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Abstract

Endoplasmic reticulum (ER) stress activates the Unfolded Protein Response, a compensatory signaling response that is
mediated by the IRE-1, PERK/PEK-1, and ATF-6 pathways in metazoans. Genetic studies have implicated roles for UPR
signaling in animal development and disease, but the function of the UPR under physiological conditions, in the absence of
chemical agents administered to induce ER stress, is not well understood. Here, we show that in Caenorhabditis elegans XBP-
1 deficiency results in constitutive ER stress, reflected by increased basal levels of IRE-1 and PEK-1 activity under
physiological conditions. We define a dynamic, temperature-dependent requirement for XBP-1 and PEK-1 activities that
increases with immune activation and at elevated physiological temperatures in C. elegans. Our data suggest that the
negative feedback loops involving the activation of IRE-1-XBP-1 and PEK-1 pathways serve essential roles, not only at the
extremes of ER stress, but also in the maintenance of ER homeostasis under physiological conditions.
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Introduction

The accumulation of misfolded proteins in the endoplasmic

reticulum (ER), also known as ER stress, activates the Unfolded

Protein Response (UPR), which upregulates the synthesis of

chaperones such as BiP and components of ER-associated

degradation (ERAD), promotes ER expansion, and attenuates

translation [1–3]. The UPR is conserved from yeast to humans

and in metazoans is comprised of three branches, mediated by the

transmembrane ER luminal sensors IRE-1, PERK/PEK-1, and

ATF-6 [1–3]. In response to ER stress, IRE-1 oligomerizes,

activating an endoribonuclease domain that splices the mRNA of

xbp-1 to enable the generation of the activated form of the XBP-1

transcription factor [4–7]. PERK phosphorylates the translation

initiation factor eIF-2a, causing global translational attenuation

that diminishes the secretory load to the ER [8]. In addition,

phosphorylation of eIF-2a selectively increases the translation of

ATF4, a transcription factor that regulates stress responses [9].

ATF-6 undergoes proteolysis, releasing the cytosolic domain of

ATF-6, which functions as a transcription factor that translocates

to the nucleus and activates transcription of UPR genes [10].

Genetic studies suggest essential roles for UPR signaling in

animal development. In mice, genetic studies focused on either the

IRE-1-XBP-1 or the PERK pathway have shown that each

functions in the development of specialized cell types, including

plasma cells, pancreatic ß-cells, hepatocytes, and intestinal

epithelial cells [3,11–15]. In Caenorhabditis elegans, mutants deficient

in any one of the three branches of the UPR are viable, but

combining a deficiency in the IRE-1-XBP-1 pathway with loss-of-

function mutations in either the ATF-6 or PEK-1 branch has been

reported to result in larval lethality [6,16]. These studies suggest

that the UPR is required for animal development, but the specific

essential role has not been defined. For example, UPR signaling

may be required for a particular stage of development, or

alternatively, constitutive UPR activity may be required. The

experimental analysis of UPR signaling both in yeast and in

mammalian cells has been greatly facilitated by the use of chemical

agents that induce ER stress, such as the N-linked glycosylation

inhibitor tunicamycin, the calcium pump inhibitor thapsigargin,

and the reducing agent dithiothreitol (DTT). However, the

activation of the UPR under physiological conditions is less well

understood [17]. Constitutive IRE-1 activity has been observed in

diverse types of mammalian cells, particularly with high secretory

activity or in the setting of increased inflammatory signaling

[11,14,15,18]. These studies suggest critical roles for IRE-1-XBP-1

signaling in physiology and development, some of which have

been proposed to be independent of its role in maintaining protein

folding homeostasis in the ER [11,19,20].

Recently, we showed that XBP-1 is required for C. elegans larval

development on pathogenic Pseudomonas aeruginosa, conferring

protection to the C. elegans host against the ER stress caused by

its own secretory innate immune response to infection [21]. Our

study established that the innate immune response to microbial

pathogens represents a physiologically relevant source of ER stress

that necessitates XBP-1 function.

We sought to better understand the consequences of UPR

deficiency under physiological conditions during C. elegans larval

development. We describe our studies which suggest that even in
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the absence of ER stress induced by exogenously administered

chemical agents, the IRE-1-XBP-1 pathway, in concert with the

PEK-1 pathway, functions in a homeostatic loop that is under

constitutive activation during C. elegans larval development. Our

data implicate an essential role for the UPR in ER homeostasis,

not only in the response to toxin-induced ER stress, but also under

basal physiological conditions.

Results

Increased Constitutive IRE-1 Activity in C. elegans xbp-1
Mutants

The detection of IRE-1 activity provides a sensitive and

responsive measure of ER stress. Most methods used to measure

IRE-1 activity require functional IRE-1-XBP-1 output, relying on

either detection of the activated spliced form of the xbp-1 mRNA

or the transcriptional activity of the resulting XBP-1 protein. In

order to follow IRE-1 activity in the absence of a functional XBP-1

protein, we utilized the C. elegans xbp-1(zc12) mutant, which has a

CRT mutation that results in an early premature stop codon [4].

We reasoned that we could detect IRE-1-mediated splicing of xbp-

1(zc12) mRNA by quantitative RT-PCR (qPCR), as we have done

previously for wild type xbp-1 mRNA, as a measure of IRE-1

activity [21].

We anticipated, however, that the xbp-1(zc12) mRNA might be

degraded by nonsense-mediated decay (NMD) [22], which would

reduce the abundance of xbp-1(zc12) mRNA (Figure 1A). Thus, we

constructed a strain carrying xbp-1(zc12) and a null allele of smg-2,

the C. elegans homolog of the NMD component Upf1 [23]. Indeed,

we observed that the level of xbp-1 mRNA in the xbp-1(zc12)

mutant was markedly diminished compared with the level of xbp-

1(zc12) mRNA in the smg-2(qd101); xbp-1(zc12) mutant (Figure 1B).

