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Abstract
Osteoarthritis is a common joint disease for which there are currently no disease-modifying drugs
available. Degradation of the cartilage extracellular matrix is a central feature of the disease and is
widely though to be mediated by proteinases that degrade structural components of the matrix,
primarily aggrecan and collagen. Studies on transgenic mice have confirmed the central role of
Adamalysin with Thrombospondin Motifs 5 (ADAMTS-5) in aggrecan degradation, and the
collagenolytic matrix metalloproteinase MMP-13 in collagen degradation. This review discusses
recent advances in current understanding of the mechanisms regulating expression of these key
enzymes, as well as reviewing the roles of other proteinases in cartilage destruction.
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2. Introduction
Osteoarthritis (OA) is a chronic degenerative joint disease affecting millions of people
worldwide [1]. The disease is a leading cause of disability in the elderly, causing pain,
stiffness and loss of function in articulating joints. OA is characterised by changes in the
anatomy of load-bearing joints that lead to degradation of articular cartilage, inflammation
of the synovium (synovitis), changes to subchondral bone and growth of new bone and
cartilage (osteophytes) at the joint edge (see Figure 1)[2, 3]. The causes of OA are not fully
understood, but mechanical factors such as joint injury and obesity are thought to be primary
initiators of disease, with other risk factors such as age, gender and genetics contributing to
disease development and progression [3, 4]. There are currently no disease-modifying OA
drugs available, and treatment is limited to symptomatic relief or surgical replacement of
affected joints. There is thus considerable interest in developing effective treatments that can
halt or reverse the progression of the disease.

Loss of cartilage is central to the aetiology of OA. Cartilage is composed of one cell type,
the chondrocytes, which are surrounded by a large volume of extracellular matrix (ECM).
The matrix can be divided into zones based on their distance from the chondrocyte and
matrix composition (see [4] for review). The pericellular matrix is localized immediately
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adjacent to the cell and is enriched with perlecan, type VI collagen and various regulatory
molecules and growth factors that modulate chondrocyte function. The zone next to the
pericellular matrix is the territorial matrix and further removed is the interterritorial matrix
whose major components are collagen II and aggrecan. Collagen provides the tissue with
tensile strength, while aggrecan is the major cartilage proteoglycan, drawing water into the
matrix and allowing it to resist compression. Degradation of collagen and aggrecan is central
to OA pathology, although degradation of less abundant molecules that participate in matrix
organisation is also likely to contribute to disease progression [4]. This review describes the
current understanding of which proteinases are responsible for aggrecan and collagen
degradation in OA, and discusses recent advances in understanding the factors regulating
their expression and activity. Other proteinases with potential roles in OA pathology are also
highlighted.

3. Aggrecan-degrading enzymes
Aggrecan is a large proteoglycan containing numerous chondroitin sulfate and keratan
sulfate glycosaminoglycan moieties, which are central to the function of the molecule as
they draw water into the cartilage matrix, giving it the ability to withstand compression.
Aggrecan is sensitive to proteolysis at numerous sites along its length. Cleavage of aggrecan
in the interglobular domain (IGD) between the N-terminal G1 and G2 globular domains is
thought to be of greatest pathological importance, as this releases the glycosaminoglycan-
bearing region of aggrecan from the cartilage matrix and so abrogates the function of the
molecule.

Degradation of aggrecan is an early event in the development of OA and a considerable
amount of research has been done to identify the enzyme(s) responsible. Early work of
Thomas [5] showed that rabbit ears collapsed after intravenous injection of papain, with the
ear cartilage reversibly losing its metachromatic staining. This demonstrated that cartilage
proteoglycans, of which aggrecan is now known to be the most abundant, are susceptible to
proteolytic degradation. The same effect was observed upon injection of rabbits with large
doses of vitamin A [6], which was thought to cause release of endogenous cartilage-
degrading acidic proteinases from lysosomes [7]. Lysosomal cathepsins were demonstrated
to be present in cartilage and to be able to degrade cartilage proteoglycans at acidic pHs [8–
10]. Cathepsin D was considered to be the major cathepsin in cartilage, as cathepsin D-like
activity increased 3-fold in OA cartilage [10] and antibodies against cathepsin D inhibited
proteoglycan and cartilage degradation at pH 5.0 [11]. However, OA cartilage has a neutral
pH [10] and Woessner [9] showed that while pepstatin and chloroquine inhibited
proteoglycan degradation at pH 5, they had no effect on degradation at pH 7.2. This
important observation indicated that degradation of cartilage proteoglycans at physiological
pH was unlikely to be mediated by cathepsins, but rather by an unidentified neutral
proteinase.

Metalloproteinases found in articular cartilage and bone were subsequently shown to be
capable of degrading proteoglycans at neutral pH [12, 13]. Matrix metalloproteinase 3
(MMP-3) was isolated from human articular cartilage [14] and found to cleave the
Asn341~Phe342 bond (where ~ indicates the cleavage site) in the aggrecan IGD [15]. Several
other MMPs, including MMP-1, -2, -7, -8, -9 and -13, were later found to be able to cleave
the same site, as well as other sites towards the C-terminus of the molecule [16–18]. MMPs
were thus thought to be the primary aggrecan-degrading enzymes in OA until a landmark
study by Sandy and colleagues [19] revealed that the majority of aggrecan fragments present
in the synovial fluid of OA patients were cleaved not at the MMP-sensitive Asn341~Phe342

bond, but at the Glu373~Ala374 bond in the IGD. This novel cleavage site was also shown to
be the primary site of aggrecan fragmentation in cytokine-stimulated chondrocyte and

Troeberg and Nagase Page 2

Biochim Biophys Acta. Author manuscript; available in PMC 2013 January 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



cartilage explant cultures [20, 21]. Hydrolysis at this site in chondrocyte and cartilage
explant cultures was not blocked by TIMP-1, TIMP-2 or synthetic MMP inhibitors [22, 23],
indicating that an MMP could not be responsible for the ‘aggrecanase’ activity.

