the effectiveness of microstimulation to achieve a desired objective under
certain conditions. Finally, we demonstrate that the feedback control design aided by the
mathematical analysis of the simplified model is indeed effective in driving the BG network in the
normal and Parskinsonian states to follow a prescribed spatiotemporal firing pattern. We further
show that the rhythmic/oscillatory patterns that characterize a dopamine-depleted BG network can
be suppressed as a direct consequence of controlling the spatiotemporal pattern of a subpopulation
of the output Globus Pallidus internalis (GPi) neurons in the network. This work may provide
plausible explanations for the mechanisms underlying the therapeutic effects of Deep Brain
Stimulation (DBS) in PD and pave the way towards a model-based, network level analysis and
closed-loop control and optimization of DBS parameters, among many other applications.

1. Introduction
Microstimulation of biological neural networks through extracellular current injection has
been clinically regarded as a way to evoke patterns of neural activity that could ultimately
lead to a desirable functional outcome. Examples include Functional Electrical Stimulation
(FES) in the peripheral [1, 2], and Deep Brain Stimulation (DBS) in the central nervous
systems [3, 4], as well as inducing perception with sensory prosthetic devices such as
Cochlear and retinal implants [5, 6]. In many brain areas, information is widely believed to
be encoded in the precise spiking patterns of densely connected networks of neurons with
distinct morphologies and cell types, and precise spatiotemporal control of the output of
these networks through microstimulation is highly desirable in many applications. This
control, however, is challenging, in part due to the large number of unobserved elements in
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the area being stimulated, the complexity underlying the local mechanisms of
microstimulation, and the interplay between the intrinsic network structure and its dynamic
response to external stimulation.

Electrical microstimulation activates not only the neuronal elements near the electrode tip,
but also networks of numerous neurons that are connected to those elements being directly
stimulated. It was suggested in [7] that extracellular electrical microstimulation causes
sparse and spatially distributed patterns of activation that depends on the axonal projection
patterns in the cortex. At low current levels (subthreshold excitation), neural elements-most
likely axons within tens of microns from the electrode tip-are mainly activated via direct
depolarization and then propagate in both antidromic and orthodromic directions, consistent
with previous computational studies [8, 9, 10] and in vitro experimental investigations [11,
12]. This effect, however, does not rule out the possibility that at high current
(suprathreshold excitation) through a single electrode or at low currents (subthreshold)
through multiple microelectrodes more neurons could be indirectly activated via synaptic
connections [13, 14]. Indeed, previous studies have suggested that microstimulation can
elicit postsynaptic potentials, which, together with antidromic activation, are expected to
have major influence on spatially diffuse networks [13, 15]. Taken together, the sparse and
distributed pattern of activation evoked by microstimulation makes it critical to precisely
control the delivery of microstimulation, both in space and time, in order to achieve a
desired outcome.

Despite the progress made to date, it remains difficult to formally characterize how densely
connected networks of neurons respond differentially to arbitrary spatiotemporal stimulation
patterns, let alone optimize them for a given application. Lack of analytical tractability is
one major obstacle that precludes characterizing the effects of patterned microstimulation at
the network level, particularly in the case of large networks of intricately interconnected
spiking neurons such as those in the Basal Ganglia (BG) system involved in motor control.
The objective of this work is to investigate the feasibility of a model-based approach to the
analysis and control of neural microcircuits from a Multiple-Input-Multiple-Output (MIMO)
systems perspective. In the BG system, such approach may be substantially important to
provide plausible explanation of the enigmatic mechanisms of DBS in Parkinson’s disease
treatment, and to provide more effective ways to optimize stimulation parameters.

The paper is organized as follows. Section 2 provides necessary background on the
simulated BG neural circuit, the structure of the simplified firing rate model, and the use of
Singular Value Decomposition (SVD) for the analysis of the system. The results of the
analysis and control design based on the simplified model are detailed in Section 3. We
discuss in Sec. 4 practical issues related to spatiotempral control of the BG neural circuit in
normal and diseased states and devise some strategies for the control of these circuits.
Section 5 summarizes our conclusion and suggestions for future work.

2. Methods
2.1. A Biologically Realistic Network of Spiking Neurons

A Matlab/Simulink model was implemented based on the Basal Ganglia (BG) circuit used in
[16]. Figure 1(a) shows the high level block digram of the BG circuit and Figure 1(b) shows
its detailed synaptic connectivity. The model consists of three populations of neurons (see
Figure 1(a)): Subthalamic Nucleus (STN), Globus Pallidus externalis (GPe), and Globus
Pallidus internalis (GPi). Each population consists of 16 single-compartment Hodgkin-
Huxley (HH) type spiking neurons whose membrane potentials are governed by a selection
of ionic channels to match the in-vitro electrophysiological recordings. More precisely, for a
microcircuit consisting of N neurons, we have
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(1)

where Ci and Vi are the membrane capacitance and the membrane potential of neuron i,

respectively.  is the ionic current,  is synaptic current from neuron j to neuron i, and

 is the intracellularly injected current at neuron i (See [17, 16] for the composition of
ionic channels for each type of neurons).

All neurons are firing spontaneously through a constant current injection. Each STN neuron
provides excitatory inputs to a subpopulation of GPe and GPi neurons. In addition to the self
inhibitory connections within the GPe neuron population, each GPe neuron also inhibits
neurons in the STN and GPi population. Each STN neuron accepts temporally patterned
electrical pulse (square shape with duration = 0.6 ms and amplitude = 200 pA/μm2) trains
that are either randomly generated or controller optimized. Note that each STN neuron will
subsequently excite a network of neurons due to synaptic coupling. We chose to control the
spatiotemporal firing pattern of GPi neurons because they constitute the major outputs of the
BG system to motor nuclei in the thalamus that leads to activation of cortical premotor
circuitry [18], and because controlling this activity is hypothesized to underlie the
therapeutic mechanisms of DBS in Parkinson’s Disease (PD) [3]. The stimulation inputs are
denoted by s1 to s16 as shown in Figure 1(b). Spike trains were extracted by simple
thresholding of the membrane potentials.

