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Although in vitro models have been a cornerstone of anti-cancer
drug development, their direct applicability to clinical cancer re-
search has been uncertain. Using a state-of-the-art Taqman-based
quantitative RT-PCR assay, we investigated the multidrug resis-
tance (MDR) transcriptome of six cancer types, in established can-
cer cell lines (grown in monolayer, 3D scaffold, or in xenograft)
and clinical samples, either containing >75% tumor cells or micro-
dissected. The MDR transcriptome was determined a priori based
on an extensive curation of the literature published during the last
three decades, which led to the enumeration of 380 genes. No
correlation was found between clinical samples and established
cancer cell lines. As expected, we found up-regulation of genes
that would facilitate survival across all cultured cancer cell lines
evaluated. More troubling, however, were data showing that all
of the cell lines, grown either in vitro or in vivo, bear more re-
semblance to each other, regardless of the tissue of origin, than to
the clinical samples they are supposed to model. Although cul-
tured cells can be used to study many aspects of cancer biology
and response of cells to drugs, this study emphasizes the necessity
for new in vitro cancer models and the use of primary tumor mod-
els in which gene expression can be manipulated and small mole-
cules tested in a setting that more closely mimics the in vivo cancer
microenvironment so as to avoid radical changes in gene expres-
sion profiles brought on by extended periods of cell culture.

gene signature | NCI-60 panel | translational medicine | gene expression
profiling assay | cell culture model

The study of human cancer-derived cell lines has made im-
portant contributions to cancer biology and has formed the

basis for our current understanding of drug sensitivity and re-
sistance in cancer. Advances in genomics during the last decade
have opened new avenues for translational research (1) and
allowed the direct evaluation of clinical samples. Based on both
in vitro models and clinical studies, the literature is replete with
hundreds of prognostic and predictive markers, yet clinical
progress in improving cancer treatment has been incremental at
best (2). Besides issues associated with the limitations of tech-
nology and the selection of patients (3), the clinical relevance
and the usefulness of in vitro models for assessing new therapies
is controversial (4–8).
High-throughput gene expression profiling has highlighted the

genetic and epigenetic heterogeneity among tumors (9, 10) and,
therefore, the necessity to study a panel of cell lines for each
cancer type to capture this heterogeneity and variability in drug
response. For this reason, the National Cancer Institute’s Devel-
opmental Therapeutics Program (DTP) assembled a panel of 60
cancer cell lines derived from nine different tumor types, termed
the NCI-60 panel (11). Because these cells have been extensively

characterized, we chose to use them, and additional cancer cell
lines, to assess the relevance of cultured cell lines in the study of
clinical multidrug resistance (MDR) mechanisms (12).
Over the past 30 y, in vitro studies have led to the enumer-

ation of close to 400 genes whose expression affects response to
chemotherapy (13). Among those genes, ATP-binding cassette
(ABC) transporters, a superfamily of 48 highly homologous
members classified in seven subfamilies, have an important role
in the pleiotropic mechanisms mediating MDR by exporting
chemotherapeutic agents from the cell (14, 15). Although the
roles of 13 ABC transporters in MDR have been fully charac-
terized, recent studies suggest the involvement of up to 30 mem-
bers of the 48 encoded in the human genome (16, 17). Moreover,
besides classical drug efflux, it has also been demonstrated that
some of these transporters may mediate the intracellular se-
questration of chemotherapeutic drugs (18–20). This intracel-
lular sequestration is the case for ABCA3, which was recently
found to be overexpressed in clinical samples of childhood AML
and correlated with poor response to treatment (21).
The establishment of a specific and sensitive standard assay,

capable of discriminating highly homologous genes, is critical to
a better understanding of MDR mechanisms. We and others
have shown that Taqman Low Density Arrays (TLDAs) provide
the most sensitivity and specificity in measuring the expression
patterns of ABC transporter genes (22, 23). Therefore, we chose
to configure such a platform to study multidrug resistance
mechanisms in clinical cancer specimens.

