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Abstract

The epithelial ureteric bud is critical for mammalian kidney development as it generates the ureter and the collecting duct
system that induces nephrogenesis in dicrete locations in the kidney mesenchyme during its emergence. We show that a
secreted Bmp antagonist Cerberus homologue (Cer1) fine tunes the organization of the ureteric tree during organogenesis
in the mouse embryo. Both enhanced ureteric expression of Cer1 and Cer1 knock out enlarge kidney size, and these changes
are associated with an altered three-dimensional structure of the ureteric tree as revealed by optical projection tomography.
Enhanced Cer1 expression changes the ureteric bud branching programme so that more trifid and lateral branches rather
than bifid ones develop, as seen in time-lapse organ culture. These changes may be the reasons for the modified spatial
arrangement of the ureteric tree in the kidneys of Cer1+ embryos. Cer1 gain of function is associated with moderately
elevated expression of Gdnf and Wnt11, which is also induced in the case of Cer1 deficiency, where Bmp4 expression is
reduced, indicating the dependence of Bmp expression on Cer1. Cer1 binds at least Bmp2/4 and antagonizes Bmp
signalling in cell culture. In line with this, supplementation of Bmp4 restored the ureteric bud tip number, which was
reduced by Cer1+ to bring it closer to the normal, consistent with models suggesting that Bmp signalling inhibits ureteric
bud development. Genetic reduction of Wnt11 inhibited the Cer1-stimulated kidney development, but Cer1 did not
influence Wnt11 signalling in cell culture, although it did inhibit the Wnt3a-induced canonical Top Flash reporter to some
extent. We conclude that Cer1 fine tunes the spatial organization of the ureteric tree by coordinating the activities of the
growth-promoting ureteric bud signals Gndf and Wnt11 via Bmp-mediated antagonism and to some degree via the
canonical Wnt signalling involved in branching.
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Introduction

Kidney development is initiated when a morphologically

distinguishable ureteric bud forms and invades the predetermined

metanephric mesenchyme and goes on to induce nephrogenesis

[1–3]. While generating the ureter and the collecting duct system

with a defined pattern, the branches of the ureteric tree specify the

locations where nephrogenesis is to be initiated. Each of the

ureteric branches induces nephrogenesis via Wnt9b signalling,

after which Wnt4 initiates mesenchyme-to-epithelium transition to

generate a segmented nephron [4–7].

In recent years critical signalling networks have been identified

that are associated with the initiation of ureteric bud formation.

An embryonic kidney mesenchyme-expressed Glial cell line-

derived neurotrophic factor (Gdnf) and its receptors are important

initiators, and several upstream and downstream components have

been identified that contribute to the patterning and timing of

ureteric bud development via Gdnf control [3,8–15]. Fgf

antagonism by Sprouty controls the sensitivity of the ureteric

bud to Gdnf [16,17] via an Fgf10-dependent mechanism [18], and

signals from the Bmp family are also involved in the initiation of

ureteric bud development [19,20], although two of them, Bmp2
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and Bmp4, are considered to act as inhibitors of the process [21–

24].

Much less is known about the mechanisms that control the later

steps in ureteric bud branching, i.e. the establishment of the

complex spatial organization of the ureteric tree, which represents

the future collecting duct system. Gdnf/Ret appears to have some

role, and this together with Wnt11 exerts a positive feedback effect

on early ureteric bud development [25].

The mode of action of the Bmps is regulated by a panel of

extracellular anti-Bmp and pro-Bmp activity factors such as

Crossveinless2, representing a Bmp agonist in the developing

kidney [26]. The Cerberus/Dan family forms one group of secreted

Bmp antagonists that includes the mCerberus 1 homologue (Cer1),

Prdc, Dan, Drm (Gremlin), Sost/Ectodin/Wise/USAG1 [27–30]

and Dte proteins [31–34]. Gremlin advances early ureteric bud

formation by antagonising Bmp4/Bmp7 signalling [35–37], while

USAG1 may serve as a Bmp7 antagonist in the more advanced

kidney [38]. Cerberus encodes a Spemann’s organizer signal and

binds and inhibits Bmp, Wnt and Nodal signalling [39,40]. Cerberus

1 (Cer1) gain of function in early embryos induces ectopic head,

heart and liver development [41,42], but head development

remains normal in Cer1-deficient embryos [43,44].

We report here that Cer1 exerts a positive effect on the control

of ureteric bud branching, since Cer1 expression stimulates ureteric

bud development, allowing more trifid and lateral branches

develop rather than the bifid type during the early stages of

organogenesis. Cer1 gain of function and knockout both change the

3D structure of the ureteric tree as revealed by optical projection

tomography, and are associated with the inhibition of Bmp4 and

the induction of Wnt11 and Gdnf expression. Cer1 binds Bmp2

and Bmp4 and serves as an inhibitor of Bmp4 signalling, and to

some extent of canonical Wnt signalling. Genetic reduction of

Wnt11 and excess Bmp4 in organ culture also reverse the Cer1-

stimulated processes to a considerable extent. Thus Cer1 takes

part in kidney development through fine tuning of the spatial

organization of the ureteric bud-derived tree during kidney

organogenesis by influencing Wnt, Gndf and Bmp signalling.

Methods

Ethics Statement
All genetic studies involving mice were performed in strict

accordance with the Finnish law, act 62/2006 on Animal

Experimenftation following the approval by Finnish National

Animal Experiment Board, ELLA. The board donated the

authority for the local institutional ethics committee to approve

the study with an ID 14/2009 (valid until 31-12-2011) since only ex

vivo samples from the generated transgenic mouse lines were used.

All the animal experiments here in were classified as grade zero,

which implies minimal suffering of mice. The 3R principles were

strictly implemented as required by the Finnish laws governing

experimental studies involving animals. The animal care and other

procedures in this work were also in accordance with the use of

laboratory animals and European Union requirements (ETS 123

and Directive 86/609/EEC).

Mouse lines
A 4.3kb Pax2 promoter fragment was used to target Mus musculus

Cerberus 1 homologue (Xenopus laevis) (Cer1, NM_009887) gene

expression [16,45] to the ureteric bud. An IRESeGFP cDNA was

inserted downstream of the Cer1 gene (Figure 1E) as verified by

PCR of DNA samples derived from ear clips. An expected 1000 bp

fragment detected in the three transmitting transgenic mouse lines

was named Cer1 and selected for closer study (Table S1). The Cer1

transgene positive males were crossed with wild-type C57BL6

females to obtain embryos or mice for this purpose.

The HoxB7/Cre and floxed Rosa26 yellow fluorescent protein

(YFP) mouse lines have been described previously [10,46,47],

while the Cer1; Wnt11-/- and Cer1; HoxB7;Cre;YFPc/+ mouse lines

were generated by crossing the Cer1;Wnt11+/- and HoxB7;Cre;YFPc/+

lines. The Cer1 knockout mouse has been described earlier [43].

Dissection and culture of the embryonic kidney
The kidneys were isolated at E11.5 (45–47 somites), incubated

for one minute in 3% pancreatin/trypsin (Gibco-BRL) in Tyrode’s

solution [47] and the mesenchyme and ureteric bud separated out

mechanically and subjected to RT-PCR. The kidneys were

cultured in the presence of Gdnf (100 ng/ml, R&D systems)

[16,47] or 100 ng/ml [21] of Bmp4 (R&D system), fixed and

processed for immunostaining according to Chi et al. [16,47]. The

culture times were as indicated in the Results section.

RT- PCR
The embryonic kidneys were dissected in ice-cold phosphate-

buffered saline (PBS), pH 7.4, and total RNA was isolated with the

RNeasy Plus Mini Kit (QIAGEN), cDNA was synthesized using the

RevertAidTM first-strand cDNA synthesis kit (Fermentas) and the

RT-PCR was performed according to Chi et al. [47]. The primers,

the conditions for PCR and the expected fragments are indicated

in Table S2.

