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Abstract

Background: The glycosylation of recombinant proteins can be altered by a range of parameters including cellular
metabolism, metabolic flux and the efficiency of the glycosylation process. We present an experimental set-up that
allows determination of these key processes associated with the control of N-linked glycosylation of recombinant
proteins.

Results: Chinese hamster ovary cells (CHO) were cultivated in shake flasks at 0 mM glutamine and displayed a
reduced growth rate, glucose metabolism and a slower decrease in pH, when compared to other glutamine-
supplemented cultures. The N-linked glycosylation of recombinant human chorionic gonadotrophin (HCG) was also
altered under these conditions; the sialylation, fucosylation and antennarity decreased, while the proportion of
neutral structures increased. A continuous culture set-up was subsequently used to understand the control of HCG
glycosylation in the presence of varied glutamine concentrations; when glycolytic flux was reduced in the absence

antennarity of the N-linked glycans attached to HCG.

will be of benefit to the bioprocessing industry.

of glutamine, the glycosylation changes that were observed in shake flask culture were similarly detected. The
intracellular content of UDP-GIcNAc was also reduced, which correlated with a decrease in sialylation and

Conclusions: The use of metabolic flux analysis illustrated a case of steady state multiplicity, where use of the
same operating conditions at each steady state resulted in altered flux through glycolysis and the TCA cycle. This
study clearly demonstrated that the control of glycoprotein microheterogeneity may be examined by use of a
continuous culture system, metabolic flux analysis and assay of intracellular nucleotides. This system advances our
knowledge of the relationship between metabolic flux and the glycosylation of biotherapeutics in CHO cells and

Background

The conformation, solubility, antigenicity, activity and
recognition properties of any given glycoprotein may be
influenced by the structure of its N-linked glycans [1].
Control of glycoslyation requires an understanding of the
metabolic and cellular alterations that lead to modifica-
tions in these structures, in addition to the use of stable
cultivation methods. For example, a reduction in the
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adenylate energy charge (a measure of the metabolic and
physiological status of a cell) of fed-batch CHO cells was
found to coincide with decreased site occupancy of recom-
binantly produced IFN-y [2] In another case, although no
link was observed between metabolic fluxes and glycosyla-
tion site occupancy in CHO cells cultivated in a continu-
ous set-up with limiting glutamine or glucose, a reduction
in the concentrations of nucleotides and amino sugars was
found to limit the site occupancy of IFN-y [3].

Use of continuous cultivation, metabolic flux analysis
and assay of intracellular sugar nucleotide levels is an ideal
method to study the control of N-linked glycosylation due
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to the stability of the culture mode. After a defined period
of time, the viable cell number, productivity and concen-
trations and rates of consumption and production of
metabolites stabilize in this set-up, and a steady state is
attained. This is achieved with the continuous flow of
fresh medium into a culture inoculated in a bioreactor,
and this is coupled with outflow of harvest culture at the
same rate. Additionally, the pH, temperature, pO,, pCO,
are controlled by the bioreactor set-up. The set-up for
these experiments is based on previous literature where
the effect of a range of pCO, values on the glycosylation
of IgG was firstly screened in a batch culture, and then
scaled up to a more controlled culture environment [4]. A
different large-scale culture method was used in the work
described here (a continuous culture system where the
cells freely collect in the harvest reservoir) but the same
sequential experimental culture system was used. The aim
of returning the culture to the initial conditions was to
illustrate that the method of culturing had no impact on
the results, and, to provide replicate data to prove this
point.

This study aims to investigate the mechanisms of chan-
ging glycan microheterogeneity by coupling metabolic flux
analysis to assay of intracellular sugar nucleotides. A CHO
cell line recombinantly expressing HCG was initially culti-
vated in batch shake flasks since it presents an ideal small-
scale method to test the effect of many parameters on the
subsequent glycosylation of recombinant proteins. In this
case, 0 mM, 4 mM or 8 mM glutamine was supplied in
the culture medium and the structures of the N-linked gly-
cans attached to HCG were determined on days 1, 3 and 5
of culture. The same cell line was subsequently inoculated
in a continuous culture system, and the glutamine concen-
tration in the culture medium was altered between 8 mM
and 0 mM to study four steady states in total. Metabolic
flux analysis was carried out at each steady state, and the
intracellular content of nucleotides and sugar nucleotides
and structure of N-linked glycans attached to HCG were
also determined. With use of both of these cultivation sys-
tems, decreased glycolytic flux and intracellular concentra-
tion of UDP-GIcNAc was found to correlate with a
reduction in the sialylation and antennarity of the
N-linked glycans attached to HCG under glutamine-
limited conditions.

Methods

Cell line and culture medium

A CHOKI1 (Chinese hamster ovary) cell line recombi-
nantly expressing HCG (human chorionic gonadotrophin)
was a kind gift of Merck, Sharp & Dohme, Oss, Nether-
lands. The cells were routinely maintained in CD-CHO
medium (GIBCO) supplemented with 8 mM glutamine
and HT supplement (100 pM sodium hypoxanthine,
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16 uM thymidine, GIBCO). Cells were precultured in
shake flasks in a Kuhner ClimoShaker ISF1-X incubator at
150 rpm, 5% CO, and 80% RH.