2.2. System Identification for Model Simplification
For simplicity we assume that neuronal outputs are expressed in terms of their firing rates
instead of precisely timed sequences of action potentials (similarly for the stimulation pulse
trains). We first smooth the original discrete event observations by calculating the firing
rates over a sliding window of length T (e.g. see Figure 1(c) where T = 200ms). We then use
the following model to characterize the input-output relationship of each individual neuron

(2)

where tk = kTs is the discrete time stamps and Ts is the sample time. ri(tk) is the firing rate of
neuron i over a sliding window of length T, sj(tk) is the jth stimulation input, q−1 is the unit

delay operator, xi(tk) is an intermediate variable; The term  models the direct
(monosynaptic) dynamic influences of the spiking rate of neuron j on that of neuron i via

xi(tk), and the term  captures the dynamic interaction between input sj and the firing
rate of neuron i via xi(tk); h(xi(tk); θi) is the static output function parameterized by θi, which,
for example, can be used to account for the background level of spiking and the nonlinearity
in spiking frequency characteristics [19, 20, 21, 22].

If we choose to use a first order polynomial for the output function, i.e., h(xi(tk); θi) = kixi(tk)
+ ci, by eliminating the intermediate variables xi(tk), we can explicitly express the firing

Liu et al. Page 3

J Neural Eng. Author manuscript; available in PMC 2012 August 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



rates r(tk) = [r1(tk), … , rn(tk)]T (assuming n neurons) as a function of the stimulation inputs
s(tk) = [s1(tk), … , sp(tk)]T (assuming p stimulation inputs) and other variables as follows

(3)

where c = [c1; … ; cn]T ; K is a diagonal matrix with each diagonal element equal to ki; The

transfer functions  and  are the (i, j)th elements of matrices W(q−1) and
H(q−1), respectively. Choosing a first order polynomial as the output function linearizes the
microcircuit and makes the resulting model mathematically tractable. The model, however,
becomes valid only in a limited operation regime. The cost and benefits of model
simplification from the perspective of control analysis and design are further discussed in
Section 4.

It is worthwhile to emphasize the importance of the expression , which
describes how the monosynaptic (first-order/direct/open-loop) interaction,

, translates into polysynaptic (higher-order/indirect/closed-loop)

interaction among neurons across the entire network. Each panel of 
characterizes how the effects of changing the firing rate of one neuron dynamically

propagate to other neurons through synaptic coupling. Therefore, pre-multiplying  by

, denoted as , represents network effects of
multi-site microstimulation.

2.3. Singular Value Decomposition
By replacing q−1 with e−jwTs, we obtain the frequency domain representation of the transfer

function , where Ts is the sample time, and w here

has the units of rad/sec (note ). G(e−jwTs) describes the system response
to sinusoidal stimulation patterns with frequency w. Since the model is a firing rate model, w
is therefore the oscillation frequency of the firing rates and should not be confused with the
actual values of the firing rates (or the instantaneous stimulation frequency). Fixed period
pulse trains under this framework are constant vector signals with w = 0 and amplitude equal
to the corresponding fixed frequency.

For a Single-Input-Single-Output (SISO) linear time invariant (LTI) system, applying a
sinusoidal signal s(tk) = Assin(wTsk + αs) (or s(w) = Asejαs in phasor notation) at the input,
the output will also be a sinusoidal signal but scaled by a factor ∣G(e−jwTs)∣ and phase shifted

by 

or in phasor notation because
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because . Therefore, the gain at a given frequency is
simply

If we use the vector 2-norm, denoted as ∥·∥2, then at a given input frequency w, the gain of
the MIMO system G(e−jwTs) for a specific input signal s(w) is given by the ratio

Unlike the case of SISO systems, the system gain of a MIMO system additionally depends
on the direction of the input vector, denoted by s(w) = [s1(w), … , sp(w)]T, which can vary

from  to , where  is the smallest singular value and  is
the largest singular value of the transfer function matrix G(e−jwTs). In other words, the
system responds differentially depending on relative amplitudes and phase shifts of the
sinusoidal stimulation inputs across stimulation electrodes.

To gain more insight into the mathematical tractability of the transfer function from
stimulation input to neural output, let’s consider the SVD of the transfer functionmatrix
G(e−jwTs) from s to r evaluated at a fixed frequency w. The SVD of the transfer function
matrix is given by

(4)

where ∑(w) is a n by p matrix whose main diagonal elements are the non-zero singular
values σi(w), i = 1, … , min {n, p} arranged in descending order; U(w) = [u1(w), … , un(w)]
is a unitary matrix of output singular vectors, and V(w) = [v1(w), … , vp(w)] is a unitary
matrix of input singular vectors. H denotes the complex conjugate transpose. Note that
elements in the input singular vector ui(w) or output singular vector vi(w) can also be written
in phasor notation and they represent the relative amplitudes and phase shifts of the input
and the output signals. If we rewrite Equation (4) as G(e−jwTs)V(w) = U(w)∑(w), then for
column i we would have

(5)

Note that if we consider a stimulation input in the direction vi(w), then the output is in the
direction ui(w) and the gain is the corresponding singular value σi(w). Figure 2 illustrates the
singular value decomposition of a 3-input-3-output system at w = 0. The input directions
corresponding to σ1 and σ2 are amplified whereas the input direction corresponding to σ3 is
attenuated. In the case when ∑(w) is dominated by very few large singular values, the
network tends to produce very specific response patterns only when specific input patterns

Liu et al. Page 5

J Neural Eng. Author manuscript; available in PMC 2012 August 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



are presented, and thus exhibits strong spatiotemporal selectivity. We will drop the term
e−jwTs and w from now on for simplicity, but note that SVD is frequency dependent.