The first ‘aggrecanase’ was purified from IL-1-stimulated bovine nasal cartilage by
researchers at DuPont Pharmaceuticals in 1999 [24]. The enzyme was named aggrecanase 1,
or A Disintegrin And Metalloproteinase with Thrombospondin motifs 4 (ADAMTS-4)
based on its homology to the previously identified enzyme ADAMTS-1 [25]. Shortly
thereafter, a homologous enzyme was cloned from murine and bovine cartilage and named
aggrecanase 2 or ADAMTS-5 (initially coined ADAMTS-11)[26, 27]. The ADAMTSs are
zinc-dependent metalloproteinases of the metzincin family [28](Figure 2). They have
numerous ancillary domains that modulate their substrate specificity and activity [29, 30].
ADAMTS-1, -8, -9, -15, -16 and -18, can also degrade aggrecan in vitro [31–35], but
ADAMTS-5 is the most active ‘aggrecanase’ in vitro, followed by ADAMTS-4 [30].
ADAMTS-4 and ADAMTS-5 are thus considered to be the major enzymes responsible for
pathological cleavage of aggrecan at the Glu373-Ala374 bond in the IGD [23, 36–38].

The pathological importance of ADAMTSs to the development of OA was demonstrated by
the finding that Adamts5−/− mice develop less severe cartilage damage in a murine surgical
model of OA and in an antigen-induced arthritis model [39, 40]. Similarly, transgenic mice
with a knock-in mutation of aggrecan preventing ‘aggrecanase’ cleavage of the Glu373-
Ala374 bond also develop less severe OA in the surgical OA and antigen-induced arthritis
models [38]. Adamts1−/− and Adamts4−/− mice are not similarly protected [41, 42],
indicating that ADAMTS-5 is the primary aggrecanase in mice. There is some evidence that
ADAMTS-4 may contribute to cartilage degradation in other species, including humans
[43–45]. ADAMTS-4 and ADAMTS-5 are thus attractive targets for the development of
novel OA therapies, and several synthetic ADAMTS-4 and ADAMTS-5 inhibitors are in the
early stages of development [46–49]. One of these inhibitors has recently been shown to
block aggrecan degradation in a rat surgical OA model [48].

Cleavage of aggrecan at the Glu373~Ala374 bond is thus a signature of pathological aggrecan
loss in OA cartilage. Aggrecan cleavage at the MMP-sensitive Asn341~Phe342 bond is also
detectable in OA cartilage [50], and may occur later in the progression of disease. MMPs are
also thought to contribute to C-terminal ‘trimming’ of aggrecan, which is considered non-
pathological as it does not cause release of the majority of the glycosaminoglycan region of
the molecule from the cartilage matrix [23, 36, 37].

4. Collagenases
The primary collagen found in the cartilage ECM is type II collagen, which forms a fibrillar
network and provides the cartilage matrix with tensile strength. Along with aggrecan
breakdown, degradation of collagen is a central feature of OA [51, 52]. The exact order in
which cartilage matrix components are degraded during the development of OA is difficult
to ascertain, but a number of in vitro studies on cartilage explants suggest that collagen
degradation occurs only after aggrecan is lost from the tissue, and that the presence of
aggrecan protects the collagen from degradation [53–56]. Furthermore, while aggrecan loss
can be reversed, collagen degradation is irreversible, and cartilage cannot be repaired once
collagen is lost [53, 55].

Ehrlich et al. [57] first demonstrated the presence of a collagen-degrading enzyme in OA
cartilage in 1977. Fibrillar collagens are highly stable molecules that can be degraded by
only a few mammalian enzymes, namely cathepsin K and the collagenolytic MMPs:
MMP-1, -8, -13 and -14. MMP-13 is thought to be the primary collagenase in OA, with its
expression increased in OA cartilage [51, 58–62] and in rodent surgical OA models [63].
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Conditional expression of MMP-13 in murine cartilage induces spontaneous cartilage
degradation [64], while Mmp13−/− mice are protected in a surgical OA model [65]. MMP-1
also efficiently cleaves type II collagen (R. Visse, Y. Tominaga, M. Wang, H. Nagase,
personal communication), but its role in OA cannot be studied using murine models as
murine MMP-1 differs considerably from the human enzyme [66].

The catalytic sites of the MMPs are highly homologous, and historically it has been difficult
to generate sufficiently selective synthetic inhibitors to target individual MMPs. Previous
attempts to treat cancer with MMP inhibitors failed due to lack of specificity of the
inhibitors, which gave rise to toxicity and musculoskeletal side-effects [67]. MMP-13 is
unusual among the MMPs, in that it has a very deep S1′ subsite. This feature has been
exploited to generate highly selective MMP-13 inhibitors able to block collagen degradation
in cartilage explants [51, 68, 69] as well as animal OA models [68, 70] without
musculoskeletal side effects [68]. Further evaluation of the therapeutic efficacy of these
inhibitors is eagerly awaited.