Batch cultivation

Cells were inoculated at 0.5 x 10° cells/ml in a volume
of 150 ml in 500 ml shake flasks. The cultures were
inoculated to result in a final concentration of 0 mM,
4 mM and 8 mM glutamine (gln). Six shake flasks per
condition were incubated, and duplicate cultures were
harvested on days 1, 3 and 5 of culture.

Continuous cultivation

Duplicate continuous cultures were carried out in 2L
bioreactors (Applikon) with a working volume of 1.7L.
Culture pH and dissolved oxygen were controlled at
7.20 and 50% of air saturation, respectively, with the use
of an ADI 1030 bioprocessor (Applikon). The tempera-
ture was maintained at 37°C and agitation rate was set
at 325 rpm. The bioreactors were inoculated at an initial
cell density of 0.3 x 10° cells/ml and cultured for three
days in batch mode. At this point, the harvest pump
(Watson Marlow 101 U/R) was switched on in order to
set the medium flow rate at 0.4/d. The culture level was
maintained at 1.7 L with use of a level controller (Appli-
Sens APS501 level controller), which activated the deliv-
ery of fresh medium to the bioreactor via the feed pump
when necessary. Fresh, sterile medium was stored at
4°C, while harvest cell suspension was collected into a
reservoir stored at room temperature. (At each steady
state the cell suspension was harvested at 4°C via a
clean harvest line). A theoretical steady state is attained
5 volume changes after the last perturbation, and if
there were minimal changes in the mean value of each
cell culture parameter at this point, a steady state was
defined. The glutamine concentration was altered
between values of 8 mM and 0 mM to study four steady
states in total, defined as follows; days 30-33 (state 1,
8 mM glutamine), days 45-48 (state 2, 0 mM glutamine),
days 72-75 (state 3, 8 mM glutamine) and days 88-91
(state 4, 0 mM glutamine).

Routine culture analysis

Viable cell number and cell viability was determined
using the CEDEX AS® (Roche Innovatis AG), the extra-
cellular concentrations of ammonium, glucose, gluta-
mate, glutamine and lactate were assayed with use of
the Nova Bioprofile 100 plus (Nova Biomedical Cor-
poration) and BGA parameters (pH, pO2, and pCO2)
were determined with the Bayer Rapidlab 248 (Siemens
Healthcare Diagnostics). Cell-free supernatants were
stored at -20°C before analysis of HCG content by
ELISA at key time points.
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Calculation of metabolic parameters

The specific rate of substrate consumption (qS) and pro-
duct formation (qP) and was calculated as described below
(equations 1 and 2, respectively), i.e. the rate of change in
substrate or product concentration (-d[S] and d[P], respec-
tively) per unit time (dt) per viable cell number (more cor-
rectly, the average viable cell number between these time
points, VC,ye):

—d|[S] 1
e et 1
g dt VCave W)
and
d[P] 1
p=—"1._ 2
=3 Vi @

Consequently, rates of substrate consumption and pro-
duct formation were plotted as positive values. The chemi-
cal degradation of glutamine was taken into account for
calculation of the rate of glutamine consumption (equa-
tion 3) and ammonium production (equation 4) [5].

—d|Gln] 1
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and
d[NH4"] 1
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The value for the first order degradation rate constant, k,
was determined for CD-CHO medium in both a shake
flask and bioreactor system by incubating glutamine-sup-
plemented medium under experimental conditions. The
glutamine concentration was determined daily and a plot
of the percentage glutamine remaining as a function of
time was constructed, and fitted to the exponential func-
tion y = e**. A value of k = 0.078/d and 0.069/d was
determined for bioreactors and shake flasks, respectively.

Metabolic flux analysis

On three consecutive days during each steady state, cell
culture supernatant was harvested and stored at -20°C
from each bioreactor. The concentration of extracellular
amino acids was subsequently determined by HPLC
(SAFC Biosciences). Specific rates of production of
amino acids, Nova metabolites, product titer and biomass
were combined with material balances of carbon and
nitrogen via a reaction network to estimate the metabolic
fluxes at each steady state. The excel algorithm version of
a metabolic flux analysis model developed by Mr. Jong-
chan Lee in the University of Minnesota was used [6].
The oxygen uptake rate was determined by a dynamic
method [7], and since the respiratory quotient was
assumed to be 1, the oxygen uptake rate equaled the
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carbon evolution rate. The carbon balance was varied
between each steady state, with a minimal average value
of 85 + 5% determined at state 3 and maximal average
value of 96 + 10% determined at state 2. Negative flux
values (J) indicate that the net flux is in the opposite
direction to that quoted (i.e. a negative value of Jphe-tyr
indicates net production of phenylalanine from tyrosine).

Assay of intracellular nucleotides and sugar nucleotides
Cells were harvested for analysis on two consecutive days
during each steady state by adaptation of the technique
of Kochanowski et al [8]. Firstly, the length of incubation
of the cell pellets in perchloric acid was increased to
10 minutes. The elution gradient on a Supelcosil LC-18-
DB column was as follows: 0% B for 17 minutes (0.5 ml/
min), 0-30% B for 27 minutes (1 ml/min), 30% B for
5 minutes (1 ml/min) and 0% B for 20 minutes (0.5 ml/
min), where B represents the buffer described in the cited
publication. Co-elution of GDP-Man and UDP-Gluc was
observed in CHO extracts under these conditions.

