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Abstract

Cytomegalovirus (CMV) is frequently transmitted by solid organ transplantation and is associated with graft failure. By
forming the boundary between circulation and organ parenchyma, endothelial cells (EC) are suited for bidirectional virus
spread from and to the transplant. We applied Cre/loxP-mediated green-fluorescence-tagging of EC-derived murine CMV
(MCMV) to quantify the role of infected EC in transplantation-associated CMV dissemination in the mouse model. Both EC-
and non-EC-derived virus originating from infected Tie2-cre+ heart and kidney transplants were readily transmitted to
MCMV-naı̈ve recipients by primary viremia. In contrast, when a Tie2-cre+ transplant was infected by primary viremia in an
infected recipient, the recombined EC-derived virus poorly spread to recipient tissues. Similarly, in reverse direction, EC-
derived virus from infected Tie2-cre+ recipient tissues poorly spread to the transplant. These data contradict any privileged
role of EC in CMV dissemination and challenge an indiscriminate applicability of the primary and secondary viremia concept
of virus dissemination.
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Introduction

Human Cytomegalovirus (HCMV), a member of the betaher-

pesvirus subfamily, represents an important opportunistic viral

pathogen in the immune compromised host. Fetuses, AIDS

patients, and recipients of both bone marrow and solid organ

transplants are at high risk for the development of debilitating and

potentially life-threatening CMV disease. Depending on the risk

constellation and immunosuppressive regimen, CMV disease can

occur in up to 60% of heart or kidney transplant recipients.

Therefore, HCMV is the most important viral pathogen especially

during the first six months after transplantation [1,2]. The large

variety of symptoms results from the broad cell and organ tropism

of the virus [3,4]. In addition, the virus is able to disseminate via

blood [5]. According to Fenner (1949) a virus enters - after initial

replication at the entry site (epithelia or transplant) - the blood

stream and disseminates throughout the body to distal organs via a

so-called primary viremia, which was confirmed to apply also to

HCMV and MCMV [6,7]. It is proposed that progeny virus from

such organs can re-enter the blood circulation leading to a

secondary viremia [6,7] thus increasing the risk for widespread

dissemination.

Leukocyte depletion of blood products derived from seropositive

donors prior to transfusion efficiently prevents transfer of CMV to

seronegative recipients [8,9] indicating that virus present in blood

is predominantly cell associated. The cell types responsible for this

dissemination are of particular interest. Three kinds of cells have

been suggested to be involved in virus dissemination via blood. All

of them have been shown to be able to transfer infectious virus ex

vivo: polymorphonuclear leukocytes (PMNL), monocytes/macro-

phages, and detached infected vascular endothelial cells (EC).

Although PMNL are thought to be only abortively infected, they

might still function as vehicles for infectious virus [10]. Circulating

infected monocytes become permissive upon differentiation into

tissue macrophages and may then release infectious progeny

within target organs [11]. For example, rat CMV was transferred

via in vitro infected granulocytes or monocytes [12]. Vascular EC

are suggested to play an important role in CMV dissemination,

and unique genetic features govern the CMV - EC interaction

[13]. EC support productive infection and may detach upon

infection thus serving as shuttles for the virus to other organs via

the blood stream [14,15,16]. EC are permissive for HCMV in vitro

[3] and are commonly found to be infected in tissue samples from

both immune compromised patients [17] and mice [18]. In

addition, EC support latent infection with the potential to

reactivate CMV [19] and to start a new episode of infection.

Notably, HCMV infection is a risk factor for restenosis after

coronary atherectomy [20] and accelerates atherosclerosis follow-

ing cardiac transplantation [21]. The anatomical position of EC

lining blood vessels implies a bidirectional role in virus entry into

and exit from the blood circulation and therefore might define the

ability of viruses in general to disseminate via blood. In fact,
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HCMV-infected EC can protrude from the wall into the lumen of

the blood vessels in patients with active cytomegalovirus infection

[16]. Furthermore, circulating giant endothelial cells were found in

blood samples of transplant patients [14] suggesting detachment of

infected EC from the vessel wall and dissemination of HCMV via

EC throughout the body.