These data confirmed that xbp-1(zc12) mRNA is a substrate for the

NMD pathway, but that inhibition of NMD permits detection of

xbp-1(zc12) mRNA. As expected from the predicted truncated

protein product made from translation of the xbp-1(zc12) mRNA

(Figure 1A), loss of NMD had no effect on the null phenotype of

the xbp-1(zc12) allele, as assessed by the effect of the smg-2(qd101)

mutation on expression of an xbp-1-regulated gene, the C. elegans

BiP homolog hsp-4 (Figure 1B). We next examined the level of WT

xbp-1 mRNA in the smg-2(qd101) mutant, and we observed that

NMD inhibition increased the level of xbp-1 mRNA 2-fold relative

to WT C. elegans (Figure 1C), which suggests that the NMD

complex may function to decrease the level of WT xbp-1 mRNA.

This observation is consistent with a prior report suggesting that

stress-induced genes may be NMD targets [24], although we

hypothesize that the relatively early termination codon present in

the xbp-1 mRNA prior to IRE-1-mediated splicing may also

contribute to recognition and degradation by the NMD pathway.

Consistent with this explanation, after exposing both the WT and

smg-2(qd101) strains to tunicamycin for 4 h, the level of IRE-1-

spliced xbp-1 mRNA was similar between the two strains

(Figure 1C). Furthermore, the loss of NMD did not increase the

lethality of either the WT strain or xbp-1(zc12) mutant when

grown in the presence of tunicamycin (Figure 1D).

Comparing levels of IRE-1 activity between smg-2(qd101) and

smg-2(qd101); xbp-1(zc12) animals, we observed a dramatic

elevation in the level of spliced xbp-1 mRNA in the smg-

2(qd101); xbp-1(zc12) strain (Figure 1E). To provide a measure

for comparison, the basal elevation of spliced xbp-1 mRNA in the

smg-2(qd101); xbp-1(zc12) mutant far exceeded the level of spliced

xbp-1 mRNA in the smg-2(qd101) mutant even after administration

of tunicamycin. Treating the smg-2(qd101); xbp-1(zc12) strain with

tunicamycin resulted in only a minor additional increase in spliced

xbp-1 mRNA compared with the magnitude of elevation in spliced

xbp-1 in that strain under basal conditions (Figure 1E). These data

show that XBP-1 deficiency results in a dramatic increase in IRE-1

activity, even in the absence of exogenously administered agents

such as tunicamycin.

Increased Constitutive PEK-1 Activation in C. elegans
xbp-1 Mutants

If the elevated level of IRE-1 activity observed in the smg-

2(qd101); xbp-1(zc12) mutant were indicative of increased ER

stress due to loss of xbp-1, we might anticipate compensatory

activation of the PEK-1 and/or ATF-6 pathways in the absence of

XBP-1. We therefore sought to determine levels of PEK-1 activity

in an xbp-1 mutant through the detection of eIF-2a phosphory-

lation. In particular, these measurements would provide an

additional measure of ER stress in the xbp-1 mutant that is not

dependent on the inactivation of the NMD pathway and its

aforementioned experimental caveats. Antibodies raised against

mammalian eIF-2a and specifically phosphorylated eIF-2a (P-eIF-

2a) cross-react with the highly homologous C. elegans protein

[25,26]. We detected a single band in immunoblots using these

antibodies with lysates from WT C. elegans (Figure 2A). We

observed that eIF-2a phosphorylation was induced by a 4 h

exposure to a high dose of tunicamycin in a PEK-1-dependent

manner (Figure 2A and Figure S1A). Of note, eIF-2a phosphor-

ylation appears to be a less sensitive measure of ER stress than

IRE-1-mediated xbp-1 mRNA splicing, as we did not observe a

significant increase in eIF-2a phosphorylation in response to

standard doses of tunicamycin sufficient to induce xbp-1 mRNA

splicing.

We next determined PEK-1 activity under basal physiological

conditions, specifically in the xbp-1 mutant. We saw induction of

PEK-1-mediated eIF-2a phosphorylation relative to WT in the

absence of exogenously administered agents to induce ER stress at

16uC (Figure 2B and Figure S1B). The magnitude of the effect of

XBP-1 deficiency on PEK-1 activity was comparable to the

induction of PEK-1 in WT by treatment with high-dose

Author Summary

Proteins destined for secretion outside of eukaryotic cells
are trafficked through the endoplasmic reticulum (ER).
Protein folding in the ER involves the activity of
chaperones, as well as catalysis of post-translational
modifications such as disulfide bond formation and
glycosylation. When the folding capacity of the ER is
exceeded, the resulting accumulation of misfolded pro-
teins activates the Unfolded Protein Response (UPR), a
conserved signaling response that functions to restore
protein folding homeostasis in the ER. Genetic studies
have established that the UPR is required for the
development of specific cell types in mammals, such as
antibody-secreting plasma cells, and recent studies impli-
cate a critical role for UPR signaling in the pathogenesis of
metabolic and inflammatory diseases. In this paper we
show that innate immunity and elevated physiological
temperatures each necessitate UPR activity for C. elegans
survival. Furthermore, we show that, under physiological
conditions of larval development, basal activity of the UPR
is required for the maintenance of ER homeostasis. Our
data support the idea not only that the UPR functions as a
‘‘stress response’’ pathway, protecting against the ex-
tremes of unfolded protein accumulation, but also that the
UPR plays a more general role in animal physiology and
development.