5. Other MMPs and ADAMs
In addition to MMP13, ADAMTS4 and ADAMTS5, mRNA expression of various other
MMPs (e.g. MMP28), adamalysins (e.g ADAM12, ADAM15) and ADAMTSs (e.g.
ADAMTS16, ADAMTS17) is reportedly increased in OA [61, 71, 72]. ADAM-8 has been
suggested to contribute to OA pathogenesis by cleaving fibronectin, generating fragments
that stimulate further cartilage catabolism [73]. Single nucleotide polymorphisms in
ADAM12 [72] and ADAMTS14 [74] have reported associations with knee OA. The effects of
numerous gene mutations and ablations on murine OA have been reviewed by Little and
Fosang [75].

MMP3 is the most strongly expressed MMP in OA cartilage, although its expression
decreases in late OA [60, 76]. The enzyme is known to participate in the activation of other
MMPs, such as MMP-1 and MMP-13 [77, 78], raising the possibility that it may contribute
to OA by activating latent collagenases. The susceptibility of Mmp3−/− mice to OA is,
however, unclear. Van Meurs et al. [79] showed that Mmp3−/− mice are protected against
collagen loss and aggrecan cleavage at Asn341~Phe342, suggesting that MMP-3 promotes
collagenase activation and either direct or indirect MMP-mediated aggrecan cleavage.
However, Clements et al. [80] found that Mmp3−/− mice develop more severe surgically
induced OA, suggesting that MMP-3 can also serve to protect cartilage in some
circumstances.

Mmp9−/− mice are protected in an infectious arthritis model [81] but develop more severe
OA in a surgically induced OA model [82]. This difference most likely reflects differences
in disease etiology in the two models, as well as differences between mice strains.

Expression profiling studies suggest that MT1-MMP is similarly expressed in normal and
OA cartilage [60, 61], although studies on isolated bovine chondrocytes suggest that MT1-
MMP expression can be transiently increased by cyclic compression [83]. MT1-MMP is
highly expressed in rheumatoid synovial fibroblasts and has been shown to promote
invasion of these cells into cartilage [84]. The role of MT1-MMP in OA has not been
studied in murine surgical models as MT1-MMP null mice exhibit severe skeletal
abnormalities [85].

6. Transcriptional regulation of MMPs and ADAMTSs in OA
Studies on transgenic mice have confirmed the importance of MMP-13 and ADAMTS-5 in
the development of OA. As described above, inhibitors targeting these enzymes are in
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development as potential OA therapies. Additionally, there is considerable interest in
understanding the factors that lead to increased activity of these enzymes in OA, with the
hope of uncovering therapeutic targets upstream of the effector proteinases. Some of these
newly described networks and regulatory mechanisms are discussed below.

6.1. RUNX2
Runt-related transcription factor 2 (RUNX2, also known as core-binding factor 1, or Cbfa1)
is a central transcription factor regulating skeleton formation by stimulating osteoblast
differentiation [86, 87] and directing the process of endochondral ossification [88] by
stimulating expression of genes required for chondrocyte maturation and hypertrophy (e. g.
COL10A1, collagen X)[89], degradation of the cartilage matrix (e. g. MMP13) [90, 91] and
vascularization of the tissue (e. g. VEGFA)[92]. Chondrocyte hypertrophy, matrix
degradation and vascular invasion are also characteristic of OA, leading to the theory that
OA may involve aberrant recapitulation of this developmental programme in adult cartilage
[93–95].

RUNX2 is not expressed in normal adult cartilage, but its expression and that of several of
its target genes increases in early OA [96]. Runx2+/− mice develop less severe cartilage
degradation and osteophyte formation in a surgical OA model [97]. Mmp13 is a known
RUNX2 target gene [90, 91] and Runx2+/− mice exhibit decreased Mmp13 expression [97].
ADAMTS4 and ADAMTS5 are also thought to be RUNX2 target genes [91, 98, 99], although
their expression in Runx2+/− mice has not been reported.

RUNX2 expression can be increased by factors known to promote the development of OA,
such as mechanical stimuli [91, 100], hypoxia-inducible factor 2α (HIF-2α) [101] and Indian
hedgehog [102]. RUNX-2 may thus be a central transcription factor increasing expression of
several OA-promoting genes.

6.2. Inflammation
The role of inflammatory pathways in the aetiology of rheumatoid arthritis is well
documented [103]. It is increasingly accepted that inflammation also plays a role in the
development of OA [4, 104]. For example, IL-1 is well known to stimulate the expression of
MMPs such as MMP1 and MMP13 in OA cartilage [59, 60, 105]. Inflammatory cytokines
can also increase chondrocyte expression of ADAMTS4 and ADAMTS5 [106] although some
reports indicate that ADAMTS5 expression is largely constitutive (see [28] for review). The
central role of IL-1β in murine OA pathology has been demonstrated in numerous studies
(see Glasson et al. [82] for review). For example, mice treated with an inhibitor of IL-1β
converting enzyme developed less severe joint damage in two arthritis models [107], and
ablation of IL-1β has been reported to decrease surgically induced OA [82].