Despite the undisputed and unique potential of EC in CMV

infection and pathogenesis, it is still unknown whether infected EC

are responsible for systemic virus dissemination during primary

infection, contribute to this process, or merely represent an

epiphenomenon with no causal involvement in the pathogenesis of

organ disease [22]. Quantitative aspects of the contribution of

infected EC to virus dissemination in the transplant situation are

scarce and the presence of infected EC in the circulating blood

does not prove that infected EC or HCMV produced by EC

contribute or even govern virus dissemination from one site or

organ to another.

To quantify and to address the fate of virus produced by specific

cells, we developed a Cre/loxP mediated approach to label virus in

defined cell types in vivo and then trace the viral progeny of that cell

type [23,24]. Cre recombinase recognizes two adjacent loxP sites and

deletes the intervening DNA sequence. This reaction can remove a

transcriptional stop signal between promoter and coding sequence

resulting in gene expression. To study the role of EC in MCMV

replication an MCMV mutant was used that contains a Cre-

inducible egfp expression cassette (MCMV-flox). Mice expressing Cre

recombinase under control of either the Tie2 or the Tek promoter,

which is selectively expressed in vascular EC (Tie2-cre and Tek-cre

mice), were infected with MCMV-flox. In this in vivo infection model

MCMV-flox is efficiently recombined resulting in MCMV-rec only

during virus replication in EC. It is important to note that Cre-

mediated recombination of MCMV-flox is equally efficient in Tie2-

and Tek-cre mice and only mediated by EC - as shown using bone

marrow chimeras - thus providing highly concordant results by both

mouse strains [24]. The resulting recombination is then stably

maintained in the viral genome of the virus progeny.

Vascular EC are present in all organs. A way to study the role of

EC in virus dissemination from one organ to another is to either

introduce organs from an EC cre-negative donor mouse into an EC

cre-positive host or vice versa. Here, we investigated export of EC-

derived virus from heart and kidney transplants to recipients as

well as import of EC-derived virus from recipients into heart

transplants. This was achieved by counting and comparing the

contribution of EGFP-positive EC-derived progeny to the total

virus load of organs and tissues.

EC-derived virus from infected heart or kidney transplants

readily disseminated to organs of MCMV-naı̈ve recipients. The

bulk of virus produced in and disseminated from heart is EC-

derived, whereas in kidneys infected EC only provide a minor

contribution. Yet, we found no evidence for any preferential

dissemination of EC-derived virus from both types of transplants

to other organs. The heart transplant was also tested as a target

organ of EC-derived virus produced in recipient tissues. To our

surprise, in contrast to the strong dissemination of virus originating

from an infected transplant there was only minimal seeding of host

EC-derived virus progeny to the transplant. Interestingly, this was

independent of whether transplantation was performed prior to or

after systemic host infection. In summary, our data argue against a

privileged role of EC in virus dissemination.

Results

Virus dissemination from infected hearts into non-
infected recipients

Transplantation of organs from HCMV seropositive donors to

seronegative recipients (D+/R-) is a known situation in transplan-

tation medicine and represents the ‘‘high risk constellation’’

because up to 60% of the recipients can develop CMV disease

[25]. In this D+R- setting CMV disease is caused by dissemination

of HCMV from the transplanted organ to the recipient causing

systemic symptoms with multiple organs being involved. The

cellular source of disseminated virus has not been addressed, yet

virus dissemination from infected heart transplants has also been

described in the mouse model [26,27]. To investigate whether and

to which extent virus derived from EC of the transplant

disseminates to organs of uninfected recipients, hearts from

acutely infected Tie2-cre mice were transplanted heterotopically

into non-infected syngeneic C57BL/6 mice (Fig. 1A). Four days

after transplantation mice were sacrificed and organs collected to

determine the amounts of non-recombined (non-EC-derived) and

recombined (EC-derived) virus. In the heart transplant, high virus

loads (,105 PFU/g organ) of predominantly recombined virus

(,85%) were observed, confirming that the transplantation

procedure itself did not affect MCMV replication in general and

demonstrating a very high recombination efficiency (Fig. 1B). This

is in accordance with high recombination efficiency observed

previously for heart and lungs of Tie2-cre mice [24]. Virus titers in

different organs of mice infected via the heart transplant were 10

to 10,000-fold lower than generally seen following systemic (i.v.)