Physiological UPR Signaling in C. elegans
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tunicamycin. We observe no increase in eIF-2a phosphorylation in

the xbp-1; pek-1 mutant relative to the pek-1 mutant, confirming

that the increase in eIF-2a phosphorylation in the xbp-1 mutant

relative to WT is due to activation of PEK-1. In fact, we noticed a

slight decrease in eIF-2a phosphorylation in the xbp-1; pek-1

mutant relative to the pek-1 mutant, but the mechanisms

underlying this difference are unclear. These data corroborate

our observations of increased xbp-1 mRNA splicing in the xbp-1

mutant. Taken together, the increase in levels of IRE-1 and PEK-

1 activity in the xbp-1 mutant suggests that XBP-1 deficiency is

accompanied by a marked increase in constitutive ER stress under

basal physiological conditions.

The Effects of Immune Activation on ER Stress Levels in
the xbp-1 Mutant

Previously, we reported that the activation of innate immunity

by infection with pathogenic P. aeruginosa induces ER stress, and

that XBP-1 serves an essential role in protecting the host against

the detrimental effects of immune activation [21]. Our prior

ultrastructural analysis of the ER in xbp-1 mutants suggested that

disruption of ER homeostasis contributes to this phenotype. One

explanation for these observations is that ER homeostasis in the

xbp-1 mutant might be minimally perturbed under basal

physiological conditions but have a pronounced sensitivity to ER

stress from endogenous (e.g. immune activation) or exogenous (e.g.

tunicamycin) sources. However, the data in Figure 1 and Figure 2

suggest that even during physiological growth and development,

XBP-1 deficiency results in a marked elevation in levels of basal

ER stress. We hypothesized, therefore, that under these circum-

stances, the activation of innate immunity might further increase

ER stress levels.

The smg-2(qd101); xbp-1(zc12) strain provided the opportunity to

assess levels of ER stress caused by immune activation in the

setting of XBP-1 deficiency. Whereas a 4 h exposure of the WT

strain to P. aeruginosa PA14 causes a two-fold increase in spliced

xbp-1 mRNA relative to exposure to the relatively non-pathogenic

bacterial food Escherichia coli OP50 (Figure 3A and [21]), we

observe a blunted response to P. aeruginosa infection in the smg-

2(qd101) mutant (Figure 3A). This observation is likely due to the

5-fold elevation in spliced xbp-1 mRNA levels in the smg-2(qd101)

mutant (Figure 1C), which may buffer the ER from the stress

caused by pathogen-induced immune activation. Nevertheless, we

observed that the level of spliced xbp-1 mRNA in the smg-2(qd101);

xbp-1(zc12) mutant was increased by a 4 h exposure to P. aeruginosa

relative to the smg-2(qd101); xbp-1(zc12) mutant treated in parallel

with E. coli (Figure 3A). Specifically, under these treatment

conditions, the level of spliced xbp-1 mRNA in the smg-2(qd101);

xbp-1(zc12) mutant was 20-fold greater than that of the smg-

2(qd101) mutant in the absence of additional stress, whereas

exposure to P. aeruginosa increased the level of spliced xbp-1 mRNA

to over 25-fold that of the smg-2(qd101) mutant (Figure 3A). The

total amount of xbp-1 mRNA was unchanged between smg-

2(qd101) and smg-2(qd101); xbp-1(zc12) strains, indicating that the

increase in spliced xbp-1 mRNA is due to increased IRE-1

activation.

Figure 1. XBP-1 deficiency results in a dramatic increase in IRE-1 activity. (A) Detection of xbp-1 mRNA splicing by IRE-1 in the C. elegans
xbp-1(zc12) mutant. Schematic of the unspliced and spliced xbp-1 mRNA, noting the position of the premature termination codon present in the xbp-
1(zc12) allele. The smg-2(qd101) mutation results in inactivation of the NMD pathway, stabilizing the xbp-1(zc12) mRNA for detection. (B) Quantitative
real-time PCR measurements of mRNA levels in the xbp-1(zc12) and smg-2(qd101);xbp-1(zc12) mutants relative to the smg-2(qd101) mutant
synchronized in the L3 stage. (C) Quantitative real-time PCR measurements of levels of total and spliced xbp-1 mRNA in the smg-2(qd101) strain
relative to WT grown to the L3 stage and then shifted to plates with or without tunicamycin (5 mg/mL) for 4 h. (D) Larval development and survival
assay showing the proportion of animals of each of the indicated strains that reach the indicated stage after 4 d of development from eggs laid on
plates containing tunicamycin (2.5 mg/mL) at 16uC. (E) Quantitative real-time PCR measurements of levels of total and spliced xbp-1 mRNA in the smg-
2(qd101); xbp-1(zc12) strain relative to the smg-2(qd101) strain treated as in C. (In B, C, and E, values represent fold change 6 s.e.m., n = 3 independent
experiments, *P,0.05, ***P,0.001, two-way ANOVA with Bonferroni post test).
doi:10.1371/journal.pgen.1002391.g001
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We observed persistent elevation of spliced xbp-1 mRNA after

an 11 h exposure to P. aeruginosa, above the elevated basal levels of

spliced xbp-1 mRNA in the xbp-1 mutant, suggesting that IRE-1

activity is not attenuated under conditions of physiological ER

stress (Figure 3B).