Applied Bio systems 7500 equipment was used for real-time PCR

and the data were analysed with the ABI Prism 7000 Sequence

Detection System. The following kits were used: Gdnf (Mm00599849_

m1), Bmp4 (Mm00432087_m1), Wnt4 (Mm00437341_m1) and

Wnt11 (Mm00437328_m1), with the Gapdh VICH/MGB probe (AB

Applied Biosystems, USA) serving as a control. Each developmental

stage was analysed in triplicate.

Immunofluorescence
Rabbit polyclonal Pax2 antibody (Biosite), anti-cytokeratin endo-

antibody, Troma-I, recognizing a ureteric bud-specific component

in the early kidney (Developmental Studies Hybridoma Bank,

USA), and anti-pSMAD antibodies binding to SMADs 1, 5 and 8

(Cell Signalling Technology) were used. Alexa 488 anti-rabbit IgG

and Alexa 546 anti-rat IgG served as the secondary antibodies

(Molecular Probes, Invitrogen Detection Technologies). Images

were captured with an Olympus FluoView FV1000 confocal laser

scanning microscope and an Olympus BX51WI upright microscope

connected to a Hamamatsu ORCA-ER digital camera. The CellM,

Adobe, Photoshop CS and CorelDRAW 12 programs were used for

image processing. A minimum of five samples were analysed.

Time-lapse imaging
Dissected E11.5 kidney rudiments were placed on permeable

polyester membranes of pore size 0.4 mm and cultured in DMEM

(Gibco 41965) supplemented with 10% FBS and 1% penicillin/

streptomycin on Transwell plates (Costar 3450) in a microscope

stage incubator (OkoLab). The temperature was set to 37uC and the

level of carbon dioxide to 5% with the TControl Basic 2.3. Program

(OkoLab). The samples were photographed every 20 min until 120

hrs with an Olympus IX81 microscope and an Olympus CC-12

digital camera supported by the Olympus Cell̂ P program.

Histology, in situ hybridization and detection of the cells
in the S-phase of the cell cycle

Certain embryonic kidneys were fixed in Bouin’s solution,

sectioned and photographed with a Leica CD 100 digital or

Cer1 and Ureteric Bud Branching
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Olympus DP 500 camera, after which the images were processed

with the Adobe Photoshop and Corel Draw programs. Glomeruli

were counted according to Bertram et al. [48]. The total kidney

volume was calculated as the sum of the volumes of the sections.

The OPT and Metamorph programs were also used to estimate

the volumes. The surface area was counted with the ImageJ

program (http://rsb.info.nih.gov/ij/) [49] and OPT [50–52]. In

situ hybridization was performed according to Kispert et al. [53]

and Chi et al. [16]. A minimum of five samples were analysed for

each gene. The probes for the Gdnf, Ret and Wnt11 genes were

obtained as gifts. The number of cells in the S-phase of the cell

cycle was evaluated with a kit (Amersham Bioscience, UK) from a

minimum of four kidneys for each developmental stage.

Optical projection tomography (OPT) and the degree of
ureteric bud branching

A minimum of eight embryonic E15.5 kidneys of each genotype

were fixed as whole mounts in methanol and processed for optical

projection tomography (OPT) [50–52]. Prior to OPT some

kidneys of the Cer1 knockout embryos were subjected to whole

mount in situ hybridization analysis to reveal Wnt11 expression.

The separated kidney rudiments were placed into TBST with 10%

Figure 1. Gain of Cer1 function promotes kidney development. Kidneys from a newborn wild-type mouse (A), Cer1 transgenic embryos (B),
Cer1Wnt11+/- embryos (C) and Wnt11-/- embryos (D) are depicted. E) The kidney of a wild-type embryo prepared at E12.0 has a single ureteric bud,
while at E15.5 (G), an embryonic kidney overexpressing Cer1 (F) has double ureteric buds (U1 and U2) and has an ectopic kidney associated with it (K1
and K2, arrow). I-K) Histological micrographs of the embryonic kidneys shown in (E-G). The arrows in (J) indicate the double ureters, while that in K
(asterisks) depicts the ectopic kidney. Localization of cells that have incorporated BrdU, indicating cells in the S-phase of their cycle, in wild-type
kidneys (M) and kidneys expressing Cer1 (N) prepared from E15.5 embryos. Kidney volume (H), number of glomeruli (L) and number of BrdU-positive
cells (O) in newborn mice. Cer1; transgenic kidney overexpressing the Cer1 gene; Wt; wild-type. (A-D), kidneys of newborn mice. Scale bar, A-G,
100 mm; I-K, M, N, 50 mm.
doi:10.1371/journal.pone.0027676.g001
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serum, stained with Troma-1 antibody at 4uC for 6 days and

washed extensively. A corresponding secondary antibody was

applied at 4uC for 6 days followed by several washes and incubation

in 0.29M sucrose, after which the samples were embedded in 1%

low-melting agarose. The agarose blocks were placed in absolute

methanol and cleared with benzyl alcohol/benzyl benzoate

solution. Images were captured with a Bioptonics 3001 OPT

scanner (Bioptonics, Edinburgh, UK) at 480nm and 560nm. 3D

movies were prepared and the various morphometric parameters

calculated with the ImageJ and Imaris (Bitplane A.G.) programs.

Production of recombinant mCer1 protein
Mouse Cerberus 1 homologue (mCer1) cDNA was digested with

NheI/HindIII and cloned to the MycHis tag of the pcDNA3.1

vector 59 (Invitrogen). After sequencing, the cDNA was introduced

into the COS7 cells. The protein-enriched serum-free medium

was applied to a Macro-Prep DEAE (Biorad) column equilibrated

with 20 mM Tris-HCl and 50 mM NaCl, pH 8.0, and washed

with the same buffer. The protein was eluted with 20 mM Tris-

HCl and 300 ml NaCl, pH 8.0, and passed through talon affinity

resin (Clontech) equilibrated with 50 mM sodium phosphate,

300 mM NaCl and 10 mM imidazole at pH 8.0. The bound

proteins were eluted with 50 mM sodium phosphate 300 mM

NaCl and 250 mM imidazole at pH 8.0, run via a microcon

centrifuge filter YM-100 (Millipore), concentrated with Amicon

Ultra-4 5000 (Millipore), dialyzed against PBS in 0.005%

Tween20 and stored at 280uC until used.

Surface Plasmon resonance (Biacore) measurements
MCer1 was immobilized on a CM5 chip in BIAcore 2000 (GE

Healthcare) with an amine group. Binding of Cer1 to hBMP2

(Peprotech), hBMP4, or hGDNF (1 mg/ml; R&D Systems) was

analysed in triplicate at 25uC in HBS-P buffer supplemented with

10 mM HEPES, 150 mM NaCl and 0.005% Tween 20 at pH 7.4,

with a flow rate of 20 mg/ml min. The kinetics and the dissociation

constant (KD) were calculated with BIAevaluation software ver.

4.1 (GE Healthcare).

Assays for monitoring Bmp4 signalling and Western
blotting

The embryonic kidney-derived mK4 cells [54] were cultured in

DMEM with GlutaMAXTM-1 (Invitrogen) supplemented with

10% foetal bovine serum and antibiotics. For culture of the

Chinese Hamster Ovary cells (CHO-K1, ATCC CCL 61) the

medium was supplemented with 1 mM sodium pyruvate and

0.1 mM non-essential amino acids.

The Mk4 cells were cultured in the presence of Bmp4 as

indicated in the results section and harvested after 24 hours. Total

RNA was extracted with a kit (Gentra), cDNA was synthesized and

real-time PCR was performed as described above. The real-time

PCR kit (Mm00437341_m1) was used for monitoring Wnt4

mRNA. Amplification of the mouse Gapdh gene served as a

control (VICH/MGB probe, primer limited; AB Applied Biosys-

tems, USA). The effects of specific amounts of Bmp4 on the cells

were analysed in triplicate.