The number of directions with significantly nonzero singular values can be considered as
“vocabularies” that the circuit can generate. This imposes spatiotemporal constraints that
may limit the information that could be carried by both timing and rates in a population of
neurons [23]. Under this simple SVD framework, we can argue that increasing the number
of neurons will generally lead to an increase, albeit at a slower rate, in the number of
“vocabularies”, because the dynamics of the local cortical circuit can result in varying
degrees of correlation among interconnected neurons. This is consistent to the experimental
observations presented in [23].

2.4. Functional Controllability
Given a set of neurons to be controlled, it is important to determine whether their firing
activity can be independently manipulated using a given set of stimulation inputs, which
brings the concept of functional controllability. A system is said to be functionally
controllable if the normal rank of the input-output transfer function is equal to the number of
outputs, which naturally requires the number of inputs to be no less than the number of
outputs [24]. The minimum singular value of the input-output transfer function matrix can
be used as an indicator of how close the system is to be functionally uncontrollable [24]. We

note that  is bounded as follows

which depends not only on the network synaptic coupling  but also on the local
mechanisms of microstimulation 

High levels of input signal “spreading” onto large number of neurons disregarding their
existing anatomical connectivity can potentially cause  to be ill-conditioned (or rank

deficient), and thus lead to smaller . For example, in the extreme case when each
stimulation electrode activates all STN neurons, we are effectively dealing with a system
with only one degree of control freedom. In other words, we can only drive the firing
patterns of the STN neurons in one direction. As a result, increasing the level of current
spread can shrink the space of spatiotemporal patterns we can evoke through multi-channel
microstimulation. This effect is similar to that of reducing the number of stimulation inputs.

2.5. Relative Gain Array
Closing the loop between certain set of inputs and outputs in the feedback control mode can
have many undesired system responses. This is primarily due to the presence of dynamic
coupling among various inputs and outputs as a result of synaptic connectivity and actuation
dynamics. It is, therefore, important to quantify the degree of coupling of various Input/
Output (I/O) combinations. This is especially useful when we are faced with an exceedingly
large parameter space of potential inputs and corresponding outputs, which would actually
be the case when stimulating hundreds or possibly thousands of neurons simultaneously.
The Relative Gain Array (RGA) [24, page 90] is one such measure of interaction that is
commonly used in the MIMO control literature. The RGA of the input-output transfer
function matrix G is defined by
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(6)

where × denotes element-by-element multiplication, and G† is the pseudo inverse of G.
Each element of the RGA matrix represents the ratio between the open-loop and the “closed-
loop” gains for the corresponding input-output pair. By “closed-loop” we mean partial
control with all other outputs perfectly controlled (set to constant values)[24]. RGA is a very
useful tool for localized/decentralized control. The objective is to pair up the specific
stimulation inputs and neuron outputs whose corresponding RGA elements are close to 1,
because the corresponding transfer function in such case is less affected by closing the other
loops.

3. Results
3.1. The Simplified Firing Rate Model Captures the Essential Dynamics of the Network in
Response to External Inputs

The parameters of each individual firing rate neuron model (see equation (2)) were
estimated by fitting the model to the data collected from the simulation of the Hodgkin-
Huxley BG circuit as described in Section 2.1 (see Figure 1(c) for examples of simulated
data). The parameter estimation was performed using the system identification toolbox in
Matlab where iterative prediction-error minimization methods are available. The search
method is one or a combination of Gauss-Newton method, adaptive Gauss-Newton method,
gradient method, or Levenberg-Marquardt method. The search method was automatically
chosen by the Matlab function. The output function was chosen to be the first order
polynomial, and the resulting simplified model was linear (see Equation (3)). Note that other
types of output functions have been tested, but no significant performance improvement was
observed (see Figure 3(a)).

The simplified network model was then constructed by interconnecting individual simplified
neuron models based on the actual network topology of Hodgkin-Huxley BG circuit. The
prediction accuracy of the firing rate network model is shown in Figure 3(b), in which the
simplified circuit was driven by the same external patterned stimulation inputs. There is high
level of correlation between actual spiking rates and the predicted ones (left and middle
panels in Figure 3(b)). The statistics of the Variance Accounted For

( , where  is the predicted firing rate) for three different types
of neurons are shown on the right panel. Note that the prediction performance decreases
from single neuron models to network models, which is likely due to the error accumulation
when neuron models are interconnected into a network. Despite the apparent simplicity of
the model structure (see equation (3)), the results demonstrate that the simplified circuit
model indeed captures the essential features of the dynamic interactions among different
neurons as well as the spatiotemporal dynamics of the neural circuit in response to external
stimulation inputs.