Results and Discussion
Taqman-Based Quantitative RT-PCR (qRT-PCR) as the State-of-the-Art
Assay to Discriminate Between Members of Highly Homologous Gene
Families. We compared the expression profiles of MDR-linked
genes obtained by using two main platforms, the oligonucleotide
microarray and TaqMan-based qRT-PCR, to determine the best
assay for accurately discriminating among the nine cancer types
represented in the NCI-60 panel. This analysis (Table 1), which
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shows the probability of successfully characterizing a cell line as
belonging to a specific cancer type, demonstrates that the 380
MDR-linked gene expression profiles obtained from TLDAs,
TaqMan-based qRT-PCR, yield a more accurate classification of
the NCI-60 panel into the nine cancer types they represent than
the profiles obtained by microarrays. This finding highlights a
major drawback linked to the technological limitations of the
platforms commonly used to determine gene expression profiles.
These limitations include inadequate sensitivity of some assays,
poor dynamic range, and lack of specificity of the probes, espe-
cially in studies investigating MDR mechanisms, because many
of the mediators belong to highly homologous gene super-
families (3, 24).

Ovarian Cell Culture Models Failed to Reflect Clinical MDR Gene
Expression Patterns. To address the clinical relevance of the NCI-
60 panel and other cancer cell lines, we performed comparisons
by using the most common ovarian cancer models and clinical
samples. We studied a cohort comprised of 80 patients with
ovarian primary serous carcinoma. This ovarian cancer type is by
far the most common of all ovarian malignancies. The clinical
samples from which mRNA was obtained consisted of a mini-
mum of 75% cancer cells, as determined by pathological exam-
ination of tissue sections. Our data indicate that 15 ovarian
cancer cell lines including 5 from the NCI-60 panel and 10 cis-
platin-resistant cell lines, the multidrug-resistant ovarian cancer
cell line NCI-ADR-Res (OVCAR8-ADR) and its drug-sensitive
counterpart, and 3 established cisplatin-resistant cell lines (25,
26) have a gene expression profile strikingly different from the
specimens of untreated ovarian primary serous carcinoma taken
from 80 patients (Fig. 1A). Fifty-eight percent of these patients
had platinum-resistant cancers defined as the following: pro-
gression-free survival <6 mo and no complete response.
Although the differences between the platinum-sensitive clinical
samples and the deliberately selected cisplatin-resistant cell lines
are expected, the ovarian cancer cell lines derived from primary,
untreated cancers, to be useful for analyses of mechanisms of
drug-resistance, should have MDR gene expression profiles
similar to those of the platinum-sensitive clinical specimens, and
they do not. We then investigated the effect of 3D culture on the
MDR gene profile of the OVCAR-5 cell line, chosen as being
representative of the ovarian cancer cell lines. Gene expression

profiling of cells grown in this way (including the hanging drop,
algimatrix, geltrex, and low attachment plate) did not reveal any
major differences in their MDR gene profile compared with 2D
cultures. The same observation was made when we injected
OVCAR-5 cells grown in both 2D and 3D settings (algimatrix,
geltrex, and low attachment plate) into beige-nude-scid mice.
Thirty-two effusion samples were also added to our analysis (27).
Although all of the clinical samples clustered together, hierar-
chical clustering illustrates the gene expression pattern differ-
ences among those tissues (Fig. 1A). When the eight additional
cancer types of the NCI-60 panel were added to the heatmap of
Fig. 1A, we made the striking observation that all of the cell lines
either grown in vitro or in vivo bear more resemblance to each
other, regardless of the tissue of origin, than to the clinical
samples that they are supposed to model (Fig. 1B).

