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Neural stem/progenitor cell proliferation and differentiation are
required to replace damaged neurons and regain brain function
after hypoxic-ischemic events. DNA base lesions accumulating dur-
ing hypoxic-ischemic stress are removed by DNA glycosylases in the
base-excision repair pathway to prevent cytotoxicity and mutagen-
esis. Expression of the DNA glycosylase endonuclease VIII-like 3
(Neil3) is confined to regenerative subregions in the embryonic
and perinatal brains. Here we show profound neuropathology in
Neil3-knockout mice characterized by a reduced number of micro-
glia and loss of proliferating neuronal progenitors in the striatum
after hypoxia-ischemia. In vitro expansion of Neil3-deficient neural
stem/progenitor cells revealed an inability to augment neurogen-
esis and a reduced capacity to repair for oxidative base lesions
in single-stranded DNA. We propose that Neil3 exercises a highly
specialized function through accurate molecular repair of DNA in
rapidly proliferating cells.

DNA damage | formamidopyrimidine-DNA glycosylase/endonuclease VIII |
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The base-excision repair pathway (BER) maintains genomic
integrity by removing base lesions caused by oxidation, alkyl-

ation, and deamination. DNAbase lesions frequently are cytotoxic
or mutagenic if not removed. BER is initiated by DNA glyco-
sylases that recognize modified bases and catalyze cleavage of the
N-glycosidic bond, creating an apurinic or apyrimidinic (AP) site.
The exposed DNA backbone is cleaved by the AP lyase activity of
bifunctional DNA glycosylases or by an AP endonuclease. Repair
synthesis is completed by gap filling and ligation (1, 2).
Endonuclease VIII-like 3 (NEIL3) and endonuclease VIII-like

1 (NEIL1) are mammalian oxidized base-specific DNA glyco-
sylases (3, 4). The function of NEIL3 has remained enigmatic, but
recently the mouse ortholog was shown to remove a broad spec-
trum of oxidative base lesions on single-stranded DNA substrates
with preference for spiroiminodihydantoin (Sp) and guanidino-
hydantoin (Gh), which are further oxidation products of one of
the most common base lesions, 8-oxo-7,8-dihydroguanine (8ohG)
(5). These findings suggest that NEIL3 serves as a DNA glyco-
sylase to prevent accumulation of cytotoxic and mutagenic DNA
lesions in mammalian cells, although the activity of NEIL1 far
exceeds that of NEIL3 on most substrates.
In the late postnatal and adult brain, newborn neurons arise

from neural stem/progenitor cells (NSPCs) in both the sub-
granular zone (SGZ) of the hippocampal dentate gyrus and in the
subventricular zone (SVZ) (6). We previously reported a discrete
expression pattern of Neil3 in the rodent SGZ and SVZ, confined
to the embryonic and perinatal stages (7, 8). These observations
indicate a role for Neil3 in proliferating cells in the brain. How-
ever, naïve Neil3-knockout mice generated by us and others (4)
appear phenotypically normal. After perinatal hypoxic-ischemic
(HI) and adult ischemic stroke, proliferation of SVZ NSPCs is
enhanced, and differentiating progeny repopulate the striatum to
restore the lost structures (9–12). Recently, ex vivo experiments
demonstrated how brain injury activates microglia, the resident
macrophages of the brain that induceNSPC proliferation (13) and

striatal migration of neuronal progenitors from the SVZ (14).
Thus, to elucidate a possible role of Neil3 after brain damage, we
challenged perinatal mice with HI to analyze cellular damage, the
induction of neurogenesis, and the biochemical properties of
DNA repair capacity.