3.2. Functional Controllability is Largely a Structural Property of the Network
We use a few examples in this section to demonstrate that functional controllability is
largely a property of the network structure and the relative connection strength. For
example, consider the problem of controlling the firing activities of GPi neurons 1 to 4 using
two separate groups of stimulation inputs, {s1, … , s8} or {s9, … , s16}. Figure 4(a) shows
the singular values of the transfer function matrices from {s1, … , s8} (upper panel) and
from {s9, … , s16} (lower panel) to the outputs of the four GPi neurons (sub-matrices of
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). The minimum singular value of the system with inputs {s1, … , s8} is much
larger than that of the system with inputs {s9, … , s16}. Therefore, the system with inputs
{s9, … , s16} is much closer to be functionally uncontrollable, meaning that stimulating
these specific STN neurons does not permit exercising the most effective control of the
spiking of the four GPi neurons. On the other hand, using inputs {s1, … , s8} offers much
better controllability across all frequencies for these GPi neurons. Closer inspection of the
Hodgkin-Huxley BG circuit reveals that this is likely due to the weak synaptic connectivity
between two populations of neurons as shown in Figure 4(b), in which the maximum
conductance of the synaptic coupling between-population from STN neurons to GPe
neurons is only one-fifth of those within each population. The four output GPi neurons
belong to population A that inputs {s1, … , s8} directly influence. As a result, the influence
of inputs {s9, … , s16} on the firing pattern of the four GPi neurons through these weak
between-population synaptic connections is less effective than that of inputs {s1, … , s8}.

The practical implications of this observation can be stated as follows: stimulation inputs
have to directly influence neurons that project to the output neurons for the system to have
better functional controllability. As expected, the functional controllability of systems with
any random combinations of 8 different stimulation inputs, out of the 16 available, largely
falls between the two extreme cases discussed above (see Figure 4(c)). In terms of the ability
to independently manipulate the firing activity of the four output GPi neurons, input
combination {s1, … , s8} would be the best choice among all different combinations of 8 out
of the 16 available stimulation inputs. The condition of functional controllability guarantees
that the system outputs can be controlled to follow arbitrary spatiotemporal patterns. This
can be rather restrictive if the desirable output patterns are known to belong to the subspace
spanned by directions with large singular values.

3.3. Spatiotemporal Selectivity of the Neural Circuit
We now examine the circuit from the eight stimulation inputs {s1, … , s8} to the four output
GPi neurons and denote the system transfer function matrix as G1. We provide here a
numerical example to make an important point. The SVD of the DC gain matrix of G1,
which characterizes the system response to stimulation pulse trains with fixed frequency (in
other words, when there is no oscillation in the stimulation pattern), is given by

Carefully examining the column vectors of U1, we note that each element corresponds to the
amount of change in the firing rate of the corresponding GPi output neuron. For example,
the first column vector u1 is [−0.5, −0.4, 0.31, 0.67]T means that the firing rates of the first

Liu et al. Page 8

J Neural Eng. Author manuscript; available in PMC 2012 August 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



two GPi neurons would change by approximately similar amounts in the opposite direction
to the firing rates of the other two GPi neurons. Because this vector corresponds to the
largest singular value, small changes in the corresponding input direction would lead to
large changes in the output. On the other hand, the last column vector u4 is [0.51, 0.50, 0.50,
0.48]T means that changes in the firing rates of the output neurons will occur in similar
directions. This, however, would require larger changes in the corresponding input direction
because u4 corresponds to the smallest singular value.

To see if this interpretation is consistent with the network structure, the detailed local
synaptic connectivity of the BG circuit that contains the 4 GPi neurons is redrawn in Figure
5(a). As we can observe from this figure, each output GPi neuron (highlighted in grey)
accepts one excitatory input from one STN neuron and one inhibitory input from one GPe
neuron. To increase the firing of all four GPi neurons, we would naturally want to increase
the firing of the excitatory presynaptic STN neurons (indexed from 1 to 4) and
simultaneously suppress the firing of inhibitory presynaptic GPe neurons (indexed 1 to 4).
This creates a control conflict since each of the presynaptic STN neurons also strongly
excite the presynaptic GPe neurons, which subsequently cancels part of the excitatory
effects of the presynaptic STN neurons. On the other hand, consider the input/output
direction corresponding to the largest singular value, increasing (suppressing) the firing of
STN neurons 1 and 2 has similar effects on the firing of the four GPi neurons to that of
suppressing (increasing) STN neurons 3 and 4 (Figure 5(a)). Therefore, similar changes in
this stimulation input direction can produce larger changes in the corresponding neural
output direction.

It is important to bring this theoretical analysis to practical observations during DBS of the
BG system. Typically, electrical pulses are delivered at a fixed frequency across all
stimulation sites [3, 25]. Mathematically, this corresponds to evaluating the transfer function
matrix G1(e−jwTs) at w = 0, i.e., G1(1), which is the DC gain matrix we have previously
analyzed. At a fixed stimulation frequency f0 across all stimulation sites, the stimulation
input can be expressed as a vector signals vs(w)|w=0 = f0[1; 1; 1; 1; 1; 1; 1; 1]T, and applying
this input to the system we have

(7)

The gain in the input direction vs is much smaller than the smallest singular value. This is
because the projections of vs along the last four columns vectors of V1 occupy 93.65% of
the total variance in the stimulation inputs without affecting the firing rates of the output GPi
neurons. This shows that progressive changes in the firings rates of GPi neurons will be seen
when the frequency of the electrical pulse train is progressively higher than zero.