Established Cancer Cell Lines Are Highly Selected for Expression of
Genes Associated with MDR. Our study identified an important
subset of genes up-regulated across the entire set of in vitro
models as environmental stress response genes. Subsequent
analysis comparing the clinical samples and the ovarian cancer
models, including cancer cell lines and xenografts, supports the
conclusion that the samples from the three groups, primary
ovarian serous carcinoma, effusion samples, and ovarian cancer
models, have very different signatures. Two hundred twenty-five
of 380 total genes were differentially expressed in the three
groups with P < 0.001 (Table S1). All of these genes fulfill the
false discovery rate (FDR) criterion of P < 0.001, meaning that
the probability of finding 225 genes by chance at the threshold of
P < 0.001 is <0.1%. This up-regulation in the expression of
specific genes in the cultured cell lines or tumors derived from
them across all cancer types is consistent with the idea that their
expression is more likely the result of selection pressure and
culture conditions, thereby allowing the cells to thrive in their
in vitro environment. In other words, the cancer cell lines are
highly selected during their establishment for expression of genes
associated with MDR. The overexpression of MDR genes asso-
ciated with response to environmental adversity also argues against
the differences in gene expression between clinical cancer and
cancer cell lines being due to contamination by noncancer cells of
the clinical specimens. Although we did not study mouse models
that attempt to recapitulate ovarian carcinoma (28, 29), our data

Table 1. Accuracy of classification of the nine NCI-60 panel cancer types using various profiling technologies*

Adjusted P value threshold for gene selection

Genes analyzed Gene expression profiling assays 0.25 0.1 0.05 0.02 0.01 0.005 0.001

380 MDR-linked genes TLDA 0.73 0.69 0.71 0.68 0.66 0.68 0.69
HG-U133A array 0.71 0.64 0.66 0.66 0.61 0.59 0.61

ABC transporter genes TLDA 0.59 0.61 0.53 0.42 0.46 0.44 0.29
HG-U133A array 0.37 0.39 0.36 0.37 0.31 0.18† 0‡

SybrGreen-based qRT-PCR 0.43 0.45 0.40 0.40 0.32 0.23 0.25
Biomark 48.48 0.53 0.53 0.42 0.42 0.47 0.46 0.44

SLC genes HG-U133A array 0.61 0.63 0.64 0.63 0.63 0.54 0.58
14,500 genes HG-U133A array 0.20 0.20 0.22 0.25 0.31 0.32 0.47

*Seventy-one percent of the cell lines were correctly classified at P = 0.05 and 69% at P = 0.001 with the TLDA 380 gene MDR set, whereas the expression
profiles of the same genes obtained from HG-U133A oligonucleotide microarray analysis classified the 60 cancer cell lines with only 66% accuracy at P = 0.05
and 61% at P = 0.001. Confining the analysis to only ATP-Binding Cassette (ABC) transporter genes, some of the major mediators of multidrug resistance in
cultured cells, generates less accurate classification. Only 53% of cell lines were correctly classified at P = 0.05 and 29% at P = 0.001, whereas microarray
analysis of the same genes provides the worst results, with 36% accuracy at P = 0.05, with no classification achievable at P = 0.001. ABC transporter gene
expression profiling using Sybr Green-based qRT-PCR provides intermediate results with 40% of cell lines properly classified at P = 0.05 and 25% at P = 0.001.
Using Biomark 48.48, a high-throughput nanofluidic TaqMan-based qRT-PCR platform, the classification accuracy reaches 44% at P = 0.001. Solute carriers
belong to a large family of uptake transporters that are also important MDR mediators. Their expression profiles measured by HG-U133A provide more
accurate classification than the ABC transporter genes, with 64% at P = 0.05 and 58% at P = 0.001. Interestingly, the expression profiles of the 14,500 genes on
the HG-U133A array do not improve the classification accuracy of the 9 cancer types, as only 22% of the cancer cell lines are correctly classified at P = 0.05,
whereas an accuracy of 47% is achieved at P = 0.001. The reason for this apparent paradox is that at lower statistical significance (P < 0.05), more genes are
being analyzed and the background noise is greater than at P < 0.001, which reduces the accuracy.
†Three samples unclassified.
‡Fifty-four samples unclassified.
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clearly illustrate a need for caution against direct extrapolation of
the results to the clinic when incorporating the use of cultured lines
in the study of drug resistance in ovarian cancer. These findings
may explain, in part, the discrepancies between numerous reported
studies highlighting predictive and prognostic markers (30–32).