infection with ,16106 PFU [24]. The relative amounts of

MCMV-rec and MCMV-flox in the recipient organs, however,

essentially reflected the situation in the heart transplant, with some

minor variance. Thus, EC-derived virus virtually disseminated

equally well as non-EC-derived virus from the heart transplant.

Virus dissemination from infected kidneys into non-
infected recipients

Next, we studied dissemination of MCMV following kidney

transplantation. Kidneys represent the majority of transplanted

organs in medicine. Similar to heart transplantation, the

transplantation of kidneys from seropositive donors to seronegative

recipients is associated with a high risk to develop CMV-related

Author Summary

More than sixty years ago Frank Fenner proposed that
virus dissemination during acute infection originates from
organs replicating virus to high titer (often liver or spleen)
early in infection. Although never formally proven, this
model has become commonly accepted and was applied
to acute virus infections in general. Recently, we chal-
lenged this model by showing that - during acute murine
cytomegalovirus infection – hepatocyte-derived virus
hardly disseminates to other organs. We now applied our
well established model of Cre/loxP-mediated green-
fluorescence-tagging of MCMV to determine and quantify
the role of infected endothelial cells (EC) in transplanta-
tion-associated CMV dissemination. We observed an only
very poor dissemination of MCMV from the transplant to
recipient tissues and vice versa. Interestingly, we observed
no evidence for preferential dissemination of EC-derived
virus. Significant differences in virus organ titers were
found when comparing intravenous infection with trans-
plant-mediated infection. This suggests a preferential
dissemination of cell-associated virus in the transplant
setting. In summary, our findings argue for a preferential
dissemination of cell-associated MCMV but demonstrate
that the Fenner model does not apply to MCMV.

Dissemination of Endothelial Cell-Derived CMV
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complications [28,29,30]. Four days after heterotopic transplan-

tation of infected kidneys of Tie2-cre mice into non-infected

C57BL/6 mice, recipient organs were analyzed for the presence of

disseminated virus (Fig. 2A). In contrast to the heart, only about

20% of virus within transplanted kidneys was recombined (Fig. 2B).

This low contribution of EC-derived virus to total virus load in

kidney is in line with previous observations [24]. As recombination

rates were similar in Tie2-cre and Tek-cre mice, we believe that

the low proportion of MCMV-rec in Tie2-cre kidneys does not

necessarily indicate a low recombination efficiency in renal EC but

may rather result from an alternative mode of virus entry into

kidney tissue bypassing the vascular endothelium for replication in

other cell types, one candidate being kidney epithelial cells. The

relative levels of virus titers in liver, spleen, and lungs were

comparable to those observed following heart transplantation. Yet,

the percentage of recombined, EC-derived virus in most organs

essentially mirrored the situation in the transplanted kidney, and

there was no preferential dissemination of EC-derived virus

(,20%). Collectively, the findings after transplantation of two

different organs did not support the hypothesis of a predominant

role of EC in virus dissemination during the first four days of

infection. Only in blood a significantly higher proportion of

MCMV-rec was found on day four post kidney transplantation in

3 out of 4 mice. However, as the absolute virus titers were close to

the detection limit, any interpretation has to be seen with caution.