The small system gain (0.13 << 1) corresponding to stimulation with fixed period/frequency
pulse trains suggests that the changes in the GPi neurons’ patterns can be quite insignificant
compared to the spontaneous activity at lower fixed stimulation frequencies. In other words,
the network dynamics are more likely to be dominated by the spontaneous activity at lower
stimulation frequencies. Therefore, low fixed frequency stimulation is unlikely to suppress
the rhythmic firing patterns that might exist in the spontaneous network activity that are
eventually manifested in the abnormal PD motor behavior. At high stimulation frequencies,
the effect of stimulation-induced changes in the network dynamics starts to dominate over
the spontaneous network activity and thus potentially suppresses the detrimental effects of
any rhythmic patterns that might exist. This could be a plausible explanation of why only
high frequency stimulation is effective in suppressing the symptoms of PD [26].
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The analysis of the DC matrix G1(1) shows the importance of the spatial distribution of the
stimulation pattern on the network selectivity. To study both the spatial and the temporal
aspects of the network dynamics, we need to examine the transfer function matrix
G1(e−jwTs(1) across different frequencies (G1(e−jwTs(1) characterizes the system response
when the system is subject to sinusoidal stimulation with frequency w). The spatiotemporal
selectivity to arbitrary stimulation patterns can be better illustrated by reconstructing the
corresponding input and output patterns in the time domain. We use the inverse Fast Fourier
Transform (iFFT) by uniformly sampling the frequency domain response (consider (5) and

let , k = 1, … ,N). Figure 5(b) shows the reconstructed time domain stimulation input
and output patterns corresponding to the largest and the smallest non-zero singular values.
Higher frequency contents greater than 300 rad/s (around 48 Hz) are discarded since the
functional controllability of the system degrades significantly at higher frequencies (see
Figure 4(a)).

Figure 5(b) shows the response of the GPi neurons under two different sets of
spatiotemporal stimulation patterns that correspond to the largest (first panel in Figure 5(b))
and the smallest singular values (third panel in Figure 5(b)). At the same level of variation in
the inputs (the total variance in all inputs is kept the same for both scenarios), the total
variance in all outputs is 1.71 for the largest singular value (second panel in in Figure 5(b))
and 0.21 for the smallest singular values (fourth panel in in Figure 5(b)). The system
amplifies the effect of the input patterns associated with the largest singular value and
attenuates the effect of the inputs patterns associated with the smallest singular values. The
difference is large (1.71 >> 0.21) and is quite visible from the plotted output patterns for the
two different scenarios. The circuit therefore is more sensitive to certain spatiotemporal
patterns of variation in the inputs and thus exhibits strong spatiotemporal selectivity.

3.4. Control Structure Selection and Spatiotemporal Feedback Control
In this section, we design a localized/decentralized feedback controller that drives the
spatiotemporal firing patterns of the four GPi neurons to follow prescribed reference
patterns using eight stimulation inputs s1, … , s8. Due to the lack of experimentally validated
model that links the observed motor behavior to the firing patterns of GPi, desired reference
patterns associated with normal motor behavior were not available. We therefore use
reference signals obtained from the open loop simulation of the BG circuit under random
pulse trains (see Figure 1(c)). This would maximally probe the system to be controlled, and
that helps assessing the ”modes” in the outputs to a broad range of ”modes” in the inputs.

For a given output neuron, we first select a set of stimulation sites that are effective in
controlling its firing activity and introduce less close-loop interactions. We accomplish this
by using the concept of relative gain arrays (see Section 2.5). We note that the RGA array is
frequency dependent and the pairing suggested by RGA can be different at different
frequencies. In our case, however, the pairing suggested by the RGA at different frequencies
were largely the same and we picked the RGA evaluated at 100 rad/sec as an illustrative
example. The relative gain array for transfer function G1 evaluated around 100 rad/sec is
calculated according to Equation (6) and its values are shown in Table 1. This angular
frequency corresponds to 16 Hz and it is the frequency at which the singular values started
to decrease significantly. The matrix G1 is of dimension 4 by 8 and it characterizes the
system response to various 16 Hz sinusoidal stimulation patterns. The rows and columns
correspond to the outputs and inputs, respectively. Each element in the matrix represents the
ratio between the open-loop and closed-loop gains for the corresponding input-output pair. If
the value is close to 1, the corresponding input is preferred to be used for the control of the
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corresponding output because closing the loop does not significantly impact the dynamic
relationship between the corresponding input and output pair.

From Table 1, we can observe that none of the RGA elements is very close to 1 suggesting
that there are strong closed-loop interactions within the neuron circuit and all the input-
output gains change significantly from open-loop to closed-loop. The RGA elements whose
values are relatively close to 1 are highlighted using bold font in Table 1. The corresponding
inputs and outputs are thus paired up and only the corresponding inputs can be most
effectively used to control the corresponding outputs [24]. Therefore, we use s1 and s8 to
control GPi neuron 1, s2 and s7 to control GPi neuron 2, s3 and s5 to control GPi neuron 3,
and s4 and s6 to control GPi neuron 4. This give rise to the following controller structure

(8)

where [s1, … , s8]T are the 8-channel stimulation inputs and [e1, … , e4]T are the differences
between the references and the measured responses of the 4 GPi neurons;

 in which  and  are the proportional and integral gains of the PI
controller; Ts is the sampling period. Note that we use the same K0(q−1) for all and this
leaves us only two parameters (  and ) to be tuned. The controller has a decentralized
structure, for example, only the firing activity of GPi neuron 1 is used to calculate the
control signals for s1 and s8.

The controller parameter tuning was first carried out using the simplified model. After
satisfactory performance was achieved, the same controller was then implemented with the
detailed BG circuit of Hodgkin-Huxley neurons. Figure 6(a) shows the block diagram of the
detailed implementation of the feedback control system. The Finite Impulse Response (FIR)
filter calculates the spiking rates over a sliding window of 200ms. The differences between
the filtered reference and output spike trains are used to generate the prototyped stimulation
pulse trains that are delivered to s1, … , s8 as marked by square in Figure 1(b). The
stimulator is a pulse generator with variable frequency inputs, which are continuously
adjusted by the controller.