6.2.1. Hypoxia-inducible factor 2α (HIF-2α)—Two recent studies have demonstrated
that inflammatory cytokines can stimulate OA cartilage catabolism by inducing nuclear
factor- κB (NF-κB)-dependent expression of the transcription factor HIF-2α [94, 108].
IL-1β-induced expression of ADAMTS4, MMP1, MMP3, MMP9, MMP12 and MMP13 in
rabbit articular chondrocytes was increased by over-expression of HIF-2α and decreased by
HIF-2α siRNA [108]. Ectopic expression of HIF-2α in murine cartilage induces spontaneous
cartilage destruction [108], while HIF-2α-deficient mice are resistant to cartilage
degradation and osteophyte development in a surgical OA model [94, 108]. HIF-2α has also
been shown to regulate developmental endochondral ossification, by inducing expression of
genes mediating chondrocyte hypertrophy (e. g. Col10a1), degradation of the cartilage
matrix (e.g. Mmp13) and vascular invasion (e. g. Vegfa) [94]. These are known RUNX2
target genes (section 6.1) and HIF-2α has been shown to increase RUNX2 expression [101,
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109], suggesting that HIF- 2α may stimulate expression of these genes via RUNX2.
However, HIF-2α-dependent expression of Mmp13, Col10a1 and Vegfa is not affected by
expression of a dominant negative form of RUNX-2 [101], suggesting that HIF- 2α may also
act independently of RUNX-2. HIF- 2α also increased expression of the transcription factor
Indian hedgehog [101] that stimulates RUNX-2 expression [102, 110].

The role of HIF-2α in the development of human OA is unclear as both increased [94, 108]
and decreased [111] HIF-2α expression has been reported in human OA cartilage. Saito et
al. [94] reported that a single nucleotide polymorphism that increases HIF-2α expression is
associated with knee OA in a Japanese cohort, although Nakajima et al. [112] were unable
to replicate this association in a larger patient group. Additionally, In contrast to its
hydroxylation-independent catabolic effects in a mouse chondrogenic cell line [94], HIF-2α
has been shown to have hypoxia-dependent anabolic effects on human chondrocytes [113].

6.2.2. Histone deacetylases—Histone deacetylases (HDAC) modulate gene expression
by increasing histone association with DNA, thus mediating chromatin condensation and
inhibiting transcription factor binding [114]. HDACs thus play central roles in numerous
physiological and pathological conditions [114]. HDAC can be divided into 3 classes on the
basis of sequence homology: 2 classes of classical HDAC and the class III NAD+-dependent
sirtuin family.

HDAC inhibitors have been shown to block inflammatory cytokine-induced expression of
MMP1, MMP13, ADAMTS4 and ADAMTS 4 and ADAMTS5 in human chondrocytes [115–
117]. The protective effect of HDAC inhibitors is further illustrated by the demonstration
that they can block inflammatory cytokine-stimulated degradation of both proteoglycans and
collagen in bovine cartilage explants [115]. The effect of HDAC inhibitors on surgically
induced murine OA has not been reported, but HDAC inhibitors can block collagen-induced
arthritis in mice [118]. HDAC1, HDAC2 and HDAC7 are all expressed at elevated levels in
human OA cartilage [117, 119].

HDAC inhibitors block both HIF-1α and HIF-2α transcriptional activity [120]. HDAC4,
HDAC6 and HDAC7 have been shown to stimulate HIF-1α activity [121, 122], while the
HDAC Sirtuin 1 (SIRT1) stimulates HIF-2α transcriptional activity [123]. HDACs may thus
promote cartilage catabolism by stimulating HIF-2α activity.

Some studies suggest that HDACs can also serve to protect cartilage. SIRT1 contributes to
cartilage homeostasis by inhibiting chondrocyte apoptosis [124] and stimulating expression
of cartilage-specific genes [125]. HDAC4 has been shown to interact with and inhibit the
activity of RUNX2 [126]. Hdac4−/− mice exhibit a similar cartilage hypertrophy phenotype
to RUNX2-over-expressing chondrocytes [88, 126] and over-expression of HDAC4 inhibits
chondrocyte hypertrophy [126]. Conversely, HDAC4 expression is reduced by the
chondroprotective miR140 [127]. Further studies are required to delineate the roles of
individual HDAC in cartilage homeostasis and OA development.

6.3. miR140
MicroRNAs (miRNAs) are non-coding RNA sequences that post-transcriptionally down-
regulate gene expression by interacting with the 3′ untranslated region of target mRNAs,
leading either to degradation of the mRNA or repression of its expression. miRNAs were
first identified in 1993 as regulators of C. elegans larval development [128], and have since
been shown to regulate expression of numerous genes, often in a tissue-specific or
developmental-stage specific manner.
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miR-140 is abundantly expressed in normal cartilage under the control of the master
cartilage transcription factor Sox9 [129]. miR-140 expression is reduced in OA cartilage
[62, 127, 130] and miR-140−/− mice develop accelerated spontaneous and surgically induced
OA, while mice over-expressing miR-140 are resistant to antigen-induced arthritis [129].
Adamts5 has been shown to be a target for miR140, with Adamts5 expression increased in
miR-140−/− chondrocytes and decreased in miR-140 over-expressing mice [129].

Iliopoulos et al. [62] identified 16 microRNAs with altered expression in OA cartilage.
miR-22 is thought to increase expression of MMP13 [62], while miR-9, miR-27a and
miR-27b have been reported to inhibit MMP13 expression in human OA chondrocytes
[130–132].

6.4. Mechanical stimuli
Mechanical loading is an important factor in cartilage homeostasis. Both disuse and
excessive use of joints can initiate cartilage degradation [133, 134], with mechanical injury
shown to increase expression of RUNX2 [91, 100], MMP1, MMP3 [135], MMP13 [136] and
ADAMTS5 [136]. Several research groups are investigating the molecular mechanisms by
which moderate mechanical load maintains joint function and protects cartilage by
suppressing expression of catabolic proteinases.