To analyse the effects of Cer1 on Wnt and Bmp signalling,

cDNAs encoding Bmp4, Noggin, Wnt11 and mCer1 were

transfected with Lipofectamine 2000 (Invitrogen) alongside Bmp/

Smad BRE2-luc [55] or Wnt/Tcf/lef (SuperTopFlash) reporters and

the CMV-b-Gal control plasmid and cultured for 24 hrs. The total

amount of transfected DNA/well was adjusted to 350 ng with an

empty vector DNA. In certain experiments Bmp4 or L1 cell-

derived Wnt3a-conditioned medium cells were used. The culture

medium of the normal L1 cells served as the control. After the

culture the cells were lysed with Cell Culture Lysis Reagent

(Promega) and the Luciferase Assay System (Promega) was used to

estimate the influence of Cer1 on Bmp/Wnt signalling as measured

with the Victor3V Multilabel Counter (Perkin Elmer). ß-

galactosidase activity was monitored in 25 mM MOPS, 100 mM

NaCl and 10 mM MgCl2 and the substrate. The monoclonal anti-

mouse Cerberus 1 antibody (MAB1986) was from R&D systems,

and Western blotting was performed according to Railo et al. [56].

Results

Expression of Cerberus/DAN family members in the
embryonic kidney

The Cerberus/Dan family members include the mCerberus 1

homologue (Cer1), Prdc, Dan, Drm (Gremlin) and the Dte proteins.

To gain an insight into their potential role in kidney organogenesis,

we ascertained whether they are expressed in the embryonic kidney.

PCR and in situ hybridization studies with isolated ureteric buds (U),

the metanephric mesenchyme (KM) and whole kidneys (K) revealed

that besides Drm [36], Cer1, Dan and Prdc are expressed in the

ureteric bud and kidney mesenchyme at E11.5 (Figure S1A, C), at

E12.5 and E15.5 (Figure S1A, D). It should be noted that Cer1

expression at E11.5 is weaker in the ureteric bud (U) than in the

kidney mesenchyme (KM, Figure S1A) and that expression takes

place throughout the epithelium and mesenchyme (Figure S1C, D).

The presence of Cerberus/Dan gene family members suggested a role

for these factors in kidney organogenesis, and out of these members

we focused our attention on Cer1.

is involved in kidney development: Evidence from gain
and loss of function studies

Since we found that the ureteric bud cells expressed less Cer1

than the metanephric mesenchymal cells (Figure S1A), we

speculated that this may be relevant for the establishment of

gradients of growth factors bound by Cer1, such as the Wnts and

Bmps [40,43] involved in ureteric bud development. We used a

ureteric bud-specific 59 promoter element from the Pax2 gene

(Figure S1E) [16,45] to direct Cer1 and an IRESeGFP reporter gene

to the Wolffian duct-derived ureteric bud to increase the level of

Cer1 expression.

We generated three transgenic mouse lines, all named Cer1, and

these gave similar results. The Pax2 promoter directed Cer1 and

eGFP expression in the ureteric bud and increased Cer1 expression

to a level closer to that seen in the mesenchymal cells (Figure S1,

compare B with A). No eGFP expression was detected in wild-type

kidneys at any stage (Figure S1F-H). eGFP expression was intense

in the Wolffian duct at E10.5 and in the ureteric bud at E11.5

(Figure S1I, arrow, and data not shown), while at a still later

developmental stage, E15.5, eGFP was localized to the ureteric

tree (Figure S1J). Expression persisted in the kidney at birth

(Figure S1K).

Elevation of Cer1 expression led to a notable phenotype in the

kidney, since enlargement of the Cer1+ kidneys was observed in 18

out of the 24 cases of newborn Cer1 mice analysed relative to their

wild-type controls (Figure 1, compare B with A). Morphometric

studies of a panel of Cer1+ kidneys (see Figure 1H) revealed that

the volume of the Cer1 kidneys was around 20% greater, their

weight 28% greater and the number of glomeruli 21% greater

than in their wild-type littermates (Figure 1H, L, Table 1). It is

significant that a second ureteric bud (U1/U2) had developed in 2

out of the 36 Cer1 kidneys at E12.5 (Figure 1, compare J, F with I,

E, arrows). The greater size of the Cer1 kidneys persisted in the

adults (Figure S2, compare B, D with A, C), as depicted

Cer1 and Ureteric Bud Branching

PLoS ONE | www.plosone.org 4 November 2011 | Volume 6 | Issue 11 | e27676



quantitatively in Figure S2E. As was the case with the kidneys of

Cer1+ newborn mice, the kidneys of the newborn Cer1 knockout

mice were also around 12% greater in size than their controls (data

not shown).

The above Cer1-promoted kidney development could have

arisen for a variety of reasons, such as changes in cell or tissue size

or in cell shape and/or stimulated cell proliferation, which could

be viewed collectively as changes in ureteric bud branching during

organogenesis. Counting of the cells in the S-phase revealed

around 30% more BrdU-positive cells in the Cer1 kidneys than in

the controls at E15.5 (Figure 1, compare N with M), as depicted

quantitatively in Figure 1O. We conclude that both enhanced Cer1

expression and Cer1 deficiency increase kidney size, indicating a

function for Cer1.

Enhanced Cer1 expression in the ureteric bud changes
the mode of branching

Since Bmp signalling is implicated in ureteric bud development

[20,57] and as Cer1 binds Bmps and Wnts in other systems [39],

we speculated that Cer1 may influence kidney size by exercising

control over ureteric bud development. We studied this aspect by

crossing the HoxB7Cre and floxed Rosa26 yellow fluorescent protein

(R26RYFP) mice with those that contained the Cer1 transgene

[10,45,46] and monitored the generation of ureteric tips in vivo and

in embryonic kidney cultures.

Counting of the ureteric bud tips in the HoxB7Cre+;R26RYFP

and the HoxB7Cre+;R26RYFP;Cer1+ kidneys at E15.5 showed

that these were around 10% greater in number in the Cer1+
kidney than in the corresponding wild-type organs (Figure 2,

compare D with C), as depicted quantitatively in Figure 2E

noted to some extend already at E12.5 (Figure 2, A,B,E). Given

this, we also analysed the pattern of ureteric bud branching by

cultivating the E11.5 kidneys. This set-up is free of any possible

Cer1-induced systemic kidney-affecting factors, since the Pax2

promoter is not exclusively targeting the kidney [45]. Examina-

tion of embryonic kidneys cultured up to 96 hrs indicated that

Cer1 had given rise to a moderate enhancement of ureteric bud

tip formation relative to the controls at each time point analysed

Table 1. Cer1-induced changes in kidney volume, weight and number of glomeruli in different genetic backgrounds.

Genotype (NB) #Analyzed Volume (mm3) * Weight (mg) #Glomeruli**

Wt 10 5.2960.75 6.8260.91 14756526

Cer1 8 6.3460.82 (q20%) 8.7160.62 (q28%) 17826782 (q21%)

Cer1; Wnt11+/- 8 6.0360.78 8.1260.76 16816884

Cer1; Wnt11-/- 6 4.8260.83 6.6260.58 14946435

Wnt11+/- 8 5.0560.95 7.1660.64 14056399

Wnt11-/- 6 3.4361.76 5.0761.29 11786126

*The total volume of a panel of kidneys from newborn mice was calculated by obtaining the sum of the volumes of the histological sections.
**The number of glomeruli was estimated according to Bertram et al. [48]
doi:10.1371/journal.pone.0027676.t001

Figure 2. Targeted ureteric bud Cer1 expression increases the number of ureteric bud tips. A-D. Ureteric buds with yellow fluorescent
protein (YFP) expression that was activated from the Rosa26 locus with HoxB7Cre. E) Counts of ureteric tips in freshly separated embryonic kidneys
indicate that Cer1 gain of function had led to a moderate elevation in the number of ureteric bud tips seen at E15.5. Time-lapse micrographs of wild-
type embryonic kidneys isolated from E11.5 embryos cultured for up to 96 hrs (F-I) and those of embryos overexpressing Cer1 (J-M). N) Depicts the
ureteric tip numbers in wild-type and Cer1 embryonic kidneys. Cer1, transgenic kidney overexpressing the Cer1 gene; Wt, wild-type. Scale bar,
100 mm.
doi:10.1371/journal.pone.0027676.g002

Cer1 and Ureteric Bud Branching
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(Figure 2, compare J-M with F-I). Cer1+ had also stimulated the

formation of some lateral side branches and trifurcations of the

ureteric bud tip region (Figure 2K, arrows), as depicted

quantitatively in Figure 2N.