Purification and analysis of N-linked glycans of HCG

HCG was purified from culture supernatant harvested on
two consecutive days during a steady state by affinity chro-
matography. The structure of the N-linked glycans
attached to 5 pg of purified HCG were determined accord-
ing to the method of Royle et al [9]. Briefly, the glycans
were released from SDS-PAGE gel pieces by PNGase F
digestion and labeling with 2-aminobenzamide (2-AB)
before analysis on NP-HPLC. The structures were digested
with a number of exoglycosidase enzymes in order to
assign structures with use of GlycoBase [10]. The follow-
ing exoglycosidase enzymes were used; sialidase A (ABS,
hydrolyses a2-6, 3, & 8 non reducing terminal sialic
acids), B-galactosidase (BTG, cleaves B(1-3, 4) galactose),
a-fucosidase (BKF, releases o.(1-2, 3, 4, 6) fucose) hexosa-
minidase (GUH, cleaves non-bisecting B GIcNAc residues)
and mannosidase (JBM, releases a(1-2, 3, 6) mannose
residues).

Statistical analysis

One-way ANOVA with Bonferroni’s post-test was per-
formed using GraphPad Prism version 4.0a for Macintosh
(GraphPad Software, San Diego, California, USA). Statisti-
cal significance was illustrated as follows; * = p < 0.05, ** =
p < 0.01, ** = p < 0.001.

Results

Cell growth

On days 1 through 3 of shake flask cultivation at 0 mM
glutamine, the number of viable cells was significantly
lower than the glutamine supplemented cultures (p <
0.01, Figure 1A). However, the growth rate of the cells
cultivated at 0 mM glutamine was only significantly
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Figure 1 Effects of glutamine on growth rates in batch shake flasks and bioreactor continuous culture. Viable CHO cell number and
growth rate with 0 mM, 4 mM and 8 mM glutamine supplementation in shake flask culture (A and B, respectively), and at varying glutamine
concentrations in a bioreactor continuous culture system (C and D, respectively). Boxes are used to illustrate the steady state examined. Panels A

Time (Days)

lower than the glutamine supplemented cultures on day
2 (p < 0.01, Figure 1B). In addition, on days 4 and 5 of
culture without glutamine, the growth rate remained
higher than the glutamine supplemented cultures (p <
0.05).

Within the continuous cultivation, the number of
viable cells increased significantly at steady states 3 and 4
(p < 0.001, 8 mM and 0 mM glutamine, Figure 1C). A
flow rate of 0.4/d was chosen for this culture system
since this represented a midway value between the
observed minimal and maximal cell growth rate in batch
culture. Although the harvest flow rate remained very
close to this set point during the cultivation time (data
not shown), a larger variation in the cell growth rate was
observed (Figure 1D). However, statistical analysis indi-
cates no difference in the cell growth rate at the defined
steady state periods. There was no major glutamine-
dependent change in the growth rate in this culture sys-
tem since the growth rate was controlled by the rate of
dilution of culture medium.

Metabolism of glucose and lactate

The initial concentration of glucose in both these set-
ups was approximately 35 mM, the concentration pro-
vided in basal CD-CHO media. There was a significantly
higher extracellular concentration of glucose in the glu-
tamine-free shake flask culture, when compared to the
glutamine supplemented cultures at all time points (p <
0.01, Figure 2A). This resulted in a lower concentration
of lactate on days 2 through 5 of cell culture at 0 mM
glutamine (p < 0.01, Figure 2A). On day 2 of culture
without glutamine, the rate of glucose consumption and
lactate production was significantly lower than the glu-
tamine supplemented cultures (p < 0.05, Figure 2B).
However, these rates were increased in the glutamine-
free cultures on day 5 of cultivation (p < 0.01). The
significantly reduced lactate concentration at 0 mM glu-
tamine in the shake flask cultivation led to a slower
decrease in the culture pH than the glutamine supple-
mented cultures, with a decrease from 7.4 to 7.0 noted
from day O to day 5 of culture (Figure 2C).
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Figure 2 The effects of glutamine on glucose, lactate and pH in batch shake flasks. The extracellular concentration of glucose with 0 mM,
4 mM and 8 mM glutamine supplementation and lactate (identical symbols, colored grey) in CHO cell batch shake flask cultivation (A). The rates
of glucose consumption and lactate production with batch shake flask cultivation at varying glutamine concentrations (symbols identical to
previous, B). The extracellular culture pH during shake flask cultivation with 0 mM, 4 mM and 8 mM glutamine supplementation (C). Panels A, B
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With the flow of culture medium in the continuous cul-
ture set-up, the steady state concentration of glucose was
approximately 2 mM at states 1 and 2 (Figure 3A). Lactate
stabilized at a concentration of 40 mM at these same
steady states (Figure 3A). The concentration of both glu-
cose and lactate decreased significantly at steady states 3
and 4 to approximate values of 0 mM and 35 mM, respec-
tively (p < 0.05). There was no difference in the rates of
glucose consumption and lactate production at steady
states 1 and 2 of the continuous cultivation, although
these values decreased significantly at states 3 and 4 (p <
0.001, Figure 3B). However, the continuous cultivation
was maintained at pH 7.2 by the addition of CO, and
NaOH (Figure 3C).