Results
Neil3 Is Involved In Stress-Induced Neurogenesis. To penetrate the
role of Neil3 during neurogenesis in vivo, we generated Neil3-
knockout mice (Fig. S1). In agreement with a previous report (4),
ourNeil3−/− mice were viable, fertile, and healthy into adulthood.
To examine the role of Neil3 during stress-induced neuronal

injury and subsequent neurogenesis, we applied the widely used
Levine method (15), modified for use in perinatal mice (16). A
combination of hypoxia and cerebral ischemia produces injury
confined to the brain hemisphere ipsilateral to the occluded
common carotid artery (CCA). In our hands, the model provided
detectable histological injury in the cortex, hippocampus, stria-
tum, and thalamus, whereas the contralateral hemisphere was
indistinguishable from a sham-treated brain, constituting a mor-
phologically accurate internal control (Fig. S2 A and B). Sham-
treated animals were anesthetized and a skin incision was made,
but the CCA was not occluded and they did not undergo hypoxia.
After 3 d,Neil3 expression had increased 2.2-fold in the ipsilateral
striatum and 1.8-fold in the hippocampus, whereas the SVZ dis-
played levels comparable with those in the sham-treated brain
(Fig. S2C). This pattern suggested a proliferative response in
the striatum.
Neuronal injury caused by ischemic brain damage results in

a nearly total loss of MAP2 immunoreactivity (17, 18). We ana-
lyzed brain sections from perinatal mice subjected to HI at three
time points after injury (Fig. 1 A and B). In the subacute phase, 3
and 10 d after injury, a pronounced loss of MAP2 was detected in
the ipsilateral hemispheres of both Neil3−/− and Neil3+/+ mice,
but no difference in neuronal injury was observed between the two
genotypes. After 10 d the anterior part of the hippocampus had
disappeared, cystic lesions appeared in the cortex, and the lateral
ventricle was dilated. Beyond this time point, neuronal tissue
consisted, to some degree, of neurons generated post HI (11, 19).
Forty-two days after injury the damaged brain structures were
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partially restored in both genotypes, but with reduced volume and
extensive scarring in the ipsilateral hemisphere. The neuronal tissue
deficit was significantly greater in Neil3−/− brains than in Neil3+/+

brains (74.1% and 91.3% viable neuronal tissue in the ipsilateral
hemispheres, respectively). Similar results were obtained from the
posterior parts of the forebrain, but the hippocampus sustained
severe and incessant damage (Fig. S3). We conducted serial cross-
sectioning of the entire forebrain and found the most profound
differences between the two genotypes in the anterior sections (Fig.
1C). Moreover, the total infarct volume was 2.6-fold larger in
Neil3−/− forebrains than in Neil3+/+ forebrains (Fig. 1D).
To elucidate further the degree of cellular damage and death, we

quantified double-strand breaks (DSBs) 3 d after HI by immuno-
reactivity to γH2AX antibody. Overall, sparse amounts of DSBs
were present, but the ipsilateral hemisphere of both genotypes dis-
played an increase as compared with the contralateral hemisphere
(6.4- and 5.0-fold increases in Neil3−/− and Neil3+/+, respectively)
(Fig. S4A). There were no significant differences in the frequency
of DSBs in any region of the Neil3−/− brain as compared with the
Neil3+/+ brain. Very few γH2AX+ cells were present in the SVZ.
Residing within the SVZ are cells that are immunopositive to dou-
blecortin (DCX), a microtubule-associated protein transiently
expressed in proliferating and migrating neuronal progenitors dur-
ing development (20, 21) and injury-induced neurogenesis (9, 11,
12). DCX+ cells typically appear in clusters in the SVZ (Fig. S4A).
We could not detect any γH2AX+/DCX+ cells. In contrast, HI
provided widespread apoptotic cell death as measured by TUNEL,
indicating free 3′-OH termini in DNA (Fig. S4B). In Neil3-deficient
brains apoptotic cell death was reduced by 24% in subregions of
the hippocampus and somewhat less and not significantly in striatal
and thalamic nuclei. No TUNEL+ cells were detected in the SVZ.
In summary, we did not detect increased cellular damage or

death in vivo in Neil3-deficient mice at an early stage after HI,
but we found a significant deficit in reconstituted neuronal tissue
after 42 d. These observations warranted investigation of the
regenerative response.