Figure 6(b) and 6(c) shows an example raster plot of the reference spike trains and the
responses of the output GPi neurons (indexed from 1 to 4). Switching on the feedback
controller makes the firing patterns of the output GPi neurons to follow the references.
Correlation analysis (Figure 6(d)) shows that the correlation coefficients (as in [27])
between the reference and the evoked spike trains under closed-loop control are significantly
higher than those when the controller is switched off. This indicates that the closed-loop
feedback controller is indeed effective in modulating the spatiotemporal firing patterns of
the output neurons.
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3.5. Feedback Control of a Parkinsonian BG Circuit
In the previous example, we have shown that the firing activity of the output GPi neurons
can be forced to follow a given spatiotemporal firing pattern. Here, we investigate whether
this effect might be useful to suppress the existing spontaneous activity patterns in the
network such as the rhythmic/oscillatory patterns that characterize PD. We study in this
section the effect of feedback tracking in a Parkinsonian BG circuit.

A Parkinsonian BG circuit was simulated by increasing the striatal inhibition to GPe neurons
and decreasing the intrapallidal inhibition among GPe neurons to mimic dopamine loss [16].
For the purpose of simplicity, we adopted the same controller design based on the simplified
model of the healthy circuit to control the Parkinsonian BG circuit. Note that further
adjustment of the controller structure and parameters might produce better results because
the controller we used was not specifically designed for the Parkinsonian BG circuit. We
used the spike trains collected from the simulation of the healthy circuit under random
stimulation inputs as reference signals.

All three types of neurons in the Parkinsonian BG circuit exhibit rhythmic/oscillatory firing
patterns once the control was switched off (Figure 7(b)). Two pairs of GPi neurons (GPi
neuron 1 and 2, GPi neuron 3 and 4) exhibit high levels of correlation/synchronization and
the firing activity of the two pairs is negatively correlated in the Parkinsonian BG circuit
when the control was off (see Figure 7(a) and the right panel of Figure 7(c)). Once the
controller was switched on, it drove the outputs of the GPi neourns to follow the reference
patterns. In doing so, desynchronization of the GPi neurons resulted and the correlation
structure among them resembled that of the reference signals (the left and middle panels of
Figure 7(c)). In addition, the rhythmic/oscillatory firing patterns also disappeared from all
the neurons in the Parkinsonian BG circuit (Figure 7(b)).

4. Discussion
4.1. Simplified Model-Based Analysis and Control

In this work, we have shown that closed-loop control of neural activity using neural
feedback provides an effective way for precise spatiotemporal control of a complex network
of BG spiking neurons. Without any insight into the relationship between the circuit
connectivity and network dynamics that can be provided by the analysis of a simplified
circuit model, we can easily lose tractability in a myriad of signals. We provided a strategy
to build a simplified model-based approach to deal with large scale systems when trial-and-
error approaches become increasingly unmanageable [28, 29].

Using a simplified model, however, comes at a cost. Simplified circuit models offer a
compromise between modeling accuracy and analytical tractability. As a result, simplified
models may only be valid within a limited operation regime. For example, the simplified
firing rate model used in our study does not capture the transient spiking dynamics of
neurons at the very short (sub-millisecond) time scale. Therefore, it is anticipated to be of
most relevance to study the dynamic interactions among neurons through synapses with time
constants in the ranges of milliseconds or tens of milliseconds. Even though the simplified
model used in our study is sufficient for the investigation of the spatiotemporal network
dynamics in response to patterned stimulation, the use of a first order polynomial as the
output function prevents it from capturing the subtle features of the self-sustained activity
patterns in a spontaneously active neural circuit, such as oscillations, unless they are
externally driven. The simplified model only approximates this type of self-sustained neural
activity as constant background firing rates. The model, however, does capture the
susceptibility or enhanced sensitivity of the network to spatially patterned oscillations in the
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firing rates within certain frequency bands (note that the largest singular values peaks
around 7 Hz as shown in Figure 4(a)).

4.2. Limited Number of Observable Neurons and Stimulation Sites
From a practical standpoint, the invasive nature of microelectrodes implies that
simultaneous stimulation and recording from a large number of neurons may inevitably
increase tissue damage and thus limit the number of stimulation sites as well as the number
of recorded neurons [30]. This may impose difficulties in model identification and
fundamentally limit how much could be achieved using controlled microstimulation. As
required by functional controllability, the number of inputs has to be no less than the number
of outputs. If the number of stimulation inputs p is smaller than the number of output
neurons n, the system will have at least n – p output directions up+1, … , un that are not
controllable. In other words, it is only possible for the stimulation inputs to generate
spatiotemporal patterns distributed along a specific set of directions u1, … , up (if all the p
singular values are non-zero). Therefore, limited by the number of stimulation sites, it is
clearly difficult, if not impossible, to independently manipulate the activity of all measured
neurons, let alone thousands of unobserved ones.

Despite the apparent difficulty, some factors might help in using smaller number of
stimulation sites to control the spatiotemporal activity of larger number of neurons. First,
neural activity in local cortical circuits is known to be correlated and the structure of this
correlation seems to be critical for shaping the information flow across many pathways [31,
32]. Achieving a spatiotemporally correlated firing pattern does not necessarily require
independently manipulating the firing activity of every output neuron and thus impose less
restriction on the number of stimulation inputs. Second, a small fraction of neurons in a
large cell assembly might be more influential or relevant in producing the desired output
than others [33]. Therefore, a “good enough” outcome might be achieved by just controlling
the activities of the key members in a cell assembly. This is particularly the case when we
have access to neural elements belonging to a strongly connected structure [34, 35, 36].