Recent studies have identified the transcription co-regulator CITED2 (cAMP-responsive
element-binding protein/p300-interacting transactivator with Glu/Asp-rich carboxy-terminal
domain 2) as a novel mediator of mechanical responses in cartilage [137, 138]. Experimental
mechanical stimuli have been shown to increase levels of CITED2, which in turn suppresses
MMP1 and MMP13 expression by decreasing interaction of the MMP transactivator Ets-1
with its co-activator p300 [137, 138]. Immobilization of rat hind limbs reduces CITED2
expression, leading to increased expression of MMP1 and MMP3, and cartilage degradation
[138, 139]. The effects of CITED2 on ADAMTS expression and its role in OA remain to be
studied.

Fibroblast growth factor 2 (FGF-2) is thought to act as a transducer of protective mechanical
signals from the pericellular matrix to chondrocytes [140]. Fgf−/− mice develop accelerated
spontaneous and surgically induced OA, accompanied by an increase in Adamts5 expression
and aggrecanase activity [63]. Addition of exogenous FGF-2 to cytokine-stimulated normal
human cartilage explants suppresses ADAMTS4 and ADAMTS5 expression and reduces
cartilage degradation [106, 116]. The mechanism by which FGF-2 suppresses ADAMTS
expression is not currently known [63]. In addition to these protective effects, FGF-2 has
also been reported to have catabolic effects (reviewed in [141]), stimulating expression of
MMP1, MMP3 and MMP13 in cartilage explants and cultured chondrocytes [116, 135, 142–
144]. Factors such as the force of the mechanical load and the pattern of FGF receptor
expression may determine whether FGF-2 transmits a protective or a catabolic signal to
chondrocytes.

6.5. Extracellular sulfatases
Sulf-1 and Sulf-2 are recently described extracellular sulfatases that remove the 6-O-sulfate
group from glucosamine residues of heparan sulfate [145]. The enzymes modulate the
activity of various heparin-binding growth factors and chemokines by blocking their binding
to heparan sulfate components of the ECM [146]. Cartilage expression of Sulf-1 and Sulf-2
increases with age and in OA [147, 148]. The enzymes appear to be chondroprotective, as
Sulf-1−/− or Sulf-2−/− mice develop accelerated spontaneous OA upon aging, and also
develop more severe cartilage damage in a surgical OA model [148]. Sulf-null chondrocytes
showed a more catabolic phenotype than wild-type chondrocytes, with increased expression
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of MMP-13 and ADAMTS-5, and decreased expression of aggrecan and type II collagen
[148]. Sulf-1−/− or Sulf-2−/− mice showed an increase in FGF-2-dependent Erk1/2
phosphorylation, and a decrease in BMP-7-dependent Smad1/5 phosphorylation, indicating
that the Sulfs inhibit FGF-2 activity and promote BMP-7 activity [148]. Similar effects were
observed upon treating human chondrocytes with Sulf-1 and Sulf-2 siRNA [148]. BMP-7 is
known to have anabolic effects on cartilage [149], while both anabolic and catabolic effects
have been reported for FGF-2 [63, 144]. The Sulfs are likely to affect the activity of growth
factors and cartilage proteins other than BMP-7 and FGF-2, with their overall effect on
cartilage homeostasis determined by the balance of these changes. For example, both the
ADAMTSs and their endogenous inhibitor Tissue Inhibitor of Metalloproteinases 3
(TIMP-3) can bind to heparin [35, 150, 151] and the effect of Sulf-1 and Sulf-2 on their
activity remains to be determined.

6.6. Syndecan 4
Expression of the transmembrane heparan sulfate proteoglycan syndecan 4 is elevated in
human OA cartilage and in rodent OA models [152, 153]. Sdc4−/− mice developed less
severe cartilage damage in a surgical OA model, accompanied by a reduction in both
proteoglycan loss and aggrecan cleavage at the Glu373~Ala374 ‘aggrecanase’ bond [153].
Mice injected with syndecan 4 blocking antibodies were similarly protected against
ADAMTS-5-mediated cartilage damage [153]. ADAMTS-5 interacts with the heparan
sulfate chains of syndecan 4 [153], but the molecular mechanisms by which syndecan 4
promotes ADAMTS-5 activity are unclear. Sdc4−/− mice have reduced levels of Mmp3
expression, and Echtermeyer et al. [153] argue that MMP-3 contributes to activation of
ADAMTS-5. ADAMTSs are thought to be activated primarily by proprotein convertases
[154, 155], and there is currently no evidence for direct activation of ADAMTS-5 by
MMP-3 or by other MMPs, or for reduced ADAMTS-5 activation in the Sdc4−/− mice.

Syndecan 1 is also expressed at elevated levels in OA cartilage [152, 156], and has been
shown to retain ADAMTS-4 on the surface of human chondrosarcoma cells [157]. Syndecan
4 may increase ADAMTS-5 activity by similarly modulating the localisation of the enzyme,
or that of its physiological inhibitor, TIMP-3. It would be interesting to investigate the effect
of the sulfatases Sulf-1 and Sulf-2 (section 6.5) on syndecan 4 binding to ADAMTS- 5.

6.7. DDR-2
The discoidin domain receptors DDR-1 and DDR-2 are receptor tyrosine kinases that bind to
native collagen types I, II, III, IV and V [158–160]. Binding of collagen to the extracellular
domains of the DDRs causes autophosphorylation of their cytoplasmic domains, initiating
downstream signalling events including increased expression of the collagenases MMP-1
and MMP-13 [158, 161]. Expression of DDR-2 is increased in human OA [162, 163].
Ddr2+/− mice are protected against spontaneous and surgically induced OA and show
reduced expression of MMP-13 [164].