Minor contribution of EC-derived virus from the
transplanted heart to virus dissemination in the
systemically infected host

In the preceding experiments, the systemic infection originated

from a pre-infected transplanted organ. Next, we studied the

contribution of EC of a transplanted Tie2-cre+ heart to virus

dissemination during the situation of systemic infection of C57BL/

6 recipients. Under these conditions, all organs, including the

transplanted heart, become infected simultaneously. Thus,

MCMV-rec, wherever found, must have originated from ECs of

the transplant. Note that under such conditions the infection of the

transplant does not have a head start. Four days after

transplantation mice were systemically (i.v.) infected with

Figure 1. Dissemination of EC- and non-EC-derived MCMV from heart transplants to non-infected recipients via primary viremia. A.
Tie2-cre mice (n = 5) were infected i.v. with 86105 PFU MCMV-flox. Three days after infection, hearts were transplanted into non-infected C57BL/6
mice. Four days after transplantation blood was taken and organs were collected from recipients to determine the contents of MCMV-flox and
MCMV-rec plaque forming units (PFU) in various organs by plaque assay. B. The graph depicts virus load of MCMV-flox (open circles) and MCMV-rec
(grey circles) per gram organ or ml blood for individual mice referring to the logarithmic scale on the right hand side. Open and grey circles are
connected via a vertical line indicating that these data are derived from the same individual mouse. Horizontal bars mark mean values of absolute
amounts of MCMV-rec (grey) and MCMV-flox (open). Dotted horizontal lines give detection limits of absolute amounts of PFU per gram organ or ml
blood. Grey columns refer to the linear scale on the left hand side of the graph and show the mean percentage of EGFP+ plaques (MCMV-rec
compared to MCMV-rec plus MCMV-flox), with the standard deviation indicated by vertical bars. Columns labeled with asterisks are calculated for
virus-containing organs only. In both blood and kidney (x) virus titers where too low to reliably calculate the contribution of EC-derived virus.
Abbreviations: he = heart; bl = blood; li = liver; sp = spleen; lu = lungs; ki = kidney; at = adipose tissue; sg = salivary glands.
doi:10.1371/journal.ppat.1002366.g001

Dissemination of Endothelial Cell-Derived CMV
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MCMV-flox and four days later they were sacrificed and virus

titers determined (Fig. 3A). As expected, the majority of virus in

the transgenic heart transplant was found to be recombined

(Fig. 3B). Despite this, we observed only very little dissemination of

EGFP+ EC-derived MCMV from the transplant to infected

recipient organs. In the lungs, some MCMV-rec was found at very

low numbers, four orders of magnitude lower than MCMV-flox,

whereas in other organs MCMV-rec was at or below detection

limit. This result is in stark contrast to the dissemination from the

infected transplant (Fig. 1) where 70-90% of virus progeny in

recipient organs were EC-derived. It is important to note that total

virus titers in both the endogenous and transplanted heart were

very similar (Fig. 3B), indicating efficient vascularization of the

heterotopic heart transplant after surgery. This excludes an

impaired blood flow as a presumed reason for the observed poor

dissemination of recombined virus. We thus conclude that virus

dissemination from the heart plays a negligible role during

systemic infection.

Another striking difference between virus dissemination from

both transplanted heart and kidney as compared to systemic (i.v.)

infection was the extent of virus production in different organs. In

contrast to i.v. infection, which resulted in peak titers in the lung

and high titers in heart, kidney, liver, spleen and adipose tissue

(Fig. 3), virus dissemination from transplanted heart and kidney

(Figs. 1 and 2) resulted in peak titers in spleen but significantly

lower titers in liver and lung, and in almost no virus detectable in

the endogenous heart, kidneys, and adipose tissue. This cannot

simply be explained by organ specific differences in virus

production kinetics [24] but rather indicates a qualitative

difference in virus dissemination between systemic (i.v.) infection

(free virus) and transplant-mediated infection.

Limited colonization of the heart by EC-derived virus via
secondary viremia

During systemic infection following transplantation of a cre-

positive heart to a cre-negative mouse no significant contribution of

virus dissemination from the heart transplant to other organs was

observed. To study not only cardiac EC but EC in general as a

source of virus dissemination, Tie2-cre or Tek-cre recipient mice

received a non-transgenic heart. Recipients were then infected i.v.