Previously, we established that the ER stress induced by

exposure to P. aeruginosa, as well as the lethality of the xbp-1

mutant during infection by P. aeruginosa, are suppressed by a loss-

of-function mutation in pmk-1, which encodes a conserved p38

mitogen-activated protein kinase (MAPK) that regulates innate

immunity in C. elegans [27]. Our interpretation of these data was

that loss of PMK-1 activity diminished the secretory load on the

ER by attenuating the innate immune response. In support of this

interpretation, we found that the pathogen-induced increase in

spliced xbp-1 mRNA in smg-2(qd101); xbp-1(zc12) was suppressed

in the smg-2(qd101); xbp-1(zc12); pmk-1(km25) mutant, although the

basal levels on E. coli OP50 nevertheless remained markedly

elevated (Figure 3A). These data provide quantitative support for a

model in which the activation of PMK-1-mediated innate

immunity is a physiologically relevant source of ER stress, which

in XBP-1-deficient animals exacerbates an already elevated level

of ER stress to cause larval lethality.

A Temperature-Dependent Requirement for XBP-1 and
PEK-1 Activities in C. elegans Development and Survival

What are the functional consequences of the elevated ER stress

present in the xbp-1 mutant under standard growth conditions, in

the absence of infection? The xbp-1 mutant, while viable, exhibits

increased sensitivity to exogenously administered ER stress as well

as physiological ER stress from immune activation [21,28].

Inactivation of both xbp-1 and pek-1 was previously reported to

result in larval arrest when propagated at 20uC [16]. Our

observations of constitutive ER stress in the xbp-1 mutant and

increased PEK-1 activity suggest a compensatory functional role

for pek-1, and thus we sought to further characterize the larval

arrest phenotype of the xbp-1; pek-1 mutant.

Surprisingly, we observed that the xbp-1(tm2482); pek-1(ok275)

double mutant exhibited temperature-dependent viability over the

physiological temperature range of C. elegans (Figure 4A). The

larval development of the xbp-1(tm2482); pek-1(ok275) mutant was

similar to that of WT at 16uC. At 20uC, however, approximately

half of xbp-1(tm2482); pek-1(ok275) eggs developed to become

gravid adults, while the remainder arrested during larval

development in the L2 and L3 stages. These arrested larvae died

over the course of several days with intestinal degeneration as

previously described (Shen et al., 2005). At temperatures greater

than 23uC, larval lethality was 100%. At 25uC, 100% of the

population died in the L1 and L2 stages after just 2 days. The

physiological temperature range for propagation of C. elegans in the

laboratory is generally 15uC to 25uC, with optimal reproduction at

Figure 2. XBP-1 deficiency increases PEK-1 dependent phos-
phorylation of eIF2a. (A) PEK-1 dependent phosphorylation of eIF2a
is induced by high dose (50 ug/ml) tunicamycin. Western blot of P-
eIF2a, total eIF2a and tubulin in WT and pek-1(ok275) strains grown to
the L4 stage and then shifted to plates with or without tunicamycin
(50 mg/mL) for 4 hours. (B) PEK-1 dependent phosphorylation of eIF2a
is induced by XBP-1 deficiency. Western blot of P-eIF2a, total eIF2a and
tubulin in WT, xbp-1(tm2482), xbp-1(tm2482); pek-1(ok275) and pek-
1(ok275) strains grown to the L4 stage.
doi:10.1371/journal.pgen.1002391.g002

Figure 3. Pathogen-induced immune activation exacerbates ER stress levels in XBP-1 deficiency in C. elegans. Quantitative real-time
PCR measurements of levels of total and spliced xbp-1 mRNA in the indicated strains grown from synchronized L1s for 23 h at 20uC and then shifted
to plates with or without P. aeruginosa PA14 at 25uC for (A) 4 h or (B) 11 h. Values represent fold change 6 s.e.m. (n = 2 independent experiments,
***P,0.001, two-way ANOVA with Bonferroni post test). The WT strain exposed to either treatment was normalized to WT without P. aeruginosa; all
other strains were normalized to smg-2(qd101) without P. aeruginosa.
doi:10.1371/journal.pgen.1002391.g003

Physiological UPR Signaling in C. elegans
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20uC. Thus, the observed temperature dependence is observed not

at ‘‘heat shock’’ temperatures, but rather, well within the range of

physiological temperatures for C. elegans.

The temperature dependence of xbp-1(tm2482); pek-1(ok275)

lethality permitted the investigation of whether the larval lethality

of the xbp-1; pek-1 mutant is due to a requirement for XBP-1 and

PEK-1 at a specific stage of development, or whether the activities

of XBP-1 and PEK-1 are required constitutively for viability at

other life stages. Specifically, we propagated two xbp-1; pek-1

mutants comprised of different mutant alleles at 16uC until the

animals reached the L4 larval stage, then either maintained the

mutants at 16uC or shifted them to 25uC to monitor survival.

When shifted to 25uC, the xbp-1; pek-1 double mutants exhibited a

sharp decrease in survival as compared with the strains maintained

at 16uC (Figure 4B). These observations suggest that the activity of

either XBP-1 or PEK-1 is not specifically required at a particular

developmental stage; instead, the constitutive activities of XBP-1

and PEK-1 are required for survival at physiological temperatures.

XBP-1 and PEK-1 Maintain Intestinal Cell Homeostasis
during ER Stress Caused by Basal and Induced Innate
Immunity

Although we previously observed that pek-1 and atf-6 single

mutants did not exhibit larval lethality in the presence of

pathogenic bacteria [21], our data presented in this paper suggest

that PEK-1 functions in parallel to XBP-1 under physiological

conditions in C. elegans to maintain ER homeostasis. Because the

xbp-1; pek-1 mutant is viable through larval development at 16uC,

we were able to ask whether PEK-1 contributes to protection

against immune activation in the absence of XBP-1. Populations of

synchronized eggs were grown at 16uC with P. aeruginosa as the

only food source and development was monitored over time. P.

aeruginosa has been shown to exhibit markedly diminished

pathogenicity to C. elegans adults at 16uC relative to 25uC [29],

and we found this to also be the case during larval development.