Neil3 Deficiency Decreases the Number of Neuronal Progenitors After
HI. NSPCs reside in the SVZ and SGZ throughout life and are
responsible for constitutive neurogenesis in the juvenile and adult
forebrain (22). After perinatal HI (11, 12) and adult stroke (23),
symmetric cell division contributes to expansion of the NSPC

pool. Evidence suggests that neuronal progenitors in the SVZ are
the predominant source of the new striatal neurons (19). We hy-
pothesized that reduced neurogenesis in Neil3−/− animals was
caused by a depletion of NSPCs in the SVZ. In agreement with
previous reports (11, 12), we detected increased nestin expression
within the ipsilateral SVZ after HI. Additionally, immunoreac-
tivity to GFAP was augmented. GFAP is a marker for differen-
tiated and reactivated astrocytes but also is expressed in NSPCs in
the adult SVZ and SGZ (22, 24–26). To prove our hypothesis
wrong, no differences could be detected between Neil3+/+ and
Neil3−/− brains after HI (Fig. 2A). A more prominent increase in
GFAP expression was detected in the SGZ of the hippocampal
dentate gyrus in both genotypes (Fig. S5); however, the hippo-
campus sustained severe and permanent damage (Fig. S3).
NSPCs respond to injury with a multilineage cytogenic response.

Progeny of nestin+ cells from the SVZ predominantly differentiate
intoGFAP+ astrocytes to repopulate the striatum, but DCX+ cells,
NeuN+ terminally differentiated neurons, and O4+ oligoden-
drocytes also are offspring of the SVZ nestin+ cells (27). Some
DCX+ cells retain theirmultipotentiality, but only cells restricted to
the neuronal lineage express high levels of DCX and can be visu-
alized in immunohistochemically processed tissue (28). Hencefor-
ward, we therefore define DCX+ cells as neuronal progenitors.
The number of neuronal progenitor cells in the SVZ did not

increase afterHI (Fig. 2A).However, when examining the adjacent
striatal parenchyma, DCX+ cells with migratory profiles (29) were
detected in increased numbers (Fig. 2 B and C). Quantification in
predetermined striatal regions 3 and 10 d after HI revealed 56.0%
(Fig. 2B) and 69.1% (Fig. 2C) reductions in Neil3−/− brains, re-
spectively. After 10 d, DCX+/NeuN+ cells were present, demon-
strating that a limited number of neuronal progenitors differ-
entiated into postmitotic neurons to repopulate the injured site
(Fig. 2C). The total number of DCX+/NeuN+ cells was signifi-
cantly lower in Neil3-deficient striata, but the DCX+/NeuN+ over
DCX+/NeuN-ratio was not (Neil3+/+ 54.3% vs. Neil3−/− 45.1%).
To address the distribution of proliferating cells after HI, we

used the mitosis-specific antibody to phosphorylated histone H3
(pHH3) (Fig. 3 A–C). BrdU and Ki67 labeling was avoided be-
cause of evidence that BrdU+/NeuN+/TUNEL+ neurons may
persist up to 7–14 d after HI and also express Ki67 before dis-
appearing (30).We feared that labeling dying neurons could cause
an overestimation of proliferation in Neil3+/+ mice from the data
presented in Fig. S4B. Additionally, BrdU incorporation resulting
fromDNA repair, although in general negligible in an adult rodent
brain (31), cannot be ruled out as a confounder in a DNA repair-
deficient model. Using the pHH3 antibody, we detected a 23.1%
reduction in the total number of dividing cells in the striatum of
Neil3−/− animals 3 d after HI, as compared with Neil3+/+ animals
(Fig. 3C). No differences in pHH3+ cell numbers were observed
between Neil3+/+ and Neil3−/− animals in the SVZ (Fig. 3B).
Furthermore, no NeuN+/pHH3+ cells were observed, but we
detected nestin+/pHH3+ in the SVZ and DCX+/pHH3+ cells in
the striatum, confirming the presence of proliferating NSPCs.
In summary, increased nestin and GFAP immunoreactivity

in the SVZ indicated that both Neil3+/+ and Neil3−/− mice
responded to HI by expanding the NSPC pool. A population of
DCX+ cells was depleted, and the number of dividing cells was
reduced in the striatum of Neil3-deficient brains.