Figure 2. Dissemination of EC- and non-EC-derived MCMV from kidney transplants to non-infected recipients via primary viremia.
A. Tie2-cre mice (n = 4) were infected i.v. with 86105 PFU MCMV-flox. Three days after infection kidneys were transplanted into non-infected C57BL/6
mice. Four days after transplantation blood was taken and organs were collected from recipients and analyzed. B. Data are depicted as described in
Fig. 1A. Virus load of MCMV-flox (open circles) and MCMV-rec (grey circles) per gram organ or ml blood for individual mice are shown. Grey columns
indicate the mean percentage of EGFP+ plaques (MCMV-rec compared to MCMV-rec plus MCMV-flox). Abbreviations: he = heart; bl = blood; li = liver;
sp = spleen; lu = lungs; ki = kidney; at = adipose tissue; sg = salivary glands.
doi:10.1371/journal.ppat.1002366.g002
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with MCMV-flox (Fig. 4A). As expected, the host organs showed

the previously described organ-specific contribution of EC to total

virus load [24]. Specifically, in liver the bulk of virus is derived

from hepatocytes as we recently showed using Alb-cre mice

selectively expressing Cre recombinase in hepatocytes [24],

whereas the cell type producing the bulk of virus in kidney

remains to be determined. In all other organs, .60% of virus

proved to be EC-derived. Yet, although the transplanted heart

contained a total virus load comparable to that of the endogenous

heart, there was only a minute (about 1%) contribution of

recombined virus to the amount of virus in the transplant (Fig. 4B).

We repeated the experiments in Tek-cre mice, another mouse line

transgenic for cre in EC, and obtained essentially the same results

(Fig. 4C). To confirm that this small contribution of MCMV-rec to

the infection of a heart transplant was truly due to virus seeding to

the organ and not just reflected virus present in the circulation,

organ perfusion was performed in order to flush out blood cells

prior to analysis (Fig. 4C). In any case, the data revealed an only

minute dissemination of EC-derived virus via secondary viremia

following systemic infection.

Dissemination of EC-derived MCMV from an infected
host to a transplant

The low degree of dissemination of MCMV-rec into the heart

could be the result of two scenarios. We expected that the

immune response induced by systemic infection actively prevent-

ed secondary import of EC-derived virus into the transplant.

Alternatively, after initial virus seeding by systemic (i.v.) infection,

local virus production might simply outnumber secondary import

of EC-derived virus. To address this issue and to initiate the

activation of immune functions, systemic infection was performed

prior to transplantation. Specifically, Tie2-cre or Tek-cre mice

were first i.v. infected with MCMV-flox and only then received

heart transplants of non-infected C57BL/6 mice either 20 h or 3

days after infection (Fig. 5A/B). Strikingly, systemic infection

prior to transplantation increased the relative contribution of EC-

derived virus in the transplant from ,5% (Fig. 4B) to ,60%

independent of the time delay between infection and transplan-

tation (Fig. 5A/B). This average of about 60% MCMV-rec

reflects the average contribution of MCMV-rec in the organism

in general. However, total virus titers in the heart transplant were

100- to 1000-fold lower than in both the endogenous heart

exposed to i.v. infection as well as the hearts transplanted prior to

i.v. infection (Fig. 4B/C). It is important to note that the absolute

amounts of recombined virus in the heart transplants (grey circles

in Fig. 5A/B) were on the same level with those observed

following i.v. infection after heart transplantation (grey circles in

Fig. 4B/C). Similar results were obtained after perfusion of

recipient organs thus demonstrating that the detected virus was

not blood-borne but was indeed produced within the transplanted

organ.