Specifically, the pmk-1 mutant was able to complete larval

development on P. aeruginosa at 16uC (Figure 5A), whereas only

half of the pmk-1 eggs grown on P. aeruginosa develop to the L4

stage at 25uC [21], indicating that immune activation is less

important for development in the presence of P. aeruginosa grown at

16uC than it is at 25uC. Likewise, the larval development of the

xbp-1 mutant, which is severely compromised on P. aeruginosa at

25uC [21], was equivalent to that of WT at 16uC (Figure 5A). Both

the diminished pathogenicity of P. aeruginosa at 16uC and the

aforementioned temperature-sensitive requirement for UPR

function may contribute the survival of the xbp-1 mutant at

16uC. Nevertheless, even under these conditions, the xbp-

1(tm2482); pek-1(ok275) mutant exhibited complete larval lethality

on P. aeruginosa at 16uC, reminiscent of the larval lethality of xbp-1

on P. aeruginosa grown at 25uC. Eliminating PMK-1-mediated

immunity completely rescued this larval lethality (Figure 5A),

demonstrating that PEK-1 functions with XBP-1 to protect against

PMK-1-mediated immune activation during larval development.

We next asked whether the UPR is required for survival in the

presence of pathogen during adulthood. In parallel with our

observation that the xbp-1; pek-1 mutant exhibits temperature-

sensitive lethality both during larval development and when shifted

to a higher temperature from the L4 larval stage, we found that

the xbp-1; pek-1 mutant exhibits enhanced lethality relative to the

WT strain or either of the single mutants when shifted at the L4

stage to P. aeruginosa at 16uC (Figure S2). These data suggest that

the UPR is required for survival during immune activation both in

larval development and in adulthood.

Larval arrest of xbp-1; pek-1 mutants has been reported to be

accompanied by evidence of intestinal degeneration, including the

appearance of vacuoles and light-reflective aggregates in intestinal

cells, degradation of intestinal tissues, and distention of the

intestinal lumen [16]. We observe similar morphology not only in

xbp-1; pek-1 larvae at 23uC on E. coli OP50, but also at 16uC on P.

aeruginosa. The similar appearance between xbp-1; pek-1 larvae

dying either at 16uC on pathogenic bacteria or at 23uC on E. coli

OP50 led us to consider whether ER stress arising from intestinal

innate immune activation might contribute in a similar manner to

both conditions. We have previously characterized PMK-1-

mediated innate immunity and observed both basal and induced

components to immunity regulated by PMK-1 [30]. We therefore

hypothesized that basal immune activity under standard, non-

pathogenic growth conditions could present a low level of ER

stress that is severely exacerbated in the absence of intact

physiological UPR function, leading to larval lethality of the xbp-

1; pek-1 mutants. Consistent with this hypothesis, we observed that

pmk-1 loss-of-function was able to partially suppress the larval

lethality of the xbp-1; pek-1 double mutant at 23uC and 25uC
(Figure 5B).

One explanation for the temperature-sensitive lethality of the

xbp-1; pek-1 mutant is that increased temperature leads to

increased PMK-1 pathway activation, perhaps as the ‘‘non-

pathogenic’’ E. coli OP50 becomes slightly pathogenic. However,

the temperature-sensitive lethality is not abrogated by loss of

PMK-1; instead, the xbp-1; pmk-1; pek-1 mutant exhibits larval

lethality at a temperature several degrees higher than the xbp-1;

pek-1 mutant (Figure 5B). Furthermore, the temperature-sensitive

larval lethality of the xbp-1; pek-1 mutant on E. coli OP50 was not

Figure 4. Temperature-sensitive lethality of the xbp-1;pek-1
double mutant. (A) Development of the xbp-1(tm2482); pek-1(ok275)
mutant across physiological temperatures. Values represent average
fraction of eggs developed to the indicated stage 6 s.e.m. (n = 3
independent experiments at 20uC, 2 independent experiments at all
other temperatures; ***P,0.001, two-way ANOVA with Bonferroni post
test). (B) Lifespan of indicated strains grown at 16uC to the L4 stage,
then shifted to either 16uC to 25uC. Results are representative of two
independent experiments.
doi:10.1371/journal.pgen.1002391.g004
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suppressed by the presence of the bacteriostatic drug ampicillin

(Figure S3A). These data indicate that basal immune activation

and temperature are distinct contributors to ER stress that

function in parallel during growth on E. coli OP50.

Thermal Stress Necessitates UPR Signaling for Survival in
C. elegans

The temperature-dependent larval lethality of the xbp-1; pek-1

mutant over a physiological temperature range suggested that

UPR signaling might be required for survival in response to

thermal stress. Indeed, we observed that the xbp-1 mutant

exhibited larval lethality when grown at 27uC, an elevated

temperature at which WT N2 C. elegans exhibits a reduced brood

size and increased dauer formation (Figure 5C). Similar to our

observation that depletion of basal immunity rescued the

development of the xbp-1; pek-1 mutant when propagated on E.

coli OP50, the temperature-sensitive lethality in the xbp-1 mutant

was suppressed in the xbp-1; pmk-1 double mutant (Figure 5C), but

not by the presence of ampicillin (Figure S3B).

Unlike the xbp-1 mutant, the development of the pek-1 mutant at

27uC was similar to WT. This is reminiscent of our previous

observation that the pek-1 mutant did not exhibit the larval

lethality found in xbp-1 when grown on P. aeruginosa at 25uC [21].