Metabolism of glutamine, glutamate and ammonium

A minor difference in the intended and measured initial
concentration of glutamine in all set-ups was observed, and
can be attributed to error range of the Nova Bioprofile.

The extracellular concentrations of glutamine and
ammonium were significantly different at all time points
for the shake flask cultivation, and significant concentra-
tions of ammonium were produced in the absence of glu-
tamine supplementation (p < 0.001, Figure 4A). There was
no significant difference in the rate of glutamine consump-
tion or ammonium production when glutamine was sup-
plied to shake flask cultures at concentrations of 4 mM
and 8 mM (Figure 4B). However, both these rates were
significantly lower on days 1 through 3 of culture without
glutamine (p < 0.01). All cultures had a similar concentra-
tion of glutamate at each time point, although the concen-
tration was decreased significantly on days 4 and 5
of culture with 0 mM and 4 mM glutamine (p < 0.05,
Figure 4C). Despite the obvious trend on day 1, the large
range of values for glutamate consumption for the cultures
without glutamine supplementation resulted in no signifi-
cant difference in the rate of consumption at any time
point for any culture (Figure 4D).

For the continuous cultivation, the extracellular concen-
tration of glutamine decreased significantly between steady
state 1 to 3 (p < 0.001), the concentration of glutamate
increased at state 3 only (p < 0.001), while the concentra-
tion of ammonium was significantly different at each
steady state (p < 0.05, Figure 5A). However, a similar rate
of glutamine consumption was noted at states 1 and 3, no
significant difference in the rate of glutamate production
was noted during any part of the continuous cultivation,
while the rate of ammonium production was seen to
decrease during the cultivation time (p < 0.01 for the com-
parison between steady states 1 and 4, Figure 5B).

Productivity of HCG
The total amount of HCG increased throughout batch cul-
ture at all glutamine concentrations to reach a maximal
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value of approximately 400 IU/ml on day 5. The amount
of HCG at 0 mM glutamine was significantly lower than
both glutamine supplemented cultures on day 3, although
the value was only statistically different to the culture at 4
mM glutamine on day 5 (Figure 6A). The specific produc-
tivity of HCG was found to differ significantly on day 5 of
shake flasks culture only, where the cells cultivated at 0
mM glutamine had a statistically higher productivity than
the culture grown at 8 mM glutamine only (Figure 6B).

The total amount of HCG stabilized at approximately
300 IU/ml at each steady state of the continuous culture,
although this increased significantly to 443 IU/ml at
steady state 3, which was deemed to be statistically higher
than state 1 only (p < 0.01, Figure 6C). No significant dif-
ference was noted in the specific productivity of the con-
tinuous culture, although a decreasing trend was noted
(Figure 6D).

Metabolic flux analysis at each steady state of continuous
culture

At steady state 1, there was no net flux from glutamate to
glutamine, although a-ketoglutarate is used for the forma-
tion of glutamate (Jgln-glu and Jglu-akg, Figure 7A). How-
ever, with the removal of glutamine from culture medium
at state 2, there was a positive flux from a-ketoglutarate to
glutamate to glutamine, indicating the production of gluta-
mine at this state (Figure 7A). At state 3, this flux was
reversed, with positive flux from glutamine to glutamate
and a-ketoglutarate (Figure 7A). At steady state 4, where
no glutamine is supplemented to the culture, the flux was
the same as that observed at state 2, where a.-ketoglutarate
is converted to glutamate and glutamine (Figure 7A). A
significant decrease in the flux from asparagine to aspar-
tate to oxalaoacetate was observed at state 3 (Jasn-asp,
Jasp-oaa, Figure 7A). There was a significant decrease in
the flux from amino acids towards the synthesis of HCG
from states 1 to 4 (Figure 7A).

With the transition from excess glucose concentrations
of 2 mM at states 1 and 2 to limiting values of 0 mM at
states 3 and 4, the flux from glucose to pyruvate and from
pyruvate to lactate decreased significantly at these states
(Jgle-pyr and Jpyr-lac, states 3 and 4, Figure 7B). However,
there was no change in the flux from pyruvate to the TCA
cycle at acetyl-CoA at any steady state (Jpyr-accoa, Figure
7B). There was a significant decrease in the flux from oxa-
loacetate to a-ketoglutarate at state 3, although the subse-
quent flux through the TCA cycle, from a-ketoglutarate
to succinyl-CoA was increased (Joaa-akg and Jakg-succ,
Figure 7B). The flux from pyruvate to alanine decreased
significantly at state 2 (Figure 7B).

Intracellular content of nucleotides and sugar nucleotides
Significant differences in the intracellular content of
nucleotides and sugar nucleotides were noted at state
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Figure 3 The effects of glutamine on glucose, lactate and pH in bioreactor continuous culture. The concentrations and rates of
consumption and production of glucose and lactate during continuous culture with varying glutamine concentrations in the culture medium (A
and B, respectively). The extracellular culture pH during continuous culture with varying glutamine concentrations in the culture medium (C).