The most abundant collagen in cartilage is type II collagen, which has been shown to
phosphorylate DDR-2, albeit less strongly than collagen type I and III [158]. However, type
II collagen is localised in the inter-territorial matrix and is not present in the pericellular
matrix, so there is unlikely to be direct contact between chondrocytes and type II collagen in
healthy cartilage. Xu et al. [164] suggest that damage to the pericellular matrix may occur
early in the development of OA, leading to aberrant interaction of chondrocytes with type II
collagen and initiation of catabolic signalling. The serine proteinase HtrA1 (section 8.3) is
localised in the pericellular matrix [165, 166] and is able to degrade a variety of matrix
components, leading Xu et al. to propose that it may play a role in degradation of the
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pericellular matrix in early OA, initiating catabolic DDR-2 signalling and further MMP-13-
mediated degradation of the collagen matrix.

6.8. PAR-2
Expression of protease-activated receptor 2 (PAR-2) is increased in human OA
chondrocytes [167, 168] and subchondral bone osteoclasts [169]. The receptor appears to
promote cartilage degradation, as PAR-2−/− mice are protected in surgical OA models [170,
171]. Similarly, treatment of wild-type mice with a PAR-2 antagonist or a PAR-2 blocking
antibody protects against the development of OA [170].

PAR-2 is a member of a family of seven transmembrane G-protein-coupled receptors that
are activated by cleavage of their extracellular domains by serine proteinases, generating a
tethered ligand that stimulates receptor activation and downstream signaling. The
mechanisms of PAR-2 activation in OA and the downstream signaling consequences remain
to be elucidated. PAR-2 can be activated by matriptase 1 (section 8.1, [172]), but other
cartilage serine proteinases are also likely to contribute to its activation. PAR-2 activation
has been shown to increase expression of MMP-1 and MMP-13 in OA chondrocytes [168],
but effects on ADAMTS expression have not been reported.

6.9. Wnt signalling
Wnt signalling is critical in skeletal development, and there has been considerable interest in
the role of Wnt signalling in the development of OA [173]. Wnt signalling affects multiple
cellular pathways in chondrocytes, but recent studies have indicated that Wnt signalling
promotes OA at least in part by increasing expression of cartilage-degrading proteinases. For
example, siRNA against the Wnt co-receptor LRP-5 causes a decrease in MMP13
expression [174]. Furthermore, Wnt-induced signalling protein 1 (WISP-1) has been shown
to increase expression of MMP3, MMP9 and ADAMTS4, but not ADAMTS5 [175].
Adenoviral expression of WISP-1 in mouse knee joints induced cartilage degradation and
aggrecan hydrolysis at both Asn341~Phe342 and Glu373~Ala374, indicators of MMP and
aggrecanase cleavage, respectively[175]. WISP-1 expression is increased in human and
murine OA cartilage [175], and a single nucleotide polymorphism in WISP-1 is reportedly
associated with spinal OA in Japanese women [176].

7. Inhibitors of MMPs and ADAMTSs
The tissue inhibitors of metalloproteinases (TIMPs) are the endogenous inhibitors of the
MMPs and some members of the ADAM and ADAMTS families (see [177] for review).
The MMPs are strongly inhibited by all four of the mammalian TIMPs (TIMP-1, -2, -3 and
-4), with the exception of some of the membrane-type MMPs that are poorly inhibited by
TIMP-1. Conversely, ADAMTS-4 and ADAMTS-5 are effectively inhibited only by
TIMP-3 [178, 179]. As TIMP-3 can inhibit both MMPs and ADAMTSs, it is a central
inhibitor of cartilage degradation. Addition of exogenous TIMP-3, but not TIMP-1 or
TIMP-2 blocks cartilage degradation in explant cultures [180], and injection of TIMP-3
blocks cartilage breakdown in a rat surgical model of OA [181]. The chondroprotective role
of TIMP-3 is confirmed by the finding that Timp3−/− mice develop increased cartilage
degradation upon aging [182] and increased cartilage damage in an antigen-induced arthritis
model [183]. While TIMP-3 mRNA levels are not significantly altered in OA [63, 184, 185],
levels of TIMP-3 protein are reduced in human OA cartilage [185]. TIMP-3 can be
endocytosed and degraded by chondrocytes [186], suggesting that its activity in cartilage
may be regulated post-translationally rather than transcriptionally. Agents such as pentosan
polysulfate that block TIMP-3 endocytosis are able to increase cartilage levels of TIMP-3
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and to inhibit aggrecan degradation [186]. Pentosan further protects cartilage by increasing
the affinity of TIMP-3 for ADAMTS-4 and ADAMTS-5 by more than 100-fold [186].

The susceptibility of other Timp-null mice to OA has not been reported. TIMP-2 has no
effect on glycosaminoglycan release from bovine, porcine or human cartilage explants,
while TIMP-1 has been shown to partially inhibit glycosaminoglycan release from human
but not bovine or porcine cartilage [56, 106, 180]. Expression of TIMP-4 is decreased in OA
cartilage [61], and a single nucleotide polymorphism in the 3′ untranslated region of TIMP-4
is reportedly associated with OA in a Korean cohort [187].