However, we next grew the pek-1 mutant on P. aeruginosa at 27uC,

reasoning that the elevated temperature would not only increase

the ER stress caused by basal growth, but also enhance the

pathogenicity of the P. aeruginosa and thereby increase the immune

response relative to that at 25uC. Indeed, the pmk-1 mutant

exhibited 100% larval lethality on P. aeruginosa at 27uC (Figure 5D),

as compared with the 50% lethality we have previously reported

for the pmk-1 mutant on P. aeruginosa at 25uC (Richardson et al.,

2010). The increased susceptibility of this immune-deficient

mutant to P. aeruginosa at 27uC relative to 25uC indicates that

the increased temperature causes an increase in P. aeruginosa

pathogenicity. On P. aeruginosa at 27uC, the pek-1 mutant exhibited

larval lethality relative to the WT strain grown 27uC (Figure 5D).

These data further suggest that PEK-1 functions in parallel with

XBP-1 to protect C. elegans against the ER stress caused by

immune activation.

The PMK-1 Pathway Protects Against Exogenous ER
Stress

We showed in Figure 5B and 5C that loss of PMK-1 improves

larval development of the xbp-1; pek-1 mutant and the xbp-1

mutant, respectively, in the absence of infection. We suggested that

the mechanism behind this phenomenon is that the previously

described basal immune activity through the PMK-1 pathway [31]

contributes to ER stress. However, we also considered the

possibility that the PMK-1 pathway might play an immunity-

independent role in exacerbating ER stress in the setting of UPR

deficiency. To test this possibility, we examined the ability of WT

and UPR mutants to develop in the presence of tunicamycin with

or without functional pmk-1. We found that the pmk-1 mutant

actually exhibited increased sensitivity to tunicamycin during

development. In fact, the pmk-1 mutant exhibited greater lethality

at a lower dose of tunicamycin than either the xbp-1 or pek-1 single

Figure 5. XBP-1 and PEK-1 each protect against elevated physiological temperature and immune activity. (A) Development of
indicated mutants from eggs to the L4 larval stage or older after 4 d at 16uC on P. aeruginosa PA14. Values represent mean 6 s.d. from 1 of 2
representative experiments (n = 4 plates with 20–50 eggs each, ***P,0.001, one-way ANOVA with Bonferroni post test). (B) Development of xbp-
1(tm2482); pek-1(ok275) and xbp-1(tm2482); pmk-1(km25); pek-1(ok275) mutants from eggs on E. coli OP50. Values represent average fraction of eggs
developed to the indicated stage 6 s.e.m. (n = 2 independent experiments, **P,0.01, ***P,0.001, two-way ANOVA with Bonferroni post test). (C)
Development of indicated mutants from eggs to the L4 larval stage or older after 2 d at 27uC on E. coli OP50. Values represent mean 6 s.e.m. (n = 3
independent experiments, ***P,0.001, one-way ANOVA with Bonferroni post test). (D) Development of indicated mutants from eggs to the L4 larval
stage or older after 2 d at 27uC on P. aeruginosa PA14. Values represent mean 6 s.d. from 1 of 2 representative experiments (n = 3–4 plates with 20–
60 eggs each, ***P,0.001, one-way ANOVA with Bonferroni post test).
doi:10.1371/journal.pgen.1002391.g005
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mutants (Figure 6). These data suggest that the PMK-1 pathway

influences ER stress in two ways. First, during infection or under

standard growth conditions in the setting of UPR depletion,

activation of the PMK-1 pathway generates an increased secretory

load that contributes to ER stress. However, when ER stress is

induced exogenously with tunicamycin, the PMK-1 pathway

activity serves a protective function.

Discussion

We have shown that the IRE-1-XBP-1 and PEK-1 pathways

function together to maintain ER homeostasis in C. elegans under

physiological conditions. We found that XBP-1 deficiency results

in marked activation of both IRE-1 and PEK-1, reflecting

constitutive ER stress. Activation of innate immunity mediated

by PMK-1 p38 MAPK further exacerbated the constitutive ER

stress in the xbp-1 mutant. To investigate the physiological roles of

UPR signaling as well as the compensatory activity between

distinct UPR pathways, we examined both the individual and the

combined effects of XBP-1 and PEK-1 deficiency in vivo. We found

that the xbp-1; pek-1 double mutant exhibited temperature-

sensitive lethality that was independent of developmental stage.

Compared with the xbp-1; pek-1 mutant, the xbp-1; pmk-1; pek-1

mutant had moderately increased survival during larval develop-

ment on non-pathogenic bacteria, when there is a low level of

PMK-1-mediated basal immune activity, and dramatically in-

creased survival on pathogenic P. aeruginosa, when the PMK-1-

mediated immune response is induced. We further showed that

both XBP-1 and PEK-1 are required for full protection against the

combined stress of immune activation and that of growth at

elevated physiological temperatures, confirming that these two

branches of the UPR function together to protect against

physiological ER stress.

Our observation of dramatically elevated levels of IRE-1 and

PEK-1 activity in the setting of XBP-1 deficiency, under standard

growth conditions in the absence of exogenous agents to induce

ER stress, provides strong evidence for homeostatic activity of the

IRE-1-XBP-1 signaling pathway under physiological conditions

(Figure 7A), and not merely at the extremes of ER stress induced

by pharmacological treatment or in specialized secretory cell types.

Our data also reveal a dynamic requirement for UPR signaling in

survival that increases with both temperature and increased

secretory activity as is induced by immune activation (Figure 7B).

Interestingly, the temperature-dependent role for the IRE-1 and

PEK-1 pathways is manifest at physiological temperatures optimal

for C. elegans development and fecundity, far from commonly

utilized ‘‘heat shock’’ conditions (Figure 7A). We speculate that

this temperature dependence may be due to altered secretory load

at higher temperature or increased tendency for proteins to

aggregate in the ER in the absence of intact chaperone

production.