Boxes are used to illustrate the steady state examined. Panels A, B and C, n = 8.
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4 of continuous culture. The concentration of UDP-
GlcNAc was statistically reduced, while UTP, UDP-Gal
and CTP were increased (Figure 8A and 8B).

Glycosylation of HCG

The N-linked glycan pool of HCG separated into 15 peaks,
comprised of 23 structures with NP-HPLC (Figure 9,
UND). (Structural abbreviations are described in the
legend for Figure 9). Digestion with a series of exoglycosi-
dase enzymes allowed the identification of the glycan
structures within each peak. For example, the two major
peaks observed in NP-HPLC after sialidase digestion were
found to comprise of A2G2 and FA2G2 (ABS digestion,
Figure 9). Inclusion of B-galactosidase with this pool of
glycans resulted in a decrease in GU value of each of these
peaks, corresponding to the removal of two galactose resi-
dues from each structure (A2 and FA2, ABS, BTG diges-
tion). However, inclusion of o.-fucosidase resulted in the
formation of one peak of A2G2 (proportionally increased
area, ABS, BKF digestion). Digestion with both fucosidase

and B-galactosidase reduced this structure to A2 and a
similar decrease in GU value (ABS, BTG, BKF digestion).
Further digestion to the basic mannose structures was
achieved with use of a hexosaminidase and mannosidase
(ABS, BTG, BKF, GUH and ABS, BTG, BKF, JBM
digestions).

A number of changes in the N-linked glycosylation of
HCG were noted on days 1, 3 and 5 of shake flask culture.
On day 1 of cultivation at 0 mM glutamine, the proportion
of peaks 4 and 8 increased, while on day 3, peaks 2 and 4
were increased, which demonstrates that a higher propor-
tion of neutral structures were produced under these con-
ditions (p < 0.01, Table 1). By day 5, there were a number
of changes that resulted in an overall pattern of decreased
sialylation, fucosylation and antennarity and an increase in
the proportion of neutral structures at 0 mM glutamine
(p < 0.05, illustrated in peaks 10 through 15). These same
changes in glycosylation were seen at steady state 4 of con-
tinuous culture, where glutamine was not supplemented to
the growing cultures (p < 0.05, the mean percentage areas



Burleigh et al. BMC Biotechnology 2011, 11:95
http://www.biomedcentral.com/1472-6750/11/95

Page 9 of 17

State 1
(8mM Gln)

Glutamine /°

Glutamate

State 2
(OmM Gln)

State 3
(8mM Gln)

State 4
(0OmM Gln)

> Glutamine, Glutamate and NH ;* Conc (mM)

qGlutamate

qGlutamine, qGlutamate, qNH ,* (pmol/VC/day)

o~

04 r r r r r r r
0 10 20 30 40 50 60 70 80 90
Time (Days)
0.8 State 1 State 2 State 3 State 4
(8mM Gln) (0OmM Gln) (8mM Gln) (0OmM Gln)

Time (Days)

Figure 5 Glutamine and glutamate metabolic profiles in bioreactor continuous culture. The extracellular concentration and rate of
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culture medium (A and B, respectively). Boxes are used in both instances to illustrate the steady state examined. Panels A and B, n = 8.

of A1G1 and M5 increased while peaks 10 through 15
decreased, Table 2).

Discussion

Batch culture

Differences in growth rate, glucose metabolism and cul-
ture pH have been shown to alter the structure of N-
linked glycans [11-13]. Changes in the N-linked glycosyla-
tion of HCG were noted in our batch shake flasks cultured
at 0 mM glutamine (Table 1). This overall pattern of
decreased sialylation, fucosylation and antennarity of the

N-linked glycans, and increase in the proportion of neutral
structures was accompanied by a number of metabolic
changes under these conditions. The rates of cell growth,
glucose consumption and lactate production were all
reduced in the early stages of culture at 0 mM glutamine,
while these values increased above those determined for
the glutamine supplemented cultures on the last day of
culture (Figures 1, 2). The rate of ammonium production
was also significantly lower at 0 mM glutamine on days 1
through 3 of culture, while the specific productivity of
HCG was increased on day 5 (Figures 4, 6). The culture
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pH was higher under these conditions (Figure 2), conse-
quently, the lack of glutamine resulted in a number of
metabolic and glycosylation changes in this cell culture
set-up. This provided a good basis for further investigation
of the effect of glutamine on N-linked glycosylation in a
more stable culture system, in this case with use of contin-
uous culture.

Continuous culture

A simple illustration of the increased stability of this cul-
ture system is seen when comparing the culture pH in
batch and continuous culture (Figure 2C, 3C). With this
bioreactor set-up, many process parameters are con-
trolled (e.g. pH, pO,, pCO,), and the continuous culture
method ensures that the metabolism of the cells stabi-
lized after a defined period of time (e.g. qGluc, qLac,
qGln, qGlu, qNH,", Figure 3 and 5).