Neil3-Deficient Neurospheres Exhibit Poor Growth and Skewed
Differentiation. We used the neurosphere assay to examine fur-
ther the proliferation defect following loss of Neil3. The neuro-
sphere assay identifies NSPCs in vitro according to their self-
renewal capacity and multipotency (32–34). Naïve wild-type
spheres showed increasing Neil3 expression during propagation
(Fig. 4A). The maximum expression was reached at day 4 after
passaging, followed by a rapid decrease. Expression was dimin-
ished in differentiated cells, suggesting a primary role of Neil3 in
proliferating cells.
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Fig. 1. Neil3 deficiency reduces neuronal regeneration after perinatal HI. (A
and B) Infarction size calculated as reduction in the MAP2 immunoreactive
area (brown) in the ipsilateral hemispheres as a percentage of the contra-
lateral hemisphere at bregma 0.4. (Scale bars, 1 mm.) *P = 0.024. (C) Area
loss in coronal sections extending from brain level 1–8. *P < 0.05. (D) Loss of
volume calculated from 16 evenly spaced sections throughout the forebrain.
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In line with current knowledge (11, 12), expansion of NSPCs
from the ipsilateral hemispheres ofNeil3+/+ brains was augmented
after HI (Fig. 4B). No stroke-induced proliferation could be
detected in Neil3−/− cultures. We experienced some variation in
naïve colony formation, probably related to the cellular composi-
tion of primary cultures, and therefore used shRNA to knock down
Neil3 (Fig. 4C). Attempts to transfect primary cell cultures resulted
in impaired proliferation resulting from the transfection pro-
cedure; however, transfectionwas successful in stable high-passage
SVZ neurospheres. A 37% reduction in Neil3 expression was
achieved in naïve neurospheres, and we observed a 69.2% re-
duction of colony formation 72 h after transfection. AGFP control
plasmid revealed heterogeneous expression, indicating that the
transfection efficiency did not reach 100%. However, we observed
a profound effect on proliferation in knockdown spheres, sug-
gesting a selective incorporation of the plasmid in a subpopulation
of cells important for proliferation. This result supports the notion
that Neil3 is required for efficient proliferation of NSPCs.
We next analyzed the effect of Neil3 loss on differentiation of

NSPCs in vitro. Single-cell suspensions derived from first- and
second-passage neurospheres were induced to differentiate. Cells
in the glial and neuronal lineages were identified by immunore-
activity to GFAP and O4 or to DCX and NeuN, respectively (Fig.
4D). In the contralateral hemisphere a total of 24.0% of both
Neil3−/− and Neil3+/+ differentiated cells were committed to a
neuronal lineage and were DCX+, NeuN+, or DCX+/NeuN+

(Fig. 4E). In the ipsilateral hemisphere amere 9.9%of theNeil3−/−

differentiated cells were neuronal, in contrast to 25.3% of the
Neil3+/+ cells (Fig. 4F). In total,Neil3-deficient NSPCs displayed a
61% reduction of cells differentiating in the neuronal lineage after
HI compared with Neil3+/+.
In summary, the in vitro data recapitulate the phenotype ob-

served in Neil3−/− mice after HI, implying a defect in proliferation
of neural progenitors and a subsequent skewed differentiation
pattern. In the following section we provide evidence that these
observations may be attributed to DNA repair deficiency.

Neil3 Is the Primary Contributor to Repair of Single-Stranded Hydantoin
Lesions in Neural Stem/Progenitor Cells. Stroke exacerbates oxidative
stress and induces oxidative base lesions inDNA (35). Although the
bulk of these lesions are repaired efficiently by the BER pathway,