Importantly, our data suggest that PMK-1-mediated immune

activation is one of many sources of the requirement for the UPR

during larval development in the absence of infection. We found

that, although loss of basal PMK-1 pathway activation partially

suppressed the temperature-sensitive larval lethality of the xbp-1;

pek-1 mutant, the xbp-1; pmk-1; pek-1 mutant nevertheless exhibited

almost complete larval lethality at 25uC. Further, using our smg-

2(qd101); xbp-1(zc12) strains, we observed high constitutive IRE-1-

mediated xbp-1 splicing in the xbp-1; pmk-1 mutant that was similar

under these experimental conditions to that of the xbp-1 mutant

(Figure 3A). These results indicate that the UPR has an essential

role during development in protection against immune activation

as well as additional processes. Identification of these processes will

likely lead to increased understanding of conserved physiological

roles of the UPR.

We found that the PMK-1 pathway not only contributes to

basal ER stress but also protects against exogenous ER stress

induced by exposure to tunicamycin (Figure 6). We speculate that

the mechanism underlying this dual function of the PMK-1

pathway may be differences in the PMK-1-activated transcrip-

tional output under different circumstances. The importance of

the PMK-1 pathway in protection against exogenous ER stress

makes the role of the PMK-1 pathway in contributing to

endogenous ER stress even more striking.

In mice, Xbp1 deficiency in intestinal epithelial cells (IEC)

resulted in marked intestinal inflammation that may contribute to

the observed activation of not only IRE1 but also of PERK, as

measured by expression of one of its downstream effectors, CHOP

[12]. In mammals, the transcription factor CHOP promotes

Figure 6. PMK-1 protects against exogenously induced ER stress. Larval development and survival assay showing the proportion of animals
of each of the indicated strains that reach the indicated stage after 4 d of development from eggs laid on plates containing tunicamycin at 16uC.
Values are from either one experiment (0.5 mg/ml and 2.5 mg/ml tunicamycin) or combined from two experiments with similar results (1.5 mg/ml
tunicamycin).
doi:10.1371/journal.pgen.1002391.g006
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apoptosis of mammalian cells that experience prolonged ER stress

[32], and indeed, the majority of Paneth cells underwent apoptosis

in the Xbp12/2 IECs. Our observations are consistent with the

idea that Xbp12/2 IECs may be predisposed to detrimental

consequences of additional ER stress caused by intestinal

inflammation because of deregulation of basal ER homeostasis

due to XBP-1 deficiency. In pancreatic ß-cells, another cell type

that is specialized for high-level secretory activity, XBP1 deficiency

has been observed to result in IRE1a hyperactivation, with

increased degradation of mRNAs that encode insulin processing

enzymes [33].

Our observations that PEK-1, in concert with XBP-1, functions

to protect against ER stress from immune activation differ from

observations in mouse macrophages, in which TLR stimulation

was shown to activate IRE1, but PERK activation was reported to

be suppressed rather than elevated [34,20]. This difference may be

due to roles for XBP-1 in macrophages that extend beyond its

function in maintaining ER homeostasis. Indeed, when stimulated

by TLRs in macrophages, the IRE1-XBP1 pathway was shown to

induce expression of immune effectors rather than typical UPR

genes, suggestive that the IRE1-XBP1 pathway may have been co-

opted in macrophages to promote macrophage-specific function

independent of the UPR [20].

Our data support the idea that UPR signaling does not function

simply in response to the extremes of ER stress, as when induced

by tunicamycin or by the elevated secretory load of specialized

cells such as plasma cells, but instead, as a critical pathway in the

maintenance of ER homeostasis during normal growth and

development in C. elegans. The diverse and dramatic consequences

of XBP-1 deficiency on development and disease, taken together

with our observations on the effect of XBP-1 deficiency on basal

ER stress levels, underscore the critical role of homeostatic UPR

signaling in both normal physiology and disease.

Materials and Methods

Strains
C. elegans strains were constructed and propagated according to

standard methods on E. coli OP50 at 16uC [35]. The smg-2(qd101)

allele was isolated by K. Reddy and contains a CRT nonsense

mutation at nucleotide 1189 of the spliced transcript. The following

strains were used in the study: N2 Bristol, ZD627 smg-2(qd101),

ZD607 smg-2(qd101);xbp-1(zc12), ZD605 smg-2(qd101);xbp-1(zc12);

pmk-1(km25), KU25 pmk-1(km25), RB545 pek-1(ok275), ZD510 xbp-

1(tm2482);pek-1(ok275), ZD524 xbp-1(zc12);pek-1(tm629), ZD496 xbp-

1(tm2482);pmk-1(km25);pek-1(ok275). All of the alleles used are

predicted to be null alleles. Specifically, xbp-1(tm2482) is a 202 bp

deletion from nt 231 that causes a frame-shift. The xbp-1(zc12) allele is

a nonsense mutation that changes Q34 to an ochre stop. The two

alleles exhibit an equivalent phenotype in every assay tested ([21]; this

work, and our unpublished data). The pek-1(ok275) allele is a 2013 bp

deletion and the pek-1(tm629) allele is a 1473 bp deletion, both of

which remove the PEK-1 transmembrane domain and are therefore

likely null alleles [6]. Double mutants were made between xbp-1 and

pek-1 by crossing strains marked with GFP: xbp-1(III);pT24B8.5::GF-

P(agIs220)(X) and pT24B8.5::GFP(agIs219)(III);pek-1(X). GFP-negative

F2s were singled, propagated, and genotyped by PCR.