After an initial period of adaptation, the cells settled into
four steady states. The changes in the N-linked glycosyla-
tion of HCG during shake flask cultivation at 0 mM gluta-
mine were also present at steady state 4 of continuous
culture (Figure 9C). The rates of glucose consumption,

lactate production and the flux from glucose to pyruvate
and lactate decreased at states 3 and 4 (Figures 3, 7). Addi-
tionally, the intracellular content of UDP-GIcNAc
decreased at state 4 (Figure 8).

The antennarity and sialylation of N-linked glycans is
altered by varying the intracellular content of the UDP-
GNAC sugars i.e. UDP-GIcNAc and UDP-GalNAc [14-17].
Under cell culture conditions, high glutamine and/or
ammonium concentrations contribute to the accumulation
of the pool of UDP-GNAc by the combined action of the
enzymes glucosamine-6-phosphate isomerase (GPI) and
glucosamine-6-phosphate synthetase (GPS) to form gluco-
samine-6-phosphate from fructose-6-phosphate (reaction
marked with an asterisk, Figure 10). GIcNAc transferase
enzymes catalyse the addition of new glycan chains to the
basic biantennary N-linked glycan structure and require
UDP-GIcNAc as a substrate. Altered concentrations of
UDP-GIcNAc impact on the sialylation of glycoproteins
since this sugar nucleotide is a necessary precursor for the
synthesis of CMP-NeuAc, the activated sugar donor for
the sialic acid termed Neu5Ac. Additionally, the accumu-
lation of the UDP-GIcNAc pathway requires an adequate
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glycolytic flux, since fructose-6-phosphate is formed
during glycolysis before conversion to UDP-GNAc [18].
Therefore, the reduction in sialylation and antennarity of
HCG may be related to the decreased intracellular content
of UDP-GIcNAc caused by a lack of glutamine coupled
with low glycolytic flux. The reasons for the decrease in
fucosylation were not examined, but it is possible that the
reduction in glycolytic flux has an impact, since fructose-
6-phosphate is interconverted to fucose-1-phosphate, a
precursor for the formation of the GDP-fucose sugar
donor. Glutamine limitation has previously been shown to
induce an increase in nucleotide levels [3], observed in the
case of UTP and CTP in this study. In addition, the

proportion of each N-linked glycan found in shake flask
and continuous cultivation was largely similar, though the
amount of underprocessed glycans was reduced in shake
flasks (peaks 2, 6 and 7, Tables 1 and 2).

The results of the metabolic flux analysis illustrate the
mechanisms by which these cells adapt to the lack of glu-
tamine, since this amino acid is necessary for the synth-
esis of nucleotides and nicotinamide co-enzymes, in
addition to the previously described role in the formation
of activated sugars. Under conditions of excess glucose,
there was no net flux from glutamine to the TCA cycle,
suggesting that glutamine was primarily used in these
other pathways (Jgln-glu, steady state 1, Figure 7). At
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steady state 2 and 4, where glutamine is not supplied to
culture medium, there is positive flux from o-ketogluta-
rate in the TCA cycle to glutamate and glutamine, indi-
cating that glutamine was formed under these conditions
to maintain the glutamine status of the cell (Jglu-akg,
Jgln-glu, Figure 7).

A distinct set of changes to the fluxes around the TCA
cycle was seen at steady state 3 (Figure 7, schematic illus-
tration Figure 11). Firstly, the flux through glycolysis was
reduced at this state (Figure 7B). The formation of amino
acids, such as alanine and aspartate, have been suggested

to occur as a result of either “overflow metabolism” dur-
ing inefficient cellular metabolism [19], or as a method to
attempt to detoxify ammonium [20]. Transamination of
glutamate maintains the toxic amino group within
another amino acid, which prevents the formation of an
additional ammonium ion. With the increased concentra-
tion of ammonium at this state (Figure 5A), it is possible
that the increased flux from pyruvate to alanine and from
oxaloacetate to asparagine and aspartate was a result of
metabolic diversion to reduce the ammonium content
(Jpyr-ala, Jasn-asp and Jasp-oaa, Figure 7). The net result
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Table 1 Glutamine controls recHCG glycoforms in shake flask cultures