Closer analysis of the lengths of the early ureteric buds in still

images extracted from the time-lapse movies of cultured E11.5 wild-

type and Cer1+ kidneys revealed that Cer1 had a notable positive

effect on the length of the new branches of the ureteric bud by

comparison with the controls when studied at 24hrs and 48 hrs of

culture up to the 5th generation (Figure S3). These alterations in

ureteric branching are apparently the reasons for the characteristic

changes in the overall generation and appearance of the ureteric bud

branching pattern, as seen in the time-lapse movies (Movie S1) and

still images from them (Figure S4, compare B, D, F, H, J with A, C,

E, G, I). Consistent with the in vivo situation, analysis of the movies

and still images indicated that Cer1 expression had a tendency to

reduce the formation of the bifid type of branches and promote the

formation of proportionally more trifid and lateral-type side-

branches relative to the total number of branches as compared with

the control cultures (Table 2; Movie S1, Figure S4, arrowheads).

To obtain a better view of the overall organization of the

ureteric tree generated from the bud, the presumptive collecting

duct and the changes that were caused by Cer1 gain or loss of

function in vivo. We stained the whole collecting duct system with

anti-cytokeratin Troma-I-antibodies as whole mounts and sub-

jected the kidneys at E15.5 to optical projection tomography

(OPT) [50–52]. Preliminary results suggested that the distance of

the first ureteric bud branch points that were closest to the pelvis

from the mean centre was reduced by Cer1+ as compared with the

controls (Figure S5). In more detailed studies it became evident

that Cer1 had already enhanced the number of ureteric tips and

the size of the pelvis by E15.5 (Figure 3, A-H, compare N to M;

Movie S2). Calculation of the OPT data with the Imaris program

revealed a number of indicative parameters for the ureteric tree,

enabling us to generate OPT-derived values for the ureteric bud

tips, branch points, average distances between the branch points,

surface area, total ureteric length and surface area, volume and the

distance between the tips (Table 3).

Analysis of the OPT-derived images (Figure 3A-H; Movie S2)

and the values calculated from the data comparing the ureteric

trees in Cer1+ and wild-type embryonic kidneys indicated that

Cer1+ had increased many of the parameters (Table 3), and the

same held true when the Cer1-deficient (Cer1-/-) kidneys were

analysed at the same stage (Figure 3, compare G, H to E, F,

Table 3). The Cer1+ kidneys had 25% more tips and 29% more

branch points then the controls (Table 3), while the Cer1-deficient

kidneys were also characterized by considerable changes in the

OPT-derived values for the ureteric bud (Table 3). The Cer1-/-

kidneys at E15.5 of development had a 30% greater surface area,

26% greater length, 38% higher volume and a 20% increase in the

average distance between the ureteric tips at the developing

cortex, as identified by counting the distances between Wnt11-

positive tips in 3D from the OPT data (Figure 3 I-L and O,P;

Table 3) by comparison with the littermate controls (Cer1+/-).

Hence both Cer1+ and Cer1 deficiency lead to changes in several

parameters indicative of ureteric tree organization and support the

conclusion that Cer1 plays a role in fine tuning the spatial

organization of the ureteric tree.

Changes in Cer1 function lead to a tendency for altered
expression of Gdnf/Wnt11, which form a signalling loop
exercising positive control over ureteric bud
development

To address the questions of when and how enhanced Cer1

expression starts to promote ureteric bud development, we

prepared embryonic kidneys at E11.0-E11.5, the stage at which

the bud has just formed and has invaded the metanephric

mesenchyme. As judged by whole mount in situ hybridization,

expression of the Gdnf gene appeared to be somewhat enhanced in

the mesenchyme due to Cer1 expression relative to the controls

(Figure 4, compare B with A, arrows). The expression of the Gdnf

receptor Ret indicated that Cer1 expression had already enhanced

ureteric bud development at E11.5, while the first branch had not

yet been initiated in the control embryos matched with them on

the basis of somite numbers (Figure 4, compare D with C, arrows,

see Movie S1). Wnt11, a signal that promotes early ureteric bud

development [25,58] was maintained in the ureteric bud tips,

which were slightly more numerous, supporting the conclusion

that Cer1 had also accelerated ureteric bud tip development at 12.5

(Figure 4, compare F with E).

It is known that the Gdnf/Ret and Wnt11 pathways advance

ureteric bud development synergistically [25]. Real-time PCR

analysis of the kidneys of wild-type and Cer1+ embryos suggested

that the expression of both Gdnf and Wnt11 had a tendency to be up-

regulated on account of Cer1 expression as compared with controls

(Figure 4 G, H). To test further the potential involvement of Gdnf in

Cer1+-mediated control, we supplemented the cultures of Cer1+
embryonic kidneys with Gndf. The Cer1+ kidneys appeared to be

more sensitive to exogenous Gdnf then their wild-type controls,

since Gdnf in a concentration of 100ng/ml [16,59] induced more

pronounced supernumerary Wolffian duct-derived epithelial bud

formation in the Cer1+ kidneys than in the wild-type controls. The

ectopic epithelial buds had also induced more foci of mesenchymal

cells expressing Pax2 in the Cer1+ embryonic kidneys than in the

controls (Figure 5, compare E with D and A, arrows, arrowheads),

as also illustrated in the ureteric tip counts for the cultured samples

(Figure 5H). We interpret the results collectively as supporting the

conclusion that Cer1 influences Gdnf and Wnt11 gene expression in

order to stimulate ureteric bud development.

Wnt11 is partially involved in mediating the positive
effect of Cer1 on kidney development

If Wnt11 were involved in Cer1 control, a genetic reduction in

Wnt11 in a heterozygous Wnt11+/- background might inhibit the

influence of Cer1 in promoting ureteric bud development and thus

kidney size. We tested the significance of the slightly elevated

Wnt11 expression (Figure 4H) for Cer1-promoted ureteric bud

development by means of Wnt11-deficient mice [24]. The volume,

Table 2. Cer1 gain of function reduces the proportion (%) of
bifid-type ureteric bud branches and increases the
proportions of the trifid and lateral types.