4.3. On the Use of Feedback
The use of feedback can be very versatile depending on the nature of the application. Neural
feedback has been demonstrated, albeit at an elementary level, to be effective in creating
functional links between spatially distant brain areas [37]. A number of computational [38,
39, 52] and biological studies [40, 41] have also demonstrated that feedback can be highly
effective in regulating ensemble neural activity, particularly in the control of synchronized
cell assemblies. Because the control goal in such cases was to desynchronize/regularize the
entire population dynamics using a few macroelectrodes with broad spatial current/voltage
spread, they are fraught with generalization ability to cases in which precise and more
delicate spatiotemporal control of spiking through more localized and less intense multi-
channel microstimulation is sought, such as evoking perceptual experience through
stimulation of sensory areas.

4.4. Effects of Choosing Different Stimulation Targets
STN and Gllobus Pallidus (GP) of the basal ganglia are the two common targets of
stimulation for Parkinson’s Disease (PD) [42]. Mathematical analysis of the matrix

 indicates that the spatiotemporal control of GPi neurons is generally more difficult
if we are confined to only one target nuclei: STN or GPe. For example, consider the problem
of controlling the spatiotemporal patterns of the four GPi neurons (1 to 4) using different
stimulation targets: STN neurons (1 to 8, same system as in the upper panel of Figure4(a))
alone, GPe neurons (1 to 8) alone, or both STN (1 to 4) and GPe (1 to 4) neurons. Figure 8
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shows the smallest and the largest singular values of the transfer function matrices for the
three different scenarios. The smallest singular value when stimulating both STN and GPe
neurons is the largest among the three scenarios and the singular values also cover a higher
range. This suggests that simultaneously influencing both STN and GPe neurons may offer
better overall controllability with less stimulation energy. This observation, however, is not
conclusive since the simulation energy is highly dependent on the output spatiotemporal
patterns one would like to evoke. Nevertheless, our analysis is consistent with experimental
findings [53] suggesting that, in addition to local effects, GPi stimulation has direct effects
on efferent axons, thereby enabling more complex polysynaptic responses to dominate over
monosynaptic ones, which eventually leads to changes in baseline firing rates in
postsynaptic neurons.

4.5. Implications for DBS
With highly complex anatomical and functional connectivity patterns in many brain areas,
the effect of extracellular electrical microstimulation can be profound at the network level.
Although the therapeutic mechanisms of DBS remain largely unclear [3], it is now
commonly accepted that axons in the vicinity of the DBS electrodes are likely to be directly
activated first and the effect of the stimulation on neural activity at the stimulation site
would be increased or decreased depending on neurotransmitters of the afferent fibers
projecting to that site [4, 43, 14]. Based on this account, high frequency stimulation can
“hijack” the pathological neural firing patterns, such as the rhythmic, oscillatory activity
patterns that characterize the movement [44], and thus prevents the transmission of
pathological activity patterns to other parts of the network [45]. Studies based on functional
magnetic resonance imaging (fMRI) provide additional evidence that there is much more to
the effects of DBS than just around the electrode [26]. It has been found that DBS induces
widespread hemodynamic changes both in the cortical and subcortical areas when applied to
patients with Parkinson’s disease [46] and compulsive disorders [47]. Different effects of
high frequency stimulation of various targets in the BG system also suggest that the intrinsic
network connectivity may play an important role in deciphering the mechanism of DBS, and
subsequently other unsolved mysteries, such as therapeutic latencies during DBS onset and
with cessation [3, 48].

Without a clear consensus in the clinical community on the exact mechanisms of DBS [48],
a model-based network level analysis such as the one proposed here might be helpful in
providing plausible explanations [26]. For the BG circuit under study, the response of the
output GPi neurons was significantly attenuated when we indiscriminately applied fixed
frequency stimulation pulse trains across all stimulation sites at the STN. This may provide a
plausible network level explanation of why high frequency stimulation is therapeutically
effective. In addition, the BG network model was shown to be susceptible to certain firing
patterns with low-frequency oscillations, and as a result the rhythmic activity in the firing
rates could be further amplified at the network level.