increased mutation rates indicate that not all oxidized bases are
removed after ischemia (35). We therefore examined the repair
capacity of total protein extracts from NSPCs at day 4 after first
passaging and frombrain tissue isolated 3 d postHI.Neil3−/−NSPCs
from the SVZ showed normal capacity for repair of all double-
stranded substrates [Sp, Gh, 5-hydroxycytosin (5ohC), and 5-
hydroxyuracil (5ohU)] and a slightly reduced repair of 5ohC and
5ohU in ssDNA (about 90% of wild-type activity) (Fig. 5 A and B).
In contrast, repair of Sp and Gh lesions in ssDNA was strongly re-
duced in Neil3−/− NSPCs (about 10% of wild-type activity). Similar
results were obtained with NSPC extracts derived from striatal tis-
sue. Brain tissue extracts from the SVZ and striatum had repair
capacity similar to that of neurospheres on double-stranded sub-
strates and single-stranded 5ohC and 5ohU. However, repair of Sp
and Gh in ssDNA was below detection level. These results suggest
thatNeil3-expressing cells are enriched in neurosphere cultures but
represent only a small fraction of the total cell mass in the brain, as
shown previously by in situ hybridization experiments (7, 8).
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If DNA repair is the mode of action for Neil3 in proliferating
cells,Neil3-deficient neurospheres should exhibit abnormalDNA-
damage response. We exposed proliferating neurospheres to the
DNA-oxidizing agent paraquat and investigated the accumulation
of DNA fragmentation (Fig. 5C and Fig. S6). Neil3-deficient cells
exhibited increased accumulation of strand breaks detected as
γH2AX immunoreactivity both in micrographs and on Western
blots compared with Neil3-proficient cells, suggesting that Neil3
functions in repair of oxidative base lesions in NSPCs.
Our results show that Neil3 is the primary DNA glycosylase for

removal of single-stranded Gh and Sp in NSPCs. Our data are in
agreement with Liu, et al. (5), demonstrating that hydantoins
are preferred substrates for Neil3. The next obvious step would be
to monitor accumulation of hydantoins in brain tissue and neu-
rospheres after HI. However, to our knowledge there is no
available protocol with the sensitivity to detect hydantoins in
mammalian tissue.

Microglial Response Is Decreased in Neil3-Deficient Brains. Microglia
may act on stroke-induced neurogenesis in a tightly regulated
temporal and spatial manner (13, 36). They possess a dual role,
being either neurotoxic or neuroprotective (37). The cells rep-
resent a mixture of intrinsically activated microglia and in-
filtrating blood cells breaching through the damaged blood–brain
barrier (38). Because activated microglia also proliferate, we
examined themicroglia response after HI in Neil3-deficient mice.
Microglial activation occurs early in the striatal peri-infarct

area, whereas the presence of these cells peaks first after 6 wk
within the SVZ (36). In agreement with this observation, we
detected a profound increase in activated microglia in the ipsilat-
eral striatum but not in the SVZ 3 d after injury (Fig. 6 A and E).
In the striatum of Neil3−/− animals the total number of microglia
was reduced by 30.0% compared with Neil3+/+ (Fig. 6B). We
quantified the numbers of ramified surveying and round activated
microglia based on morphological appearance (37). Comparable

to the total count, there was a 31.1% deficit in the number of ac-
tivated microglia (Fig. 6C). Thus, there were no differences in
the composition of activation states between genotypes. The
presence ofGFAP+ astrocyteswas not affected significantly by loss
of Neil3 (Fig. 6D).

Discussion
In the present study we used Neil3−/− mice to study the cytogenic
response after perinatal HI. Neil3 belongs to the form-
amidopyrimidine-DNA glycosylase/endonuclease VIII superfam-
ily of DNA glycosylases which, during the course of evolution,
seems to have diverisfied alongside the increasing complexity of
the central nervous system (4, 7, 8, 39). As opposed to Neil1 ex-
pression, which is widely distributed in the perinatal brain, only a
fraction of cells in regenerative subregions express Neil3, and we
and others have not previously detected a profound phenotype in
naïve Neil3−/− mice (4, 7). Here we show that under stress Neil3-
deficient mice failed to produce neuronal progenitors and replace
damaged tissue to the same degree as Neil3-proficient mice.
Neuronal damage sustained from HI was not increased by Neil3
deficiency. This observation implies that Neil3, in contrast to
uracil-DNA glycosylase (40) and 8-oxoguanine DNA glycosylase
(41), has no significant function in postmitotic cells but rather plays
a role in regeneration. We found that, even in the presence of
Neil1, Neil3 is themainDNA glycosylase for removal of the single-
stranded hydantoin products Gh and Sp in proliferating NSPCs
amplified from the perinatalmouse brain.Additionally, theNSPCs
display an abnormal DNA-damage response, supporting the pro-
posal that Neil3 functions in repair of oxidative DNA base lesions.
The pathogenesis of HI brain injury is complex and multifacto-