Cell Culture Models for Five Additional Cancer Types also Failed to
Reflect Clinical MDR Gene Expression Patterns. Similar observations
were made for five other types of cancer, glioblastoma, colorectal
cancer, breast cancer, metastatic melanoma (microdissected
from tissue sections), and leukemia, however using fewer sam-
ples. The six cell lines representing the CNS in the NCI-60 panel
were compared with nine glioblastoma multiforme (GBM)
clinical samples, including four primary GBM, three GBM at
relapse, and two metastatic GBM. Hierarchical clustering re-
veals two distinct clusters that discriminate between the in vitro
models and the clinical samples (Fig. 2A). Four cell lines,
SNB19, U251, SF295, and SF268 were established from glio-
blastomas, whereas SF539 and SNB75 are gliosarcoma and as-
trocytoma cell lines, respectively.
Comparison of clinical samples of colon and breast cancers

and metastatic melanoma reveals similar findings with a clear
distinction between clinical samples and in vitro models (Fig. 2
B–D). Clinical samples of colon cancer were also paired with
normal colon tissue taken during tumor resection.

T-ALL and AML Analyses Revealed that Differences Between Cell Lines
and Cancer Cells Are Not Confined to Solid Tumors. Our analysis of
two types of leukemia, T acute lymphoblastic leukemia (T-ALL)
and acute myelogenous leukemia (AML), revealed that differ-
ences between cell lines and cancer cells are not confined to solid
tumors (Fig. 2E). One cluster consisted of AML samples with
one T-ALL sample, all untreated. We observed a second major
cluster grouping all of the cell lines and the bulk of the T-ALL

samples, untreated and treated. Within this cluster, four sub-
groups were found. Four cell lines grouped together (CML-
K562, RPMI8226 myeloma, SR T-ALL, and HL60 AML),
whereas two cell lines, Molt4 and CCRF-CEM, clustered with six
of the untreated T-ALL clinical samples. Two other subgroups
comprise both untreated and treated T-ALL clinical samples.

Heterogeneity Among the Cell Lines Within Tumor Types of the NCI-60
Panel. We next determined, given the similarity of the MDR
signatures among the cultured cells, whether the 380 MDR-
linked genes would provide enough information to decipher
MDR signatures for each of the nine cancer types represented
in the NCI-60 panel. Genes were excluded from the analysis
if <20% of the expression data had at least a 1.5-fold change,
in either direction, compared with the median gene expression
value, bringing the total number of genes to 354. After per-
forming the multivariate permutation test, 185 genes were
identified to be differentially expressed within these nine cancer
types with P < 0.05 and a FDP < 10% (Table S2). Hierarchical
clustering analysis was performed to identify relationships among
the cancer cell lines, and a heatmap was produced to illustrate
the gene expression of the various cancer types (Fig. S1). There
are two main clusters distinguishing the melanoma and leukemia
cell lines from the seven other cancer types. The melanoma cell
lines clustered together. Similarly, the leukemia cell lines were
also in one cluster, with the exception of one colon cancer cell
line, SW-620, that clustered with them. The CNS and colon
cancer cell lines were also clustered according to cancer type,
with few exceptions. The ovarian, breast, renal, lung and
prostate cancer cell lines, however, were found to be scattered
in the second main cluster (Fig. S1). This gene pattern indicates
that four cancer types, melanoma, leukemia, CNS, and colon,
are individually composed of a relatively homogenous panel of
cell lines. However, there is some heterogeneity among the