Figure 3. Little dissemination of EC-derived MCMV from heart transplants via secondary viremia. A. Hearts from Tie2-cre mice were
transplanted into C57BL/6 mice (n = 5). Four days later recipients were infected i.v. with 86105 PFU MCMV-flox. Blood was taken and organs were
collected four days after infection and analyzed. B. Data are depicted as described in Fig. 1A. Virus load of MCMV-flox (open circles) and MCMV-rec
(grey circles) per gram organ or ml blood for individual mice are shown. Grey columns indicate the mean percentage of EGFP+ plaques (MCMV-rec
compared to MCMV-rec plus MCMV-flox). Abbreviations: he = heart; bl = blood; li = liver; sp = spleen; lu = lungs; ki = kidney; at = adipose tissue;
sg = salivary glands.
doi:10.1371/journal.ppat.1002366.g003
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Figure 4. Minor colonization of heart transplants by EC-derived MCMV via secondary viremia following systemic infection. A. Hearts
from C57BL/6 mice were transplanted into Tie2-cre (n = 5; B.) or Tek-cre mice (C.) and recipients were infected i.v. with 86105 PFU MCMV-flox four to
five days later. Five days after infection blood was taken and organs were collected from recipients and analyzed. Data are depicted as described in

Dissemination of Endothelial Cell-Derived CMV
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Total titers in the transplant decreased when transplantation

was delayed from 20 h to 3 days after infection, reflecting the

situation at day 5 and 7 p.i., respectively. In two animals

transplanted three days after infection, virus titers in the heart

transplant even fell below the detection limit of 10 PFU/g organ,

probably reflecting enhanced control by the host immune system

at day 7. This is supported by the relatively low virus titers in

spleen, kidneys and adipose tissues as well as by the lack of

detectable virus in blood (Fig. 5B).

In conclusion, we were surprised to see that ongoing virus

replication and the accompanying immune response in the

transplanted heart did obviously not alter the absolute amount

of EC-derived virus originating from recipients’ tissues by

secondary viremia. These data demonstrate that virus dissemina-

tion between organs – originating from both endothelial and non-

endothelial cells – has only minor effects on organ viral load

following systemic infection.

Discussion

One hallmark of CMV infection is the ability of the virus to

infect many cell types and tissues from which again the virus may

spread. Apparently, immune control defines to which extent this

potential is realized in a given scenario. Therefore, the various

clinical conditions need to be considered to explain CMV

pathogenesis. Blood specimens play an important role in CMV

diagnostics. Proper usage of the information gained by this analysis

should monitor or even predict events that happen in organs.

However, it is currently unclear under which conditions CMV is

spread via blood. Fenner et al. were the first to propose a two-step

dissemination model for systemic virus infections. Primary viremia

transports the virus from the site of entry to liver and spleen where

the virus replicates. Secondary viremia then causes dissemination

from liver and spleen throughout the body [31]. This model

became widely accepted for many viruses to this day, including

CMV [6,32]. Yet, the original model was developed prior to any

knowledge on innate immunity control functions and did thus not

consider major factors in virus host defense. Recently, we

challenged this view for CMV infection in the mouse model with

respect of the role of the liver. Virus produced in hepatocytes is

locally disseminated to other cell types but is not distributed from

the liver to other organs via secondary viremia [24].

In the present study the vascular EC were analyzed for their

claimed role in contributing to the CMV load in organs, and in

disseminating the virus via primary or secondary viremia. Our

salient findings are as follows: EC-derived virus significantly,

,50% of the body virus pool, contributes to total virus load during

acute infection. This contribution was quantified for the first time

for the major organs. Yet, there was obviously no preference for

dissemination of EC-derived virus over virus produced by other

cell types. In addition, and similar to hepatocyte-derived virus,

EC-derived virus was poorly disseminated via secondary viremia.

These data raise doubts on the indiscriminate applicability of the

primary and secondary viremia concept to virus infections in

general.