Time
(hours) Genotype Type of branching**

Bifid Trifid Lateral Total

24 Wt 57% 29% 14% 100%

Cer1 45% 33% 22% 100%

48 Wt 71% 17% 12% 100%

Cer1 63% 22% 15% 100%

*Eight cultured E11.5 kidneys of each genotype were analyzed.
**Modes of ureteric branching estimated according to Watanabe and Costantini
[83].
doi:10.1371/journal.pone.0027676.t002
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Figure 3. Changes in morphometric parameters of the ureteric tree in Cer1 gain and loss of function situations. Kidneys were prepared
from wild-type (Wt) and Cer1 mutant embryos at E15.5 and subjected to OPT analysis to calculate several parameters characteristic of the ureteric
tree. The tree was identified in the kidneys stained as whole mounts with the Troma-I antibody, which recognises the cytokeratin antigen expressed
by cells of the ureteric tree (A, C, E, G). The surface of the ureteric tree in Wt (B), Cer1+ (D), Cer1+/- (F) and Cer1-/- (H) situations highlights alterations in
the overall pattern. Wnt11 transcripts are localized to the ureteric tips in the normal kidney at E15.5 (I) and in Cer1 knockout, but Wnt11 expression is
elevated in response to Cer1 deficiency (J). The Wnt11 expression pattern was used to count the exact numbers of cortical ureteric tips in Cer1+/- (K)
and Cer1-/- embryonic kidneys (L) and the distances between them (black lines in K and L). Number of ureteric tips (M) and the width of the kidney
pelvis (N) in wild-type (in green) and Cer1+ (in red) embryonic kidneys. Diagrams depicting the average length of the ureteric tree (O) and the
distance between its tips (P) in Cer1+/- and Cer-/- embryonic kidneys. Cer1, transgenic kidney overexpressing the Cer1 gene; Wt, wild type. Scale bar,
100 mm.
doi:10.1371/journal.pone.0027676.g003
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weight and number of glomeruli in the kidneys of the

Cer1;Wnt11+/- mice was indeed smaller than in the Cer1+
individuals (Figure 1H, compare 1C to B, Table 1), but Cer1

had still promoted these parameters in the Wnt11-deficient kidney,

since the values were higher in the Cer1;Wnt11-/- mice than in the

Wnt11-/- mice (Figure 1, compare D to C, H; Table 1). We

conclude that Wnt11 is involved in mediating the influence of

Cer1 on kidney development.

Cer1 down-regulates the expression of Bmp4, encoding
an inhibitor of ureteric bud development, and binds
Bmp2/4 but not Gdnf

Of the Bmps, it is mainly Bmp2 and Bmp4 that are considered

to be inhibitors of ureteric bud development [19–24]. In contrast

to the expression of the Gdnf and Wnt11 genes, which showed a

tendency for induced expression in response to Cer1 gain of

function, Bmp4 expression tended to be reduced by Cer1 at all the

stages analysed (Figure 4I). Like Bmp4 expression, that of the

Gremlin (Grem) gene, which encodes another Bmp4/7 antagonist

and is involved in the initiation of kidney development [36,37],

demonstrated a tendency to be reduced in embryonic kidneys

expressing Cer1 as compared with controls (Figure 4J).

When we subjected the Cer1+ embryonic kidneys to organ

culture, the ureteric bud in some of them was found to have become

split in two at the stalk region. These ectopic ureteric bud branches

had induced the formation of Pax2+ cells adjacent to the epithelial

buds, indicative of the early steps in tubule induction (Figure 5C, in

green, arrow). We consider the formation of a double ureteric bud

Figure 4. Cer1 gain of function leads to reduced Bmp4 expression but induced Gdnf and Wnt11 expression. A, B) Localization of Gdnf
gene expression (arrows) in the mesenchyme of a wild-type (A) and Cer1+ embryonic kidney (B). The dotted lines in (A) and (B) depict the border of
the ureteric bud. C, D) Ret expression reveals that the ureteric bud is advanced in development at E11.5 in the case of Cer1+ as compared with a
stage-matched control (arrows in C and D). E-F) Wnt11 expression reveals that the Cer1 gain of function has promoted ureteric bud development at
E12.5 as compared with the degree of tip development in the control. G-J) Analysis of changes in Gdnf, Wnt11, Bmp4 and Gremlin (Grem) expression
brought about by qPCR point to trend for average reductions of 24% in Gdnf (G), 14% in Wnt11 (H), 21% in Bmp4 (I) and 15% in Grem (J) relative to the
controls upon Cer1 gain of function. Cer1, transgenic kidney overexpressing the Cer1 gene; Wt, wild-type. Scale bar, 50 mm.
doi:10.1371/journal.pone.0027676.g004

Table 3. OPT image analysis-derived values for the ureteric tree in the Wt, Cer1+, Cer+/- or Cer1-/- genotypes at E15.5.

Wt Cer1+ % Cer1+/- Cer1-/- %

Tips # 422655 528651 25% 438645 480669 10%

Branch points # 199628 257623 29% 209626 234633 12%

Average distance between branch points (mm) 74,7638 76639 1% 72,5636 82,5642 13%

Surface area (mmˆ2) 344,04 375,00 9% 265,26 350,35 30%

Length # (mm) 33,40 40,00 20% 30,93 39,2 26%

Volume (mmˆ3) 0,029 0,028 4% 0,018 0,025 38%

Distance between tips (mm N 0,028 N 71,54 85,88 20%

Pelvis width (mm) 145 311,20 46% N N N

Pelvis volume (mmˆ3) 0,0013 0,0088 67% N N N

doi:10.1371/journal.pone.0027676.t003
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as the likely reason for the development of a second kidney noted in

certain Cer1 mutants (see Figure 1G, K (K1 and K2, arrows)).

We went on to tested directly whether Bmp4 would regulate

Gdnf and Wnt11 expression in the early embryonic kidney under

normal conditions, since we noted a correlation between the

tendencies for a reduction in Bmp4 expression and an increase in

that of Gdnf and Wnt11. Supplementation of the culture medium

with 50ng/ml Bmp4 [23] reduced Gdnf expression by 28% and

Wnt11 by 20% as compared with controls treated with bovine

serum albumin (BSA) (Figure 5I). The same amount of Bmp4 in

cultures of E11.5 Cer1 embryonic kidneys reduced Cer1-induced

ureteric bud branching and brought the number of ureteric tips

closer to that found in the cultured wild-type embryonic kidneys

(Figure 5, compare B with G), as depicted quantitatively in

Figure 5H. Consistent with earlier data [57], supplementing the

Bmp4 in the embryonic kidney cultures inhibited the number of

tips in the wild-type embryonic kidney to some extent relative to

non-treated wild-type controls (Figure 5F).

Cer1 binds Bmp2 and Bmp4 but not Gdnf, and
antagonizes Bmp signalling

Given the suggestion that Wnt11, Gdnf and Bmp4 are involved in

mediating Cer1-stimulated ureteric bud branch development, we

speculated that Cer1 would bind directly to Bmps and in that way

lower their presence in the embryonic kidney in order to stimulate

branching, as would be consistent with the earlier model of Bmp4

action serving as an inhibitor [21]. To address this aspect, we

analysed the capacity of the mCer1 protein to bind to Bmp2,

Bmp4 and Gdnf and the potential of Cer1 to influence Bmp,

Wnt11 and canonical Wnt signalling in cell lines by comparison

with the control situation.

BIAcore sensogram analysis revealed that mCer1 bound Bmp2

and Bmp4 but not Gdnf (Figure 6). Moreover, Bmp4 recombinant

protein induced Bmp (Smad) reporter gene expression in a dose-

dependent manner, so that Bmp4 induced the maximal reporter

activity at concentrations of 33 ng/ml and 50 ng/ml (Figure 7A).

Having revealed the dose response associated with Bmp4, we used

Figure 5. Inhibition of Cer1-induced ureteric bud branching by Bmp4 and acquired sensitivity to Gdnf signalling. A-G) The kidneys
were prepared at E11 and cultured for 48 hrs. A) The ureteric bud in a cultured embryonic kidney branched a few times, as revealed by Troma-1
immunostaining (in orange). The mesenchyme was induced to undergo nephrogenesis, as shown by the expression of an early tubule differentiation
marker Pax2, as identified with an antibody (in green). B) A Cer1 gain of function enhanced ureteric bud branching to a moderate extent and also
created some ectopic ureteric side branches (arrows). C) A double ureteric bud formed occasionally in the cultured embryonic kidney in response to
the Cer1 gain of function (in orange, arrow). D) Supplementation of Gdnf in culture induced some Wolffian duct-derived epithelial bud formation in
the wild-type embryonic kidneys (arrows), while this was more pronounced in a kidney overexpressing Cer1 (E, arrows, arrowheads), with elevated
Pax2 expression. (F) Culture of a normal embryonic kidney in the presence of Bmp4 (in green). G) An embryonic kidney expressing Cer1 cultured in
the presence of Bmp4 for 48 hrs. H) Numbers of ureteric bud tips calculated from several cultured kidneys, as depicted in A-G. I) Note that
supplementation of the culture medium with Bmp4 in reduces Gdnf and Wnt11 gene expression in normal kidneys as compared with controls
analysed by qPCR. Cer1, transgenic kidney overexpressing the Cer1 gene; Wt, wild-type. Scale bar: 100 mm.
doi:10.1371/journal.pone.0027676.g005
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different amounts of Bmp4 to test whether the Bmp4 signalling

output would depend on its concentration and could shed light on

the phenotypes generated by Cer1 gain and loss of function. We

used Wnt4 as a means of addressing the potential role of Cer1 in

orchestrating not only ureteric bud development but also

mesenchymal cell behaviour.