8. Serine proteinases in OA
8.1. Collagenase activators

The collagenases MMP-1 and MMP-13 are known to be activated by a number of other
proteinases, including MMP-3 and the serine proteinase plasmin, which is in turn generated
from plasminogen by urokinase-type plasminogen activator (uPA) and tissue-type
plasminogen activator (tPA) [77, 78]. Increased expression of MMP-3 [60, 76], tPA [188]
and uPA [188] have all been reported in OA. As discussed above (section 4), degradation of
aggrecan in cytokine-stimulated bovine and porcine cartilage explant model systems occurs
within the first week, while collagen degradation occurs later [23, 53–56]. Collagenolysis
can be initiated during the first week of culture by addition of proMMP activators such as
MMP-3 or p-aminophenylmercuric acetate [189], indicating that collagenases are expressed
during this time, but that they are largely present as inactive zymogen forms and that their
activation is the rate-limiting step in cartilage collagenolysis. Collagenase activity can be
inhibited by addition of serine proteinase inhibitors, indicating that serine proteinases are
primarily responsible for activation of collagenases in cartilage [189].

Milner et al. [172] have recently reported that the type II transmembrane serine proteinase
matriptase 1 (or membrane-type serine proteinase 1, MT-SP1, Figure 2)[190] is a novel
activator of collagenase activity and is up-regulated in OA cartilage. In addition to activating
proMMP-1 and proMMP-3 in vitro [172, 191], addition of recombinant matriptase 1
stimulated collagen breakdown in bovine and human OA cartilage explants [172]. The
enhanced collagen degradation could be blocked by the metalloproteinase inhibitor
GM6001, suggesting that matriptase 1 acted by increasing MMP-mediated collagenolysis
[172]. Matriptase 1 was found to stimulate cartilage expression of MMP1, MMP3 and
MMP13 [172], and to activate the collagenase activator uPA [192]. Matriptase 1 thus
stimulates cartilage collagenolysis through multiple inter-related mechanisms, making it an
attractive target for the development of chondroprotective therapies.

Activated protein C (APC) is known primarily as a serine proteinase of the coagulation
cascade, but Jackson et al. [193] showed that APC is also expressed by OA chondrocytes in
regions of cartilage fibrillation, although not in normal cartilage. Addition of exogenous
APC increased cytokine-stimulated aggrecan and collagen degradation in ovine cartilage
explants [193] and collagen degradation in equine explants [194]. The catabolic effects of
APC could be partially inhibited by addition of a broad-spectrum MMP inhibitor [193, 194],
indicating that APC acts by increasing MMP activity. APC had no effect on expression of a
range of MMPs, ADAMTSs or TIMPs, but increased activation of proMMP-2 and
proMMP-9, although not proMMP-13 [193, 194].

8.2. ADAMTS activators
The ADAMTSs are activated by members of the family of proprotein convertases (PC),
including furin, Paired Basic Amino Acid Cleaving Enzyme 4 (PACE4), PC5/6 and PC7
(Figure 2)[154, 155]. Inhibition of furin-like enzymes inhibits aggrecan and collagen
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degradation in cartilage explants [195]. PACE4 is thought to be the primary member of the
family responsible for aggrecanase activation in cartilage, and its expression is increased in
OA [76, 196]. Reducing PACE4 expression with siRNA significantly inhibited aggrecanase
activity in cultured human chondrocytes and partially blocked aggrecan degradation in OA
cartilage explants [196].

8.3. HtrA1
HtrA (high temperature requirement A) was originally identified as an E. coli heat shock
protein and was then shown to be a trypsin-like serine proteinase involved in degradation of
misfolded proteins [197, 198]. Homologues were subsequently identified in mammals, with
4 isotypes found in humans [199](Figure 2). Expression of HtrA1 is elevated in OA cartilage
[76, 166, 172, 200, 201], and expression of HtrA3 and HtrA4 may also be increased in OA
[76]. Few serine proteinases are thought to participate directly in degradation of the cartilage
ECM, but HtrA1 degrades a variety of cartilage matrix proteins, including aggrecan,
decorin, fibromodulin and fibronectin in vitro [165, 200]. The enzyme has been suggested to
degrade the pericellular matrix, a factor proposed to increase catabolic DDR-2 signalling
(section 6.7) [164, 166]. Type VI collagen is absent from the pericellular matrix surrounding
chondrocytes expressing HtrA1, suggesting that this enzyme may contribute to type VI
collagen degradation as well [166]. Type VI collagen is resistant to MMP-1, MMP-2,
MMP-3 and MMP-9, but can be degraded in vitro by serine proteinases including elastase,
trypsin and cathepsin G [202].

HtrA1 can also degrade aggrecan, cleaving at the VQTV356~357TWPD bond in the IGD,
between the MMP and ADAMTS cleavage sites [201]. Aggrecan fragments bearing the
VQTV356 neo-epitope are detectable in OA but not in normal cartilage [201]. HtrA1 is
unlikely to contribute greatly to pathological aggrecan cleavage however, as VQTV356

fragments are present at 20-fold lower levels in OA cartilage extracts than ADAMTS-
generated NITEGE373 fragments [201].

8.4. Other serine proteinases
Fibroblast activation protein α (FAPα) is a type II transmembrane serine proteinase with
increased expression in OA [203]. However, the substrates and function of the enzyme in
cartilage are unknown.

Complement 1s is able to degrade insulin-like growth factor binding protein 5 (IGFBP5) in
vitro [204]. Complement 1s inhibitors have been shown to reduce proteolysis of IGFBP5 in
a canine OA model, leading to an increase in concentrations of insulin-like growth factor 1
(IGF1) and reduced cartilage damage [205].

9. Cysteine proteinases
9.1. Cathepsins

The papain-like cysteine proteinase cathepsin K is the only enzyme other than the
collagenolytic MMPs that can hydrolyse native triple helical type I and type II collagen
[206]. Chondrocyte expression of cathepsin K is increased in OA [207, 208] and the enzyme
has been proposed to play a role in degradation of collagen in the cartilage matrix and in
subchondral bone [209, 210].