Properties of EC have enticed scientists to consider them as key

production sites for virus dissemination, as they may release free

virus particles directly into the blood stream or may detach from

the vessel wall and transfer virus to other organs via the blood

stream [14,15]. Moreover, EC could transfer the virus by contact

to other cell types such as monocytes or granulocytes [33,34],

which would then disseminate the EC-derived virus to other

organs [12,35]. On the other hand, EC-derived virus may also

spread to underlying parenchyma and leave the organs via the

draining lymph nodes to eventually reach the blood circulation via

the thoracic duct. As heterotopic, abdominal transplants are not

connected to lymph vessels, exiting virus would enter the

peritoneal cavity that is drained by the mediastinal lymph nodes.

This lymphatic dissemination route was recently described after

intraperitoneal MCMV infection [36] and is also generally

accepted as dissemination route after local infections, including

intraplantar infection with MCMV [37].

Here, we provide the first quantitative analysis of organ- and

cell type-specific virus dissemination. From an infected organ EC-

derived virus readily disseminated to the other, uninfected organs.

In the specific cases shown here, the infected transplanted organ

(heart or kidney) created the condition of a primary viremia

initiating from a defined source. EC-derived virus remained a

stable fraction in both heart (,80%) and kidney (,20%)

throughout the first week of infection [24], thereby providing a

constant supply of virus. Yet, the percentage of EC-derived virus

that disseminated to other organs essentially mirrored the relative

contribution of EC in the transplanted organ. Thus there was no

preferential seeding of EC-derived virus.

Infected EC might detach from the vessel wall and circulate. In

fact, HCMV-infected EC were considered as a parameter for the

diagnosis of HCMV organ involvement and for the study of the

pathogenesis of disseminated infection [16]. This conclusion was

originally based on the finding of two symptomatic patients with a

high load of infected circulating EC, but experimental evidence for

EC-derived virus colonizing other organs was missing so far. In the

mouse model we now provide a nuanced view on the role of EC in

virus dissemination. If the infected heart transplant is the source of

primary infection, then EC-derived virus is readily disseminated,

but without preference. During secondary viremia, however, there

is only negligible import of EC-derived virus into the transplant as

well as export from the transplant, and this is apparently

independent of the extent of ongoing virus replication, associated

inflammation, and immune control.

Do our findings formally exclude any prominent role of EC-

derived virus? The answer is both yes and no. Yes, we can exclude

this role in the mouse model and for the temporal conditions of

our experiments. Unfortunately, the more time passes after initial

infection of the animal the definition of virus as being EC-derived

virus becomes more and more indirect. EC-derived virus progeny

keeps the marker independent of the cell type in which the virus

replicates in further replication rounds. Thus, with our experi-

mental setup we cannot study later phases of infection when other

conditions of virus productivity and dissemination may prevail.

However, according to our previous experience, second and third

replication rounds contribute less and less to the viral load in the

immune competent host due to the onset of immune control [24].

We have not yet studied the situation of the immune deficient host

for the EC progeny. For the hepatocyte-derived progeny, however,

we know that immune suppressive regimens, even if combined, do

not lift the strong dissemination block [24].

Nevertheless, by comparing the virus titers in different organs

following transplant-derived and i.v. infection, we observed

Fig. 1A. In (C.) organs were removed from non-perfused (left hand panel, n = 5) or perfused (right hand panel, n = 3) recipient mice. Data of non-
perfused and perfused groups were obtained in different experiments. Abbreviations: he = heart; bl = blood; li = liver; sp = spleen; lu = lungs;
ki = kidney; at = adipose tissue; sg = salivary glands.
doi:10.1371/journal.ppat.1002366.g004
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Figure 5. Minor colonization of heart transplants via secondary viremia. Tek-cre mice (n = 3; A) or Tie2-cre (n = 4; B) were infected i.v. with
86105 PFU MCMV-flox and received a heart transplant derived from non-infected C57BL/6 mice 20 hours (A) or three days (B) later. Four days after
transplantation blood was taken and organs were collected from recipients and analyzed. Data are depicted as described in Fig. 1A. In (A), recipient
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striking differences. Systemic (i.v.) infection with tissue culture