Fig. 1. Hierarchical clustering using the
average linkage algorithm and 1-Pearson
correlation as the distance measure of the
ovarian cancer samples analyzed. (A) The
380 MDR-linked gene expression profile
(measured by using TLDA) of ovarian can-
cer models (in vitro and in vivo) is strikingly
different from that of specimens of un-
treated ovarian primary serous carcinoma
taken from 80 patients and 32 effusion
samples originating from primary ovarian
serous carcinoma. The x axis shows clusters
of samples. Red, primary ovarian serous
carcinoma; magenta, effusion samples
originating from primary ovarian serous
carcinoma; green, normal ovarian tissue;
blue, in vitro models of ovarian cancer,
including xenograft models of ovarian
cancer, ovarian cancer cell lines of the NCI-
60 panel, and cisplatin-resistant cell lines.
The y axis shows gene clustering. (B) When
adding the eight additional cancer types
of the NCI-60 panel to the heatmap pre-
sented in A, the striking observation is
made that all of the cell lines either grown
in vitro or in vivo bear more resemblance
to each other, regardless of the tissue of
origin, than to the clinical samples that
they are supposed to model. Along the x
axis: red, primary ovarian serous carci-
noma; magenta, effusion samples origi-
nating from primary ovarian serous
carcinoma; green, normal ovarian tissue;
blue, in vitro models of ovarian cancer;
black, cancer cell lines of the eight addi-
tional cancer types of the NCI-60 panel.
The y axis shows gene clustering.
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different cell lines within each of the five other tumor types of
the NCI-60 panel. The extent of this heterogeneity could reflect
differences in cell type of origin and/or environmental influ-
ences on the tumor (e.g., location, primary or metastatic, blood
supply of the tumor) that could act as selective factors in vivo.
After the identification of the 185 MDR genes that allow the
best clustering by type of cancer cell lines, we determined the

specific cancer type in which each gene is differentially ex-
pressed (Table S3 and Table S4). All of the 185 genes, except
ABCA1, APEX1, AQP7, BAX, CYP3A4, GGT1, and NRAS,
showed considerable differences in expression among cancer
types. The number of genes that are differentially expressed is
greatest for the leukemia and melanoma cell lines. Also note-
worthy is the observation that many of these genes are differ-
entially expressed in more than one type of cancer tissue type.
Both of these findings corroborate what we observed in the
previous hierarchical clustering (Fig. S1).

p53 Pathway Activation as the Highest Ranked Network. Ingenuity
Pathway Analysis (IPA) software (Ingenuity Systems) was used
to identify connections within the gene signatures revealed for
each of the tumor types to see whether there was an obvious
explanation for the similarity of all of these gene signatures in
the cultured cells. Pathway analysis for the ovarian cell lines
generated a pathway centralized on p53 (Fig. S2). The second-
ranked pathway for the melanoma cell lines also focused on p53
pathway activation (Fig. S3). Both pathways were further en-
hanced by using SIMUSITE software (BioPhase Systems), which
integrates data from high-throughput expression profiling assays
to build system-specific protein interactions. This approach was
applied to two cell lines to illustrate the potential of such
a method (Fig. S4 A and B). Notably, seven of the nine tumor
types show p53 pathway activation as the highest ranked net-
work, whereas the other two types show p53 pathway activation
as the second highest ranked network. This result may be at-
tributed to the heterogeneous response of p53 to stress, which
depends on cell type, tissue type, and the nature of the stressor
(33). Moreover, p53 can regulate the expression of hundreds of
genes in response to stress (34). It is clearly possible that p53
pathway activation results from selective pressure in the tissue
culture environment, in turn causing the up-regulation of stress
response genes across all cell lines and contributing to the uni-
formity of the MDR gene expression pattern (35). An earlier
study using the NCI-60 panel showed that 40 of 58 cell lines
analyzed contained mutant p53 (39 of them being homozygous
for p53 mutation), whereas 18 cell lines contained wild-type p53
(36). Further analyses revealed that 70% of the cancer cell lines
containing mutant p53 showed high p53 protein expression (36).
The data we present represent an average of all of the differ-

ent cell types in a cancer with the exception of metastatic mel-
anoma. In this work, the metastatic melanoma samples were
laser microdissected from tissue sections yielding, based on their
histology, a clonal population of tumor cells; yet no correlation
was found between the gene expression profiles of clinical and
in vitro melanoma samples. Nonetheless, cell lines may capture
one cancer cell type among many in a heterogeneous population
and further analyses at the single cell level might provide insight
to resolve this issue.
Tumor heterogeneity is an important factor in the develop-