RNA Isolation and Quantitative RT-PCR
For the experiment in Figure 1B, 1C, and 1E, L1 larvae were

synchronized by hypochlorite treatment, washed onto E. coli OP50

plates, and grown for 40 h at 16uC to the L3 stage, when they

were washed in M9 to plates containing E. coli OP50 or E. coli

OP50 with 5 mg/ml tunicamycin. For the experiments in Figure 3,

strains were grown and treated as previously described [21].

Specifically, L1 larvae were synchronized by hypochlorite

treatment, washed onto E. coli OP50 plates and grown at 20uC
for 23 h, then washed in M9 onto treatment plates. After

incubation at 25uC for indicated times, worms were washed off

plates and frozen in liquid nitrogen. For P. aeruginosa treatment, P.

aeruginosa strain PA14 was grown in Luria Broth (LB), and 25 ml

overnight culture was seeded onto 10 cm NGM plates. Plates were

incubated first at 37uC for 1 d, then at room temperature for 1 d.

All RNA extraction, cDNA preparation, qRT-PCR methods and

specific primers to detect xbp-1 mRNA were as described

previously [21].

Immunoblotting
For all immunoblots, strains were synchronized by hypochlorite

treatment and washed onto E.coli OP50 plates for growth until the

L4 stage. For the experiment in Figure 2A, strains were grown at

20uC and L4 worms were then washed in M9 onto treatment

plates for incubation at 25uC for 4 hours. For the experiment in

Figure 2B, strains were grown at 16uC until the L4 stage and

harvested without treatment. All strains were collected and rinsed

Figure 7. Maintenance of ER homeostasis through activation of
the IRE-1 and PEK-1 pathways under basal physiological
conditions during development. (A) The increase in both IRE-1
and PEK-1 activities in XBP-1 deficiency in the absence of exogenous
compounds to impose ER stress, combined with the temperature-
sensitive lethality of the UPR mutants, implies that UPR signaling
maintains ER homeostasis not only in response to the extremes of ER
stress, but also under basal physiological conditions. (B) Infection, basal
growth and development, and elevated physiological temperature all
contribute to ER stress, leading to lethality of UPR mutants as indicated
by dashed lines.
doi:10.1371/journal.pgen.1002391.g007
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2 times in M9. Worm pellets were resuspended in an equal volume

of 26 lysis buffer containing 4% SDS, 1oomM Tris Cl, pH 6.8,

and 20% Glycerol. After boiling for 15 minutes with occasional

vortexing to aid in dissolution, lysates were clarified by

centrifugation. Protein samples (50 mg of total lysate loaded per

lane) were separated by SDS-PAGE and transferred to a

nitrocellulose membrane (Bio-rad). Western blots were blocked

in 5% milk in PBST and probed with (1:10,000) anti-eIF2a [26],

(1:1,000) anti-phospho-eIFa (Cell Signaling Technology), or

(1:10,000) anti-tubulin (E7 Developmental Hybridoma Bank,

Iowa City). All primary antibodies were diluted in 5% milk in

PBST. Following incubation with anti-rabbit or anti-mouse IgG

antibodies conjugated with horseradish peroxidase (HRP) (Cell

Signaling Technology), signals were visualized with chemilumi-

nescent HRP substrate (Amersham). Quantification of immuno-

blots was preformed with ImageJ [36].

Survival/Development Assays
For all development assays, strains were egg laid on 4–5

prepared plates for no more than 3 h (at least 110 eggs for each

strain and treatment). Development was monitored daily for 4 d

for experiments conducted at 16uC and 3 d for experiments

conducted at all other temperatures. Experiments monitoring

development on E. coli OP50 were performed on 6 cm NGM

plates. P. aeruginosa PA14 plates were prepared as described [27].

For the data presented in Figure S2, plates were prepared as

described [37], except that ampicillin was used instead of

carbenicillin.

To monitor L4 survival on E. coli OP50 or P. aeruginosa PA14,

strains were incubated at 16uC to the L4 stage, when they were

transferred to plates containing FUDR and incubated at either

16uC or 25uC. For each strain, 30 worms were transferred to each

of 3–4 plates. Alive vs. dead worms were counted, and worms that

died by exploding through the vulva or desiccating on the side of

plates were censored.

Supporting Information

Figure S1 Exposure to tunicamycin or XBP-1 deficiency

increases PEK-1 dependent phosphorylation of eIF2a. Quantifi-

cation of immunoblots presented in (A) Figure 2A and (B)

Figure 2B. Band intensity for P-eIF2a and total eIF2a was

normalized to that of ß–tubulin for each strain, and values

represent fold change relative to WT.

(TIFF)

Figure S2 The UPR protects against lethality in the presence of

pathogen during adulthood. Survival of WT, xbp-1(tm2482), pek-

1(ok275), and xbp-1(tm2482); pek-1(ok275) strains grown at 16uC to

the L4 stage, then shifted to plates seeded with P. aeruginosa PA14.

Results are representative of two independent experiments.

(TIFF)

Figure S3 Temperature-sensitive lethality of the xbp-1; pek-1

mutant is not caused by increased pathogenicity of E. coli OP50 at

elevated temperatures. (A) Development of xbp-1(tm2482); pek-

1(ok275) mutant from eggs on E. coli OP50 after 3 d at 23uC with

or without the bacteriostatic drug ampicillin. (B) Development of

the N2 WT strain and the xbp-1(tm2482) mutant from eggs on E.

coli OP50 after 3 d at 27uC with or without the bacteriostatic drug

ampicillin. Values represent average fraction of eggs developed to

the L4 larval stage or later 6 s.e.m. (n = 2 independent

experiments).

(TIFF)
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