Peak Glycan Day 1 Day 3 Day 5 Day 1 Day 3 Day 5 Day 1 Day 3 Day 5
No. Structure OmMGIn OmMGIn OmMGIn 4mMGIn 4mMGIn 4mMGIn 8 mMGIn 8 MM GIn 8 mM GIn
1 Al 158+ 74 188 + 34 115+ 08 78 +76 1M5+32 100+£10 6.5+ 58 123 £33 108 0.1
2 A2 04 + 00 0.7 £ 0.0 06 = 0.1 02 + 00 04 + 00 09 = 0.1 0300 05 %00 08 =00
3 A1G1 29 =04 3.7 £04 4.2 £ 0.2 09 + 04 12 +04 16 =00 1.1 +£02 1.5+ 0.1 1.7 £ 0.1
4 M5 8.0 £ 0.5 8.0 £ 0.5 83 +04 1.8 £ 0.1 28 + 00 38 00 1.9 £ 00 33 £0.1 41 + 0.1
5 A2GT, 25+ 05 30+ 00 32+03 24 +03 26 +03 36+03 23+ 05 30+ 0.1 38 +00
A1G1ST
6 A2G1S1 20+ 06 18+ 03 28 £ 0.1 09 £ 0.1 1.5+ 00 15+0.1 10+ 02 13+0.1 14 +£0.1
FA2GT 08 £05 1.0 £ 00 09+02 12+£03 1.1 £01 24 £ 0.1 12+02 12 +0.1 25+00
8 A2G2, 135+13 126+12 164+0.1 73+ 04 93 +£00 83 +05 78 +02 85+02 79+ 04
FA2G1S1
9 FA2G2, 20.7 £ 20 19615 226+07 225+£05 237 +0.1 213 +04 239 +0.1 226 £08 203 +06
A2G2S1
10 A2G2S2, FA2G2ST  19.5+1.2 17111 176+04 326+53 261+09 263+02 327+46 271+13 256+04
11 A3G2S1, FA2G2S2 8.8 £ 0.2 9.7 £ 0.7 7.6 £03 146 + 23 124+16 132+16 141 +£03 123+ 1.1 132 + 09
12 A3G2S2, 1.9 0.5 1.5+ 0.1 1.7 £ 0.1 25+02 24 +02 22+03 24+ 03 20 £ 0.1 25+ 0.1
A3G3S1
13 FA3G3S1, A3G3S2 1.3 +£0.2 1.0 = 0.1 1.3 £ 0.1 21+ 0.1 21 +02 19+ 0.1 19+ 0.1 1.8 + 00 23+00
14  A3G3S3,FA3G3S2  1.1+£0.0 0.9+0.1 1.1+£00 23+04 19+02 20+ 0.1 22403 1.8+ 0.1 20+ 00
15 FA3G3S3 06+00 05+02 04+0.1 08 £00 09+02 10+£02 06 +02 08+02 1.1 £00

The relative structures and proportions of each peak of the HCG N-linked glycan NP-HPLC pool and on day 1, 3 and 5 of batch culture with varying
concentrations of glutamine. Numbers in bold indicates significant difference, p < 0.05, n = 6.

of the increase in flux away from the TCA cycle at oxa-
loacetate was a reduction in the subsequent flux to o-
ketoglutarate (Joaa-akg, Figure 7B). If this reduction in
flux through the TCA cycle was maintained past this
point, it is likely that cellular metabolism may be
impaired, since this pathway is a key node for the

provision of a range of metabolic intermediates. How-
ever, in this state, a positive flux from glutamine to gluta-
mate and o-ketoglutarate occurred, which increased the
mean net flux from o-ketoglutarate to succinyl-CoA in
the TCA cycle, when compared to the previous state
(Jgln-glu, Jglu-akg, Jakg-succ, Figure 7).

Table 2 Glutamine controls recHCG glycoforms in bioreactor continuous culture

Peak Glycan Structure Steady State 1 Steady State 2 Steady State 3 Steady State 4
No. (8 mM GIn) (0 mM GIn) (8 mM GIn) (0 mM GIn)
1 Al 2.16 + 0.66 457 + 264 458 + 2.05 444 + 134
2 A2 113 £ 027 1.30 + 0.21 231+ 050 136 + 0.24
3 A1G1 132 £ 024 1.90 + 040 264 + 0.60 5.89 + 0.97
4 M5 456 + 044 472 £ 061 6.77 £ 1.01 14.70 + 3.37
5 A2G1, A1G1S1 360 + 0.19 345+ 0.06 381 £ 035 4.66 = 0.81
6 A2G1S1 142 £ 0.19 1.63 + 0.24 1.65 + 022 241 +0.22
7 FA2GT 3.53 + 047 354 +023 3.78 £ 042 240 + 0.27
8 A2G2, FA2G1S1 739 + 059 838 + 091 9.29 + 131 14.33 + 2.08
9 FA2G2, A2G2S1 1831 £ 098 18.03 + 0.84 16.56 + 0.36 22.06 + 2.92
10 A2G2S2, FA2G2S1 2690 + 0.73 2451 + 1.04 2090 + 2.18 14.55 £ 1.15
11 A3G2S1, FA2G2S2 20.99 + 1.60 20.14 + 142 16.02 £ 229 8.87 + 0.84
12 A3G2S2, A3G3S1 295 +0.23 2.79 + 0.26 554 +1.28 223 +0.18
13 FA3G3ST, A3G3S2 267 +£0.25 240 + 0.19 3.77 £ 062 1.23 £ 0.17
14 A3G3S3, FA3G3S2 197 £ 0.11 1.70 + 0.15 150 £ 0.29 0.57 + 0.06
15 FA3G3S3 1.07 £ 0.14 096 + 0.13 0.90 + 0.14 0.30 + 0.04