ment of drug resistance, because chemotherapy can select a
drug-resistant subpopulation, leading to the failure of the anti-
cancer treatment. In our previous work, we demonstrated that
a breast cancer cell line (MCF-7) under long-term drug selection
generated cells with cancer stem cell characteristics (37). We
further characterized the gene expression profiles of multidrug
resistance genes by using the TLDA in these cells sorted for
CD44+/CD24− (stem-like cells) and CD44+/CD24+, and found
that CD44+/CD24− cells had activated p53 and p21 pathways
and decreased expression of many antiapoptotic genes. More-
over, the CD44+/CD24− cells are similar to seven of the nine
cultured cancer cell types studied in this work in which p53
pathway activation is the highest-ranked network. These patterns
of gene expression are therefore more similar among cultured
cells and different from the patterns seen “on average” in the
clinical cancer samples. Are these subpopulations of cancer stem
cells or other cells within clinical cancers that mimic the expres-
sion patterns in the cultured cells (either stem cell subpopulations
or whole populations)? To study this possibility, we prepared

Fig. 2. Hierarchical clustering (using the average linkage algorithm and 1-
Pearson correlation as the distance measure) reveals two distinct clusters
that discriminate between the in vitro models (cancer cell lines of the NCI-60
panel) and the clinical samples. (A) Heatmap of nine clinical samples of
glioblastoma cancer, including four primary tumors, three recurrent tumors,
and two metastases. (B) Heatmap of seven colon cancer samples paired with
normal colon tissue taken during tumor resection. (C) Heatmap of seven
clinical samples of breast cancer, four normal breast tissues, and five cancer
cell lines. (D) Heatmap of nine metastatic melanoma samples. (E) Heatmap
generated from 23 T-acute lymphoblastic leukemia (12 were untreated,
whereas 11 received conventional chemotherapy) and 11 paired samples of
acute myeloid leukemia taken at diagnosis and after relapse. x axis: blue, cell
lines; red, tumors. The y axis shows gene clustering. Labels for x-axis samples
analyzed can be seen in Fig. S7 A–E.
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a CD133-positive subpopulation of human breast cancer cells
isolated directly from surgical samples. The gene expression of
this subpopulation of stem-like cells was not distinguishable from
that of the breast cancer as a whole, and it was different from that
of either stem-cell–like populations found among MCF-7 drug-
resistant cells, or the entire population of MCF-7 cells or other
cultured breast cancer cells (Fig. S5). Other investigators, such as
Li et al., found that chemotherapy increased the number of stem-
like cells within breast cancer biopsies (38). These studies suggest
that drug selection either in vitro or in vivo can select for a pop-
ulation of highly resistant cancer cells, some of which include
a stem-like population.
Although cultured cells can be used to study many aspects of

cancer biology and response of cells to drugs, this study clearly
shows that results derived from established cancer cell lines used
for the study of either the mechanism or modulation of clinical
drug resistance in cancer should be interpreted with caution.
Investigators using these cell lines should be aware of the asso-
ciated caveats and temper their extrapolations so as not to infer
direct applicability to clinical medicine. This study emphasizes
the necessity for new in vitro cancer models and the use of pri-
mary tumor models in which gene expression can be manipulated
and small molecules tested in a setting that more closely mimics
the in vivo cancer microenvironment so as to avoid radical
changes in gene expression profiles brought on by extended
periods of cell culture.

Materials and Methods
Cancer Cell Lines. In vitro models. Total RNA from 59 of the 60 cancer cell lines
that make up the NCI-60 panel was prepared and provided by Developmental
Therapeutics Program (DTP; http://www.dtp.nci.nih.gov/branches/btb/ivclsp.
html). Total RNA for the ME:MDA-N line was unavailable at DTP.

The ovarian cancer cell line OVCAR-5 was grown in bothmonolayer and 3D
(3D scaffold) models. In monolayer culture, the cells were maintained in RPMI
1640 supplemented with L-glutamine, penicillin, streptomycin, and 10% FCS.
The 3D methods assessed included Algimatrix and Geltrex (Invitrogen),
and the hanging drop and low attachment plate methods (Fisher Scientific).
For the first two methods, the cells were maintained and harvested ac-
cording to the manufacturer’s instructions. According to the hanging drop
method, 750 cells were seeded in a 30-μL drop spotted on the up-turned
inner surface of the lid of a 100-mm tissue culture dish, in which 10 mL of
PBS were added. In the low attachment plate method, cells were maintained
in RPMI 1640 with 4.5 g/L glucose supplemented with L-glutamine, penicillin,
streptomycin, and 10% FCS.