rial. The degree of brain maturity and the timing and severity of the
asphyxia are determinants of the initial outcome. Inflammatory
responses, reactivation of glial cells, and angiogenesis and neuro-
genesis during the recovery phase are factors determining the final
outcome. Increased oxidative stress is an early feature of HI, and
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apoptotic cell death following oxidative stress-regulated release of
proapoptotic factors is more prominent in the immature brain (42).
Inflammatory-activated microglia are proposed to promote apo-
ptotic cell death via production of peroxynitrite and neurotoxic
factors (43). Thus, the reduced number of apoptotic cells observed
in Neil3-deficient brains may be explained by a decrease in the
microglial response.
The oxidative burst from inflammatory macrophages after HI

may produce excessive amounts of the oxidative lesion 8ohG.
Notably, peroxynitrite is almost 1,000 times more reactive toward
8ohG than guanine, resulting in secondary oxidation products
such as Sp and Gh (44, 45). These lesions are potent sources of
replication blocks in vivo (46). The presence of hydantoin lesions
remains to be determined in mammalian DNA, but endonucle-
ase VIII-deficient Escherichia coli accumulates 20-fold more Sp
lesions than WT when exposed to an oxidizing agent (47). Neil3-
deficient NSPCs showed impaired ability to repair Sp and Gh in
ssDNA and failed to augment proliferation in response to HI.
We propose that accumulation of hydantoins in these cells in-
hibit replication and consequently impair proliferation and alter
differentiation. The build-up of strand breaks in Neil3-deficient

neurospheres exposed to an oxidizing agent support this proposal;
however, we cannot exclude the possibility that impaired neuro-
genesis in Neil3−/− mice is partly epiphenomenal to alterations
in the inflammatory response. Reactive astrocytes and activated
microglia proliferate in response to ischemic injury and produce
factors that mediate proliferation and migration of NSPCs (14,
48, 49). Thus, the decrease of neuronal progenitors in the stria-
tum also could be attributed to a reduced microglial response.
Injury to the immature brain by HI, as seen after birth as-

phyxia and in preterm neonates, is a significant cause of severe
and longstanding neurological disabilities. The SVZ is a promis-
ing therapeutic target, and insight into mechanisms for preser-
vation of DNA integrity in NSPCs seems imperative for control of
proliferation and differentiation. Grafting with human neural
stem cells in perinatal rats enhances endogenous repair through
improved neurotrophic support, gliogenesis, and neurogenesis
after HI, possibly as a result of altered microglial response (50).
DCX expression increases massively, and transgenic ablation of
DCX-expressing cells worsens outcome (50, 51). Herein we
provide evidence that ablation of Neil3 depletes DCX-expressing
cells and microglia. We argue that Neil3 has a role in re-
generation, involving repair of hydantoins in proliferating cells
(NSPCs, neuronal progenitors, reactive astrocytes, and activated
microglia) during the compound response to HI. This role pro-
vides motivation for examining NEIL3 DNA glycosylase in hu-
man neural stem cell grafts.

Materials and Methods
All methods are described in detail in SI Materials and Methods.
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Generation of Neil3-Knockout Mice. Neil3-deficient mice were generated by
germline deletion of exons 3–5.

Perinatal HI. Cerebral HI was produced in Neil3+/+ and Neil3−/− mice at post-
natal day 9 (15, 16), by permanent occlusion of the CCA followed by hypoxia.

Culturing of Neurospheres, Immunocytochemistry, and Activity Assays. Neu-
rosphere cultures were established and propagated as described, and differ-

entiation, immunocytochemistry, and activity assayswere performed according
to established protocols (3, 52, 53).
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