produced virus preparations resulted in a uniform distribution of

virus to many organs, whereas transplant-derived virus appeared

to preferentially colonize spleen, lung and liver but not heart,

adipose tissues and kidneys. This cannot be explained by known

differences in organ specific virus kinetics. Therefore, cell-free

virus, which is usually used for experimental infection, is

apparently able to efficiently colonize all organs, whereas virus

leaving an infected organ via a natural route reveals a different

kind of spread. What could be the cause of the difference between

i.v. infection with a solution enriched in isolated virions and the

spread of infection from an infected organ? The most plausible

explanation is that the virus leaving an infected organ during

systemic infection is predominantly transported in a cell-associated

manner. Yet, this difference in organ and tissue distribution shows

no preference for EC-derived virus and is altogether marginal with

respect to total virus load in an organ.

Materials and Methods

Ethics statement
This study was carried out in strict accordance with the

recommendations and guidelines for the care and use of laboratory

animals according to Tierschutzgesetz (TierSchG, BGBI S. 1105;

25.05.1998). All animal experiments were approved by the

responsible state office (Regierung von Oberbayern) under permit

number 55.2-1-54-2531-19-07.

Cells and mice
M2-10B4 (CRL-1972; ATCC) and BALB/c-derived mouse

embryo fibroblasts (MEF) were grown as described previously

[38]. Transgenic Tie2-cre [39] and Tek-cre [11] mice were housed

at the animal facility of the Max von Pettenkofer-Institute under

specified-pathogen-free (SPF) conditions. Cre-transgenic mouse

strains were maintained on the C57BL/6J background. Experi-

ments were performed with gender matched pairs of mice at 3 to

12 months of age. C57BL/6J mice were obtained from Janvier.

Tek-cre mice were obtained from Jackson Laboratories (nr. 4128).

Viruses and infection of mice
All viruses were derived from the molecular clone pSM3-fr [40].

Mutant virus (MCMV-flox) was generated as described [24].

Viruses were propagated on M2-10B4 cells and purified as

described [41]. Virus quantification was done by standard plaque

titration assay on MEF. Mice were infected intravenously (i.v.; into

a tail vein) with 86105 PFU in a volume of 300 ml.

Organ transplantations
Syngeneic transplantations of hearts or kidneys were performed

between C57BL/6 mice and Tie2-cre or Tek-cre mice that were

maintained on the genetic background of C57BL/6 mice.

Heart transplant model: Abdominal-heterotopic cardiac trans-

plants were performed, as previously described [42]. Briefly, the

ascending aorta of the graft was anastomosed to the abdominal

aorta of the recipient and the pulmonary artery to the inferior

vena cava while the pulmonary veins were ligated. The graft

function was assessed by daily palpation.

Kidney transplant model: The murine kidney transplantation

was performed as described previously [43]. Briefly, the left kidney

of the donor was harvested and transplanted into the recipient.

The kidneys of the recipients were not removed. A bladder patch

was anastomosed to the recipient’s bladder. No signs of rejection

due to Cre expression by EC of the transplants or by EC of the

recipient were seen throughout the experiments excluding host

versus graft or graft versus host reactions, respectively.

Virus determination in organs
Virus load in organs was determined by plaque assay as

described previously [24] with the modification that blood samples

were sonicated before they were added to MEF in a volume of

10 ml per well. The numbers of MCMV-rec and MCMV-flox

plaque forming units (PFU) were determined from organ

homogenates after 4 days and from blood after 5 days using a

fluorescence microscope (Olympus). Only plaques visible in bright

field were considered for the calculation. PFU were calculated per

ml of blood or g of organ.

Perfusion of recipients and heart transplants
Mice were anaesthetized and the peritoneal cavity was opened.

After injection of 50 ml of heparin into the inferior vena cava,

abdominal aorta and vena cava were cut cranially of the

transplant. After all organs were perfused with 5 ml PBS via the

vena cava the heart transplant was removed and perfused

separately with 3 ml PBS.

Statistical analysis
The percentage of MCMV-rec compared to total virus organ

load per group, mean values, and standard deviations were

determined.
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