Strikingly, the effect of Bmp4 was clearly dose-dependent, so

that lower amounts of Bmp4 inhibited the expression of Wnt4,

which is a critical regulator of nephrogenesis [4], whereas higher

amounts induced it (Figure 7B). Given these observed Bmp4

thresholds, we went on to determine whether mCer1 would indeed

act as an inhibitor of Bmp4 signalling in the kidney. Cer1 inhibited

the Bmp reporter induced by Bmp4 recombinant protein and

cDNA transfections in a dose-dependent manner both in

embryonic kidney-derived mK4 cells and in CHO cells

(Figure 7C-E). It is worth noting, however, that the inhibition

achieved with Cer1 was weaker than with Noggin in the reporter

gene assay (Figure s7, compare F with C-E), which is in line with

the notion of Cer1 playing a role as a fine tuner of kidney

development.

Given the involvement of Wnt11 in the control of Cer1-induced

ureteric bud development, we analysed whether Cer1 would

influence Wnt11 signalling. Since no direct Wnt11 reporters are

currently available, we assayed the influence of Cer1 in the control

of Wnt11 signalling indirectly by assessing the capacity of Wnt11

to inhibit canonical Wnt signalling as analysed by the Top Flash

reporter [56]. Hence, if Cer1 influenced Wnt11 signalling, we

would expect to see changes in the Wnt11-mediated inhibition of

Top Flash reporter expression [56]. However, Cer1 did not

influence the efficiency of Wnt11 in inhibiting Wnt3a-induced

Top Flash activity, although it had a notable effect in reducing

Wnt3a signalling (Figure 7G).

Changes in Cer1 function influence Bmp4 expression and
signalling

Our findings suggested that Cer1 controls ureteric bud

development by antagonizing the inhibitory effect of Bmps on

bud branching, and possibly by affecting the kidney mesenchymal

cells directly, since Bmp4 had a dramatic effect on Wnt4

expression in the cell line models. Given these results, we studied

further the role of Cer1 in the control of Bmp2, Bmp4 and Wnt4

expression in Cer1 knockout (Cer1-/-) and Cer1+ embryonic

kidneys. Cer1 deficiency did indeed reduce Bmp4 expression in

comparison to controls, and to some extent also that of Bmp2 and

Wnt4, as judged by real-time PCR (Figure S6A-C). Analysis of

phospho-Smad (pSmad), which is normally expressed in the

ureteric bud-derived collecting duct tree, and its pretubular

derivatives (Figure S6D), showed that both a gain in Cer1 function

and Cer1 deficiency notably reduced pSmad expression in the

embryonic kidney as judged by immunostaining (Figure S6,

compare E-F with D), which is consistent with the reduction in

Bmp 2/4 ligands in the kidneys of Cer1 mutant newborn mice

(Figure 4I and Figure S6A, B).

Discussion

Our data indicate that the secreted Bmp antagonist Cer1 is

involved in the spatial organization of the ureteric tree during

Figure 6. BIAcore sensograms indicate that Cer1 binds to Bmp2 and Bmp4 but not to Gdnf. (A) The purified recombinant mCer1 protein
used for the BIAcore binding studies, as identified by SDS-PAGE with molecular size markers. B) BIAcore sensorgrams of BMP2, BMP4, or Gdnf to Cer1,
which was immobilized on a chip. The BIAcore sensograms indicate that BMP2 and BMP4 bind to mCer1 while Gdnf does not. The dissociation
constants (KD) of BMP2 and BMP4 for mCer1 were 3.3861.2961029 and 2.34 60.1661028, respectively. The measurements were performed in
triplicate. The sensograms represent mean values.
doi:10.1371/journal.pone.0027676.g006
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kidney development. This conclusion is based on the fact that Cer1

gain of function and Cer 1 deficiency both enlarged kidney size and

this was associated with changes in the overall appearance of the

ureteric tree and in several developmental ureteric bud parameters

identified by coupled optical projection tomography (OPT)

imaging of the whole collecting duct system. We consider that

manipulation of Cer1 causes these phenotypes in part through

changes in Cer1-mediated antagonism of Bmp signalling, on the

grounds that Cer1 bound Bmp2/4, as analysed by surface

plasmon resonance technology, Cer1 inhibited Bmp4 signalling,

as judged by changes in the Bmp reporter, both Cer1 gain and loss

of function led to reduced Bmp4 expression, and supplementation

of Bmp4 in Cer1-expressing embryonic kidneys in organ culture

lowered the number of Cer1+-induced ureteric bud tips to bring it

closer to the wild-type control value. On top of these findings we

also noted that Cer1 is clearly a weaker Bmp antagonist than

Noggin, another Bmp antagonist that influences kidney develop-

ment [60]. Our findings are in line with the mode of action of

Bmp2 and Bmp4 as inhibitors of ureteric bud development

[21,24,61,62]. Given these points, we consider that Cer1 serves as

a secreted factor that partially controls Bmps activity in the

coordination of ureteric bud development by fine tuning the

branching process.

Consistent with the proposal that Cer1 functions in the

developing kidney to control Bmp-mediated functions in the

assembling ureteric bud, the bud is responsive to certain Bmps via

canonical Smad-mediated signal transduction [19,21,36,63]. Even

though a wealth of studies have been performed to define the

expression of Bmp ligands during kidney development, the picture

is not completely clear. The kidney expresses at least Bmps 2/3/4/

5/6/7 in partly overlapping regions, but also in clearly different

compartments. Considering the results collectively, however, it is

evident that the Bmps are expressed in both the ureteric bud and

the mesenchymal cells, including the condensed kidney mesen-

chyme, the survival of which involves Bmp7 function

[19,20,57,64]. It is significant that Bmp2/4 is not initially present

in the condensed kidney mesenchymal cells but is up-regulated

during nephrogenesis [57]. Thus, besides having a key role in the

initiation of kidney development, the expression pattern of the

Bmp family members suggests a role later in kidney development,

namely in controlling the ureteric bud in the establishment of the

complex ureteric tree structure and nephron development.

Evidence is available that Bmp4 takes part in specification of the

proximal distal identity in ureteric bud development, for example

[65].

Since we already found Cer1 expression by E11.5, at the

initiation of kidney development in the ureteric bud and kidney

mesenchyme, it could in principle influence Bmp function in both

of these tissue layers. It was also evident that the level of Cer1

expression was lower in the ureteric bud then in the kidney

mesenchyme. We regarded this as an opportunity to address

Cer1 function in controlling the activity of certain growth factors

such as Wnts and Bmps in order to target the mechanisms behind

ureteric bud development. Overexpression of Cer1 in the ureteric

bud as induced by the Pax2 promoter led to phenotypes in

branching that suggested a role for endogenous Cer1 in ureteric

bud development. Detailed analysis of the OPT data revealed

that Cer1 gain of function had stimulated values related to the

ureteric tree such as the number of tips, the branch points and

the total length of the tree at E15.5. When these parameters were

identified at the same developmental stage in the Cer1 knockout

(Cer1-/-) the changes turned out to be predominantly in a

different set of values, as the values for the ureteric tree surface

area, volume, length and distance between the tips at the

developing cortex were all greater in the Cer1 knockout

embryonic kidney than in the controls. However, the number

of ureteric tips and the average distance between the branch

points, which were altered in response to Cer1 gain of function,

were not changed as clearly as was the case in the kidneys of the

Cer1 knockout embryos. Hence, even though Cer1 gain and loss of

function both enhanced kidney size and demonstrated reduced

Bmp4 expression, the OPT-derived data, for example, reveal that

the phenotypes of these mutants differ to a certain degree. These

differences may reflect the differing genetic makeup of the

transgenic mice used in the gain and loss of function models. We

summarize these results as supporting the conclusion that the

control of Bmp signalling by Cer1-mediated antagonism is

relevant to the fine tuning of the action of Bmp function in

establishing the specific pattern of the ureteric tree during kidney

development.