The strong spatiotemporal selectivity exhibited by the BG circuit under multi-channel
microstimulation suggests that both the spatial and the temporal aspects of the stimulation
patterns play an important role in shaping the response of the output GPi neurons. A model-
based approach becomes beneficial when progressive knowledge of the inferred functional
connectivity of the local neural circuit [49, 50, 51] becomes available. As we improve our
understanding of the network mechanisms of DBS, it might be possible to develop model-
based closed-loop feedback control systems capable of adjusting the stimulation patterns
across multiple stimulation sites “on the fly” based on simultaneously recorded neural
activity elsewhere to achieve an optimal therapeutic outcome while minimizing the
stimulation energy and side effects.
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5. Conclusion
We investigated in this paper the feasibility of using a model-based approach to the analysis
and control of a network of spiking BG neurons in the normal and pathological states. Our
results suggest that a simplified firing rate model, identified from a detailed Hodgkin-
Huxley BG microcircuit model, captures the essential network dynamics in response to
external stimulation. The use of linearization (first order polynomial approximation of the
output function) is not as restrictive as it appears for the purpose of analysis and control
design, particularly in the case when the spatiotemporal neural activity is strongly modulated
by external stimulation inputs. The mathematical analysis revealed a systematic relationship
between the network’s structure and its dynamic response under spatiotemporally patterned
stimulation, which was otherwise difficult to characterize. A number of observations drawn
from the analysis of the simplified firing rate model were found to be consistent with the
detailed Hodgkin-Huxley BG circuit. In particular, the functional controllability was found
to be largely decided by the network synaptic coupling and its strength. And the
spatiotemporal selectivity of the neural circuit could be readily explained by examining
directions in the input-output mapping. Most importantly, once the control objective was
given the mathematical analysis helped to evaluate various combinations of stimulation
inputs, and a decentralized feedback control architecture suggested by the simplified model
was shown to be effective in driving the output neurons to follow a prescribed
spatiotemporal firing pattern in the detailed BG circuit. Finally, we demonstrated that it is
possible to use the proposed approach to control the activity pattern of the network in a
pathological state, effectively shaping its output to follow an arbitrary reference activity
pattern that could cause a normal motor function to emanate. This preliminary work can
pave the way towards a model-based, multilevel network analysis and closed-loop control of
PD, among many other applications.
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Figure 1.
A Basal Ganglia microcircuit. (a) High level block diagram of the BG circuit. (b) Detailed
synaptic connectivity of the BG circuit. The external microstimulation inputs are marked by
squares and red arrows. (c) BG microcircuit under patterned stimulation. Episodes of
stimulation pulse trains are randomly generated according to a Poisson distribution with
randomly reinforced silence period between successive episodes. Left panel shows a two-
second raster plots of the stimulation pulse trains and the spike trains from all neurons in the
network. Right panel shows the firing rates (scaled to fit the window) computed from the
spike trains shown in left panel over a sliding window of 200ms.
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Figure 2.
Directions in MIMO systems. The figure illustrates the singular value decomposition of a 3-
input-3-output system at w = 0. The input directions corresponding to σ1 and σ2 are
amplified whereas the input direction corresponding to σ3 is attenuated.
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Figure 3.
Prediction performance of the simplified model. (a) The impact of different types of output
functions on the prediction accuracy of single neuron model evaluated over ten seconds. (b)
Prediction accuracy of network model. Left panel plots the actual spiking rates from the BG
circuit of spiking neurons over two seconds. Middle panel plots the predicted spiking rates
using the simplified circuit model. Right panel shows the statistics of prediction accuracy

( ) for three different types of neurons.
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Figure 4.
Functional controllability is largely a property of the network synaptic coupling and their
relative strength. (a) Example of a functionally controllable system indicated by the singular
values of the transfer function matrices from {s1, … , s8} to GPi neurons 1 to 4 (upper
panel); example of a almost functionally uncontrollable system with {s9, … , s16} as
inputs(lower panel). (b) Network is redrawn from Figure 1(b) to demonstrate the two
clusters of weakly connected populations. The four output GPi neurons to be controlled
belong to population A that inputs {s1, … , s8} directly influence while {s9, … , s16}
indirectly influence. (c) The minimum singular values of systems with random combinations
of 8 out of 16 available simulation inputs to demonstrate the selectivity of the system across
frequencies and inputs. Total 20 different random combinations are shown. The output GPi
neurons are kept the same.
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Figure 5.
Network spatiotemporal selectivity. (a) Detailed view of the local synaptic connectivity of
the BG circuit. Same circuit drawn from population A in Figure 4(b) with inter-population
weak connections omitted for clarity. (b) Reconstruction of the input and output temporal
patterns corresponding to the largest and the smallest non-zero singular values. The total
energy of the inputs was normalized to 1. The first and second (third and fourth) column
show the input and output temporal patterns associated with the largest (smallest) singular
value.
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Figure 6.
Tracking performance of the decentralized closed-loop feedback controller. (a) Block
diagram of the detailed implementation of the closed-loop feedback control system. (b) The
raster plot of the reference and output spike trains before and after the controller is switched
off. The raster plot of the stimulation input spike trains are also shown. (c) Same results as in
(b) but plotted in firing rates (sliding window of 200 ms). (d) The box plot of the correlation
coefficients for each output GPi neuron with and without feedback control.
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Figure 7.
Desynchornization performance of a Parkinsonian BG circuit. (a) The firing rates (sliding
window of T = 200 ms) of the references and output GPi neurons during ON-OFF modes of
the feedback controller. (c) Sample traces of the membrane potentials of STN, GPe and GPi
neurons in the BG circuit during the two modes. (c) Correlation among the reference signals,
and the firing rates of the four output GPi neurons when the control is on and off
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Figure 8.
Profile of the smallest and the largest singular values of the transfer function matrices as a
function of frequency for different stimulation input targets: STN neurons (1 to 8) alone,
GPe neurons (1 to 8) alone, and combined STN (1 to 4) and GPe (1 to 4) neurons. The
output neurons are the four GPi neurons marked by gray in Figure 1(b). The dynamic range
between the smallest and largest singular values in the case of STN and GPe stimulation
indicates that the control is most effective compared to stimulation of STN or GPe only.
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Table 1

Relative gain array of the transfer function matrix G1 evaluated around 100 rad/sec (or 16 Hz)

s1 s2 s3 s4

GPi 1 0:47 + 0:04i −0:01 + 0:01i −0:00 + 0:00i 0:13 − 0:07i

GPi 2 −0:01 + 0:02i 0:52 + 0:04i 0:09 − 0:04i −0:00 − 0:01i

GPi 3 0:14 − 0:03i −0:01 − 0:00i 0:58 + 0:03i −0:01 + 0:01i

GPi 4 −0:00 − 0:02i 0:16 − 0:04i −0:01 + 0:00i 0:48 + 0:07i

s 5 s 6 s 7 s 8

GPi 1 −0:00 − 0:04i −0:02 − 0:01i 0:00 − 0:00i 0:44 + 0:06i

GPi 2 −0:01 − 0:01i −0:01 − 0:05i 0:42 + 0:05i 0:00 + 0:00i

GPi 3 0:30 + 0:04i 0:02 + 0:00i −0:01 − 0:04i −0:01 − 0:00i

GPi 4 0:02 + 0:01i 0:39 + 0:05i −0:02 − 0:01i −0:01 − 0:06i
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