Two cisplatin-resistant (CP-r) cell lines and their parental cell lines were
profiled: The human epidermoid carcinoma cell line KB-3-1 and its in-
dependent CP-r derivative, KB-CP.5, were selected in a single step at 0.5 μg of
cisplatin/mL of medium (25, 26). The KB-CP20 cell line, and the human liver
carcinoma cell line BEL-7404 and its CP-r derivative 7404-CP20, were selected
by stepwise increases to 20 μg of cisplatin/mL of medium, as described (25,
26). All of the CP-r cells were maintained in the presence of cisplatin, but
cisplatin was removed from the medium 3 d before preparation of RNA.
All cell lines were grown as monolayer cultures at 37 °C in 5% CO2, using
Dulbecco’s modified Eagle medium with 4.5 g/L glucose supplemented with
L-glutamine, penicillin, streptomycin, and 10% FCS. All of the cells were
incubated under standard culture conditions (5% CO2 and 37 °C).

Total RNA from 10 additional cisplatin-resistant cell lines was received
from the Cleveland Clinic, including the HOSE (39), PEO1 (40, 41), PEO4 (40,
41), A2780 (40), A2780/CP (40), C30 (40), CP70 (40), C200 (40), PAT-7 (42), and
OC-2 (43) cell lines.
In vivo models. All studies were conducted in an Association for Assessment
andAccreditation of Laboratory Animal Care International accredited facility,
in compliance with the US Public Health Service guidelines for the care and
use of animals in research. The ovarian cancer cell line OVCAR-5was grown by
2D and 3D methods, harvested, and used to generate xenograft models. The
immunodeficient beige/nude/scid mice were challenged by s.c. and i.p. im-
plantation of a cell pellet.

Tumor Samples. The collection of tumors for research and specifically molecu-
lar analysis was first approved by the institutional review board of each of the
four participating cancer treatment centers, and written informed consent
was obtained from the patients. Three hundred eighty MDR-linked gene

profiles from 80 specimens of ovarian untreated primary serous carcinoma
and 32 ascites were used from studies performed in our laboratory (27).

Nine glioblastoma samples including four primary tumors, three recurrent
tumors, and two metastatic samples were obtained from Georgetown
University. Seven paired samples (normal and tumor) of colorectal cancer
were obtained from the Laboratory of Human Carcinogenesis (National
Cancer Institute). Leukemia (AML and T-ALL) samples were received from the
Karolinska Institute and the National Cancer Institute Clinical Center. The
AML cohort was comprised of 15 samples taken at diagnosis, whereas the
T-ALL cohort was comprised of 12 untreated samples and 11 heavily pre-
treated samples. Nine metastatic melanoma samples were received from the
National Cancer Institute Clinical Center. Eleven breast tissue samples, seven
tumors, and four normal tissues were received from the Cooperative Human
Tissue Network.

Preparation of Total RNA, Reverse Transcription, and TLDA Processing. These
were performed as previously published (27).

Data Import and Preprocessing. Data from TLDAs was collected for 80 un-
treated ovarian primary serous carcinomas, 32 ascites, 36 in vitro and in vivo
models of ovarian cancer, and 59 cell lines from the NCI-60 set of cancer cell
lines. Samples from different origins were matched by using gene names. The
median expression of each sample was subtracted from all gene expressions
for that sample. The expressions from replicate probes were averaged to-
gether. The dataset is available at Gene Expression Omnibus (accession no.
GSE30034 at www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE30034).

TLDA Data Processing. TLDA cards were analyzed with RQManager Software,
and the median was normalized as described (23). We then multiplied the
gene expression values by −1 for ease of interpretation. By changing the
sign of the normalized Ct values, high positive values of the new gene ex-
pression value represent high gene expression (above the median), whereas
low negative values represent low gene expression (below the median).