Besides the changes in Bmp expression in the Cer1 mutant

embryonic kidneys, we also found that Cer1 expression in the

ureteric bud had a tendency to stimulate Wnt11 and Gdnf gene

expression. These data and the findings that genetic reduction of

Wnt11 function in heterozygous Wnt11-deficient embryonic

kidneys detracted them from Cer1-induced kidney development,

that Cer1+ kidneys were also sensitive to the Gdnf signal and that

Bmp4 inhibited Gdnf expression in wild-type embryonic kidneys

support a role for Cer1 in the control of Gdnf and Wnt11 [21,66].

Wnt11 functions as a ureteric tip bud signal that especially controls

formation of the trifurcation type of ureteric bud branching during

the early stages of kidney development [25]. Thus the changes in

the mode of ureteric bud branching brought about by Cer1 gain

and loss of function may be explained in part by the alterations in

Gdnf and Wnt11 expression.

It has been established that besides nephrogenesis, ureteric bud

development is also regulated by the Wnt signalling pathway [67].

On top of having an effect on Bmp signalling, we noted a

Figure 7. Changes in Smad reporter and Wnt4 expression in response to Bmp4 and in Bmp4 and Wnt in response to Cer1. A) mK4
cells were transfected with the Bmp reporter BRE2-luc and cultured in the presence of various amounts of Bmp4 protein. Bmp4 stimulated the activity
of the reporter in a dose-dependent manner up to a plateau reached at 33 ng/ml of Bmp4. B) The mode of Bmp4-mediated regulation of Wnt4 gene
expression was dependent on the Bmp4 dose. C) CHO cells were transfected with the Bmp reporter BRE2-luc and various amounts of Cer1 cDNA and
the cells were cultured in the presence of Bmp4 protein. Cer1 inhibited the activity of the BMP4 protein-induced Bmp reporter in a dose-dependent
manner. D, E) mK4 or CHO cells were transfected with a plasmid that encoded Bmp4 (10 ng/well), Cer1 and the BRE2-luc reporter construct in the
amounts depicted in the figure. Cer1 inhibited the activity of the BMP4-induced Bmp reporter in dose-dependent manner. F) mK4 cells were
transfected with plasmids that encode Bmp4 (10ng/well) or Noggin and BRE2-luc. Noggin is a robust inhibitor of Bmp4-mediated reporter activity (F).
G) CHO cells were transfected with Wnt11 (25 ng/well), Cer1 (100 ng/well) and the SuperTopFlash reporter plasmids. While Wnt3a activates the
canonical Wnt signalling pathway reporter, the presence of Wnt11 activity inhibits it. Expression of mCer1 does not alter the degree of Wnt11-
mediated inhibition of the Wnt pathway reporter activity. It is significant that Cer1 is sufficient to achieve moderate inhibition of the Wnt3a-mediated
induction of the canonical Wnt signalling pathway reporter Top Flash. Luciferase activity in the control transfections for the reporter assays was set to
100.
doi:10.1371/journal.pone.0027676.g007
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moderate effect of Cer1 on the canonical Wnt signalling, since Cer1

inhibited Wnt3a-induced Wnt Top Flash reporter expression in a

cell line model as compared with controls. The mediators of Bmp

signalling, the Smad proteins, can interact with the canonical Wnt

signal transduction components b-catenin and Lef1 (TCF) [68],

and the Bmp receptors Alk3 and b-catenin are also known to co-

operate in the embryonic kidney [68]. Moreover, down-regulation

of Wnt9b and the associated canonical Wnt signalling in the

ureteric tip region appears to be important for the initiation of

ureteric bud branching [67]. Cer1 may contribute to the

promotion of ureteric bud branching by influencing canonical

Wnt signalling in the tip region. Sostdc1, another Cerberus/DAN

family member, may point to a possible mode of action. Sostdc1

regulates b-catenin localization [69] and binds Bmp4 and Lrp4 to

inhibit b-catenin-mediated Wnt signalling [70]. Recent data

indicate that Lrp4 is also critical for ureteric bud development

[71]. Hence, at the same time as it stimulates ureteric bud

development by promoting Gdnf Wnt11 expression, Cer1 may

contribute to new bud formation during epithelial branching by

having an inhibitory effect on the b-catenin-mediated canonical

Wnt signalling that occurs in the tip region.

Cer1 is expressed in the kidney mesenchymal as well as in the

ureteric bud, and could therefore not only act as a reciprocal signal

for controlling the ureteric bud but also in that way contribute to

mesenchyme behaviour. Given that the Pax2 promoter targets Cer1

to the ureteric bud, this Cer1 could diffuse to the mesenchyme to

some extent, but Cer1 knockout will inactivate the Cer1

contribution in both of these tissue compartments. Hence both

gain and loss of Cer1 function may also cause changes in the kidney

mesenchyme. Thus we found an enhanced tendency for Gdnf

expression and a higher number of glomerulae in response to Cer1

gain of function, which may point to a role for Cer1 in the kidney

mesenchyme. In line with this possibility, we noted a concentra-

tion-dependent effect of Bmp4 on the expression of Wnt4, which is

normally expressed in mesenchymal pretubular cells and in an

embryonic kidney mesenchyme-derived model cell line. Moreover,

not only Bmp4 but also Wnt4 expression was down-regulated by

Cer1 knockout to some degree, supporting the idea that their

expression is regulated by Cer1. Similar regulatory feedback

between Bmp and a Bmp antagonist has been noted between

Gremlin and Bmp4/7 during limb bud development [36,37,72]

and Bmp4 and Noggin during feather and tooth bud development,

for example [73,74], and with other signalling systems such as Fgfs

and Sprouties [17,69,74].

It is known that Bmp2/4 are not expressed in the early

condensed kidney mesenchyme but that expression is up-regulated

during nephrogenesis [20,57,75], while Bmp7 serves as a survival

factor in pretubular cells, and since it can be replaced functionally

by Bmp4 so that kidney development advances normally, Bmp7

and Bmp4 must have a significant degree of functional similarity

[76]. Based on these pieces of information, Cer1 may also in part

control Bmp7 signalling. As with Bmp4, a low Bmp7 dose

promotes ureteric bud branching, whereas a high Bmp7 dose

inhibits it [62]. We may consider that Cer1 fine tunes the

concentration of Bmp2/4, and also perhaps to some degree that of

Bmp7, in order to coordinate ureteric bud and kidney mesen-

chyme development, which has to be in register. More specifically,

Cer1 may contribute to the inhibition of Bmp2/4 expression in the

kidney mesenchyme prior to nephrogenesis but allow an increase

in Bmp2/4 expression to promote nephron induction, consistent

with our finding that high Bmp4 doses robustly induced the

expression of Wnt4, a key signal for nephrogenesis [4. 53]. It is also

of interest in this context that a large amount of Bmp4 will

represses Fgf8 expression in the embryonic mandible whereas a

low amount will allow this expression [77]. Since the functioning

of Fgf8 and Wnt4 depends on expression of the other during

nephrogenesis and both are critical for the process [78,79], Cer1-

mediated control of Bmp4 could influence the level of Fgf8

expression as well. Given the complex nature of the Bmp signalling

system, in which the output of these factors also depends on the

concentration of the ligands and the associated factors serving as

morphogens [80–82], further studies are clearly needed in order to

obtain a better view of how the Bmp signalling system involving

antagonists such as Cer1 takes part in the control of kidney

organogenesis.