The relative structures and proportions of each peak of the HCG N-linked glycan NP-HPLC pool with varying concentrations of glutamine at each steady state of
continuous culture are shown. Numbers in bold indicates significant difference, where each steady state was compared side-by-side, p < 0.05 and n = 3.
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Figure 10 Sugar nucleotide metabolism. The formation of activated sugar nucleotides is intrinsically linked to cellular metabolism. For
example, the conversion of glucose to pyruvate (Pyr) during glycolysis also forms fructose-6-phosphate (Fruc-6-P), which contributes to the
accumulation of the UDP-GNAc pool (UDPGIcNAc and UDP-GalNAQ), in a similar manner to glutamine (GIn) and ammonium (NH4%). The content
of this pool has a direct effect on the proportion of sialic acid precursors (such as CMP-Neu5Ac) and may impact the antennarity of glycans

since UDP-GIcNAC is a substrate for GIcNAc transferase enzymes, which catalyse the addition of glycan chains. Glycan donors and
monosaccharides are shown in rectangles. Additional abbreviations are noted elsewhere.
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Figure 11 Schematic of the changes in metabolic flux at steady state 3. Small black arrows indicate normal flux direction, while
emboldened black arrows indicate the change in metabolic flux at this steady state. In this case, there was an increase in the flux towards
production of alanine from pyruvate and asparagine and aspartate from oxaloacetate (likely caused by the increased ammonium concentration,
see text for details). This resulted in a decrease in the flux from oxaloaceate to a-ketoglutarate. However, the flux through the TCA cycle was
maintained by an increase in the flux from glutamine to glutamate and a-ketoglutarate, which resulted in an increase in the mean net flux from

a-ketoglutarate to succinyl-CoA in the TCA cycle. The remaining calculated fluxes in the TCA cycle were comparable to those seen at the
remaining steady states. Abbreviations are noted elsewhere.
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This indicates that the aim to replicate data by the
sequential cultivation method was unsuccessful, however,
these results suggest a case of steady state multiplicity - a
difference in cell metabolism despite the use of identical
dilution rate and medium composition in a continuous
culture [6,21,22]. In one case, sequentially reducing the
dilution rate of a continuous culture of hybridoma cells
resulted in more efficient metabolism of glucose, and
some elements of this altered metabolism were main-
tained when the cells were subsequently returned to the
initial high dilution rate [22]. In another series of investi-
gations, it was shown that use of fed-batch culture condi-
tions preceding the onset of medium flow for continuous
culture of a different hybridoma cell line can alter the
resulting steady state achieved [6,21]. In this case, the
flux through glycolysis and the TCA cycle and in the
metabolism of glutamine was altered between steady
states 1 and 3. The reasons for this are uncertain, how-
ever, the reduction in the extracellular concentration of
glucose and glycolytic flux may be the key factor. It is
also possible that this was merely a cellular adaptation to
the loss of glutamine. Further studies into the mechan-
isms by which these alternative metabolic states are
reached are necessary, since recent work has shown that
significant changes in the enzymes of central metabolism
occur at both the genomic and proteomic level, in cases
of induced steady state multiplicity in a continuous cul-
ture system [23].

Glutamine and productivity of HCG
The productivity of HCG was significantly increased on
day 5 of batch shake flask culture with 0 mM glutamine
supplementation (Figure 6B). The growth rate of cells
was significantly higher for this culture, when compared
to glutamine-supplemented culture, although the total
amount of HCG was not (Figures 1B, 6A). The mainte-
nance of a higher growth rate for a longer time may
explain why the productivity was similarly increased.
Despite the lack of significance in the trend of changing
productivity during the continuous culture, there was a
statistical decrease in the flux from amino acids towards
the synthesis of HCG (Figures 6, 7). A reduction in the
productivity of recombinant proteins is not unexpected
following extended culturing of a cell line [24]. However,
the productivity of tPA in a continuous culture of CHO
cells has been shown to vary with the concentration of
glucose in the culture medium [25,26]. Consequently, the
reduction in the extracellular concentration of glucose at
states 3 and 4 may have resulted in this decrease in
productivity.

Conclusions
This work has illustrated that reducing glutamine con-
centrations to 0 mM in a batch shake flask resulted in
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reduced sialylation, fucosylation and antennarity, and,
increased proportions of neutral N-linked glycans
attached to HCG. By its nature, batch cultivation resulted
in variations in metabolism during the culture time, such
as growth rate, the rate of consumption and production
of key metabolites and recombinant protein, and, also in
some important culture conditions such as pH. With use
of a continuous culture set up, growth rate and culture
pH were controlled while the glutamine concentration in
culture medium was altered between 8 mM and 0 mM.
Additionally, a metabolic steady state was attained; the
consumption and production rates of key metabolites
stabilized after a key length of time. By determining the
intracellular content of nucleotides and sugar nucleo-
tides, the mechanisms for these changes were explored. It
was demonstrated that lack of glutamine coupled with
reduced glycolytic flux caused a reduction in the sialyla-
tion and antennarity of the N-linked glycans attached to
HCG, an event mediated by the decrease in the intracel-
lular pool of UDP-GIcNAc. The use of metabolic flux
analysis at each steady state illustrated the metabolic
diversions that occurred in the presence of varying gluta-
mine concentrations, and highlighted a case of steady
state multiplicity. The occurrence of multiple steady
states under the same culture conditions suggests the
potential to guide cells into key metabolic states that may
improve the characteristics of recombinant proteins.
Consequently, this method of coupling use of continuous
culture with analytical techniques to probe the mechan-
isms of changing N-linked glycosylation is effective, and
lends itself towards a range of other applications.
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