Determination of Classification Accuracy. To elucidate the accuracy of classi-
fication for the cancer types, an algorithmwas set up by specifying the P value
cutoff threshold and then excluding one sample. The P values for each gene
were computed by using ANOVA; this P value signifies how much they are
differentially expressed in the different cancer types. The P values were
adjusted by using the Benjamini Hochberg procedure for multiple compar-
ison correction. The genes with P values less than the specified threshold
were used to create a diagonal linear discriminant classifier and the training
sample. The excluded sample was classified, and this classifier was repeated
for all samples excluded. The accuracy of the classifier was computed, in-
dicating the proportion of times the predicted cancer class was the correct
one. This procedure was repeated for all P value thresholds.

Classification of Cancer Types. The resulting normalized values were ana-
lyzed by BRB-ArrayTools. (Biometric Research Branch, National Cancer
Institute). Genes were excluded in the analysis if <20% of expression data
had at least a 1.5-fold change in either direction, compared with the
median gene expression, bringing the total number of genes to 354. After
performing the multivariate permutation test, 185 genes were identified
to be differentially expressed between the tissue types based on P < 0.05
and FDP < 10%. The parametric P values for the F-test statistic and the
geometric means for each tissue type derived from the log base 2 trans-
formed expression values were found. Hierarchical clustering analysis was
then performed by using a correlation distance metric with average
linkage. Multidimensional scaling was also carried out. After the ANOVA,
post hoc Tukey–Kramer tests were completed to determine the specific
cancer tissue types in which each gene is differentially expressed. The
Tukey–Kramer tests were done by using SAS v9.

Pathway Analysis. The genes differentially expressed in the tissue types were
then analyzed by Ingenuity Pathways Analysis software (Ingenuity Systems)
to determine which biological relationships exist between the genes present
in each list. The reference set for this analysis was the Ingenuity Knowledge
Base (genes only), and the network analysis was set to direct relationships.
The human data sources including human cell line and tissuewere used to run
the analysis. A numerical value was determined by the software to rank
networks according to relevance to the genes in the input dataset. This score
takes into account the number of focus genes in the network and the size of
the network to approximate relevance of the network to the original list of
focus genes. These calculations are based on the hypergeometric distribution
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calculated via the computationally efficient Fisher’s exact test for 2 × 2
contingency tables. Path Designer software was used to generate pathway
images. Two pathways, for ovarian cancer and melanoma, were further
enhanced by using SIMUSITE (BioPhase Systems). The correlations were
drawn between gene expression profiles generated by using TLDAs and the
growth inhibitory profiles of 1,429 candidate anticancer drugs tested against
the NCI-60 panel (44). The drug index was calculated by using a module of
SIMUSITE where the raw cell survival values were converted and integrated
with the TLDA values of 380 genes. The pathways were further specified by
merging with MDR-specific proteins. The relationships between the proteins
were authenticated by the proprietary database generated from the public
literature. SIMUSITE’s analytical and data rendering libraries were in-
terwoven with the open-source applications/databases available from the
Cancer Biomedical Informatics Grid, National Cancer Institute; https://cabig.
nci.nih.gov.

Comparison of the Cell Lines and Clinical Samples Analyzed. Hierarchical
clustering was performed by using the average linkage algorithm and 1-
Pearson correlation as the distance measure. The differences between the
in vitro and in vivo samples persist when using Euclidean distance clustering
(Fig. S6 and Fig. S7). Actually, the clustering done by using Pearson corre-
lation will not change under any linear normalization schemes (i.e., nor-
malization that consists of subtracting the same quantity from the
expression of all genes for each sample or multiplying or dividing the same
quantity from the expression of all genes for each sample). Specifically, the
correlations between samples remain the same and, thus, the clustering will

be the same under any of the following normalization schemes: (i) no
normalization, (ii) median normalization, and (iii) median normalization
followed by converting all samples to the same variance (e.g., converting to
z scores). If a nonlinear normalization (such as loess or quantile normaliza-
tion) is done, then the correlations can potentially change and the clustering
can be different. However, these kinds of normalization are not required for
TLDA data (45).

The differences between samples of different origins were more directly
assessed by a class comparison between samples of primary tumor, ascites,
ovarian cancermodels, andnormal ovarian tissue. Thiswas done for eachgene
by using an ANOVA between the expressions in the three sample groups.
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