In summary, our results support a scenario in which Cer1 fine

tunes the pattern of ureteric bud branch formation during

development of the ureteric tree. Cer1 operates in part by

targeting the Bmp/Gdnf/Wnt11 signalling system through a

reduction in the Bmp2/4-mediated repression of Gdnf/Ret and

Wnt11, factors that normally act synergistically to promote

ureteric bud development. At the same time Cer1 may contribute

to the inhibition of canonical Wnt signalling to some degree, in

order to advance ureteric bud branch formation in the tip region.

The suggestion that Cer1 may contribute to kidney mesenchyme

development is based on the findings that Cer1 deficiency reduced

Bmp4 expression and that Bmp4 inhibited or activated Wnt4 gene

expression (Figure S7).

Supporting Information

Figure S1 Expression of Cerberus/Dan family and the
construct used. A, B) mCerberus 1 homolog (Cer1), Dan and Prdc

genes are expressed in the ureteric bud (U) and kidney

mesenchyme (KM) of E11.5 embryos and whole embryonic

kidneys (K) at E12.5 and E15.5, as revealed by RT-PCR. Note

that Cer1 expression is elevated in the ureteric bud in the

transgenic embryonic kidney (Cer1, star) relative to the wild-type

(Wt) at E11.5 (compare B to A). Like Cer1, Prdc expression is

elevated due to the gain of function of Cer1 expression. The DAN/

Cerberus genes, Dan and Prdc are also expressed in the developing

kidney. C, D) Whole mount in situ hybridization shows that Cer1 is

expressed in both the ureteric bud and kidney mesenchyme at

E11.75 and E12.5. E. Schematic structure of the construct used to

express Cer1 and eGFP in the ureteric bud. F-H) Wild-type kidneys

prepared from embryos at the E11.5, E15.5 and newborn (NB)

stages. I-K) Pax2 promoter-driven GFP can be detected in the

ureteric bud. The arrow in (I) indicates the ureteric bud of the

E11.5 embryonic kidney. NB; newborn. Scale bar, 100 mm.

(TIF)

Figure S2 Cer1 gain of function has enlarged the kidney.
A) The kidney of a five-month-old wild-type mouse. B) A kidney

that has expressed Cer1 in the ureteric bud. C, D) Sections from

the kidneys shown in (A, B). Counting the volume of the kidney in

six similar samples shown in (A and B) indicates that the kidney

that had expressed Cer1 is larger in size than the wild-type control

kidney (Wt) (E). Bar 500 mm.

(TIF)

Figure S3 Cer1 has a positive effect on the length of the
early ureteric bud branches. The kidneys were prepared at

E11.5 from embryos that had either YFP only or both the YFP

and Cer1 genes (see the methods for details). The length of each

ureteric bud branch during early stages of kidney development was

calculated according to Watanabe and Costantini (2004) [83]

analyzed from still images made from the time-lapse movies

recorded of the cultured kidneys. Cer1 has stimulated to a certain

degree the length of early branches. At 48 hrs of culture the
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branches from the 2nd to 5th generations appear measurable

longer.

(TIF)

Figure S4 Still images from time-lapse movies from
YFP+ ureteric buds of wild-type and Cer1+ embryonic
kidneys. The still images from cultures of E115 kidneys were

used to evaluate the influence of Cer1 on the mode of bi/

trifurcation and generation of the ureteric bud branches. Note that

Cer1 gain of functions has promoted ureteric bud development

already at 00 hr (compare B to A, arrowhead), trifurcation of the

bud at 24 hr time point (compare D to C, arrowheads) and

changes in the overall mode of ureteric branching when compared

to the pattern of the ureteric three in later stage cultures of

HoxB7Cre;RYFPR26 marked ureteric bud (compare the ureteric

tree pattern in F,H,J with E,G,I).

(TIF)

Figure S5 Cer1+ has changed distance of first ureteric
bud branch points from the mean centre. The embryonic

kidneys were prepared at E15.5 from wild-type or Cer1 embryos,

stained as whole mounts with anti-cytokertin antibody and

subjected to analysis of the three dimensional structure of the

ureteric tree with optical projection tomography. The morpho-

metric analysis reveal that Cer1 expression diminishes n several

samples the distance of the first ureteric bud branch points from

the mean center or the kidney when compared to the same

parameter values the wild-type (Wt) kidney.

(TIF)

Figure S6 Cer1 loss and gain of function influences Bmp
expression and signaling. Real-time PCR analysis of total

RNA isolated from kidneys of Cer1 heterozygous (+/-knockout (-/-)

newborn mice demonstrate reduced expression of Bmp4 (A), Bmp2

(B) and Wnt4 (C) gene expression. D) The pSmad protein revealed

by a specific antibody indicates activity in developing nephrons

and ureteric bud and reduction in these sites due to Cer1 gain of

function (compare E with D). F) pSmad remains expressed in the

cortex of the kidney in case of Cer1 knock out (-/-). D-F, Bar

10 mm.

(TIF)

Figure S7 Schematic representation of the potential
mode of action of Cer1 in the control of ureteric
branching. As a secreted protein, the Cer1 protein binds

Bmp2/4 proteins in the ureteric bud and the kidney mesenchyme

but not Gdnf. Bmp2 and Bmp4 have both been implicated as

inhibitory signals for ureteric bud branching involving Alk3

receptor in the ureteric bud. Bmp4 signaling normally leads to

repression of the expression of Gdnf, which signals via its Ret

receptor expressed in the ureteric bud and promotes ureteric bud

development via positive feedback signaling with Wnt11. Lower

activity of Bmp due to Cer1 mediated inhibition enhances Gdnf

expression and this promotes ureteric bud branching by

stimulation of the positive signaling loop between Gdnf and

Wnt11 promoting ureteric bud development. Cer1 inhibited to a

moderate level canonical b-catenin mediated Wnt signaling and

this may be relevant in advancing initiation of branching at the tip

region. Modulation of Bmp by Cer1 may also influence kidney

mesenchyme which seen changes Wnt4 expression controlling

nephrogenesis. Depending of the level of Bmp4 and Cer1, Bmp4

either inhibits or induces Wnt4 expression.

(TIF)

Table S1 Primers used to genotype the generated Cer1+ mouse

lines.

(DOC)

Table S2 Primers used to analyse changes in gene expression

induced by Cer1+.

(DOC)

Movie S1 Cer1 expression changes the overall pattern of
ureteric bud branching when compared to controls. The

kidney primordial were prepared at E11.5 and subjected to organ

culture for 120 hrs. Ureteric was visualized by genetic means by

yellow fluorescent protein that was activated from the floxed Rosa26

locus as a result of HoxB7Cre recombination. Analysis of the time-

lapse recordings reveal that Cer1 gain of function in the ureteric

bud shifts the mode of ureteric bud branching from a difurgation

type towards the trifurgation one (see also Figure S4). C, D) Later

Cer1 over expressing kidneys have a tendency to develop also

lateral side branches not that typical in the control. As a result the

overall pattern formation of the ureteric bud of the kidneys that

were prepared from the Cer1 kidneys appears different from the

control.

(MOV)

Movie S2 Visualization of Cer1-induced changes in
development of the ureteric bud tree during kidney
organogenesis analysed. The ureteric bud was identified with

antibodies against cytokeratin at E15.5 by using optical projection

tomography (OPT). A kidney of a wild-type (Wt) embryo on the

left and the one expressing Cer1 in the ureteric bud on the right

side identifies Cer1 induced changes in the structure of the ureteric

tree.

(MOV)
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