Cathepsin K is highly expressed in osteoclasts, and studies on null mice and patients with
genetic mutations indicate that cathepsin K is important for physiological bone development
and remodelling [211, 212]. Such a developmental bone phenotype prevents use of the null
mice to determine the role of cathepsin K in OA development. No conditional cartilage
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knockout of cathepsin K has been reported to date. Mice over-expressing cathepsin K
develop increased spontaneous cartilage damage upon aging [209], although these mice also
have a developmental bone phenotype that may hamper interpretation of the results [213].
Cathepsin K inhibitors reduce collagen breakdown in OA cartilage explants [214] and
animal OA models [215]. Taken together, these studies suggest that cathepsin K contributes
to the development of OA. However, Takahashi et al. [208] suggest that synovial cathepsin
K can also protect cartilage, as siRNA down-regulation of the proteinase in synovium
increased expression of MMP13 and accelerated cartilage degradation in a rabbit surgical
OA model.

Cathepsin K is primarily localized intracellularly within lysosomes, but can also be secreted
from synovial fibroblasts [210]. In vitro, the enzyme is active against collagen between pH
4.0 and 6.5 [206, 216]. pH values as low as pH 5.5 have been reported for OA cartilage
[207], suggesting that the pH within arthritic joints may permit extracellular cathepsin K to
retain collagenolytic activity. Additionally, cathepsin K retains some collagenolytic activity
at neutral pH. In vitro, cathepsin K has been shown to form an oligomeric complex with
chondroitin-4-sulfate, increasing the stability and collagenolytic activity of the enzyme [217,
218]. Cathepsin K can also cleave aggrecan at multiple sites in the G1 domain and CS2
region, as well as at one site in the IGD region [216], generating chondroitin sulfate-
containing fragments that can interact with cathepsin K and stimulate its collagenolytic
activity [216].

Expression of other cathepsins, including cathepsin B, D and S, is increased in OA cartilage,
synovium and synovial fluid [10, 210, 219]. Cathepsins B and D can also cleave aggrecan in
vitro [9, 16] but aggrecan degradation at neutral pH cannot be blocked by cathepsin
inhibitors [220], suggesting that these enzymes do not contribute to pathological aggrecan
degradation in vivo. Cathepsin B has recently been shown to degrade the HDAC Sirt1
(section 6.2.2) [221].

9.2. Calpains
Expression of the calcium-dependent cysteine proteinases μ-calpain (calpain 1) and m-
calpain (calpain 2) is increased in OA cartilage [76]. The enzymes are expressed by
chondrocytes and synovial fibroblasts [222, 223], and while they are intracellular enzymes,
they have been detected in synovial fluid [224, 225]. They have a neutral pH optimum, so
may be active extracellularly [226].

m-Calpain has been shown to cleave aggrecan in vitro at a number of sites in the IGD, KS
and CS1 regions [222, 227, 228]. Cleavage in the KS region has been studied in the greatest
detail, using an antibody recognising the C-terminal neoepitope PGVA709 [227, 228].
Cleavage at this site would cause release of the majority of the GAG-bearing region of
aggrecan from the cartilage matrix, as is the case with MMP and ADAMTS cleavage in the
IGD. This neoepitope has been detected in bovine and human cartilage [222, 227], but G1-
PGVA709 fragments are present in OA cartilage at levels 18-fold lower than MMP-
generated G1-DIPEN341 fragments and 63-fold lower than ADAMTS-generated G1-
NITEGE373 fragments [228]. This suggests that a calpains play a minor role in pathological
aggrecan cleavage in vivo. Fragments corresponding to m-calpain cleavage in the CS1
region have been found in both normal and OA cartilage [228], suggesting that calpains may
be involved in normal aggrecan turnover.

9.3. Caspases
Chondrocyte death is a central feature of OA, and is thought to occur through a combination
of autophagy and apoptosis [229, 230]. Expression of caspase 3 is increased in OA cartilage
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[230] and intra-articular injection of caspase inhibitors has been shown to reduce cartilage
degradation in a rabbit surgical OA model [231].

10. Conclusions and future prospects
OA remains a disease with insufficient disease-modifying treatments. With an increasing
number of people suffering from the disease, the identification of novel therapeutic targets is
a priority. The central role of aggrecanases and collagenases in cartilage degradation has
been verified in recent years by studies on transgenic mice. While these enzymes are also
thought to play pivotal roles in human OA, there are likely to be some differences in the
roles of individual enzymes between the two species. For example, murine MMP-1 differs
considerably from the mammalian enzyme, so its role in OA cannot be studied in transgenic
mice. Also, ADAMTS-4 plays little role in murine OA, but may contribute to human
cartilage degradation. Further research is needed to fully delineate the role of individual
proteinases in human OA.

Studies on mice with specific gene ablations have also identified a network of factors that
regulate MMP13 and ADAMTS expression in chondrocytes (Figure 3). Mechanical damage
is a primary risk factor for OA, and is now understood that one of the ways in such stimuli
can act on chondrocytes is by stimulating proteinase expression via RUNX2 and Indian
hedgehog. Conversely, protective mechanical stimuli can inhibit proteinase expression
through CITED2 and FGF-2. Obesity may act as a risk factor not only through increasing
mechanical strain but also through the pro-inflammatory properties of adipokines [232]. The
mechanisms by which other OA risk factors such as gender and age increase proteinase
expression remain unknown. Mechanisms regulating cartilage expression of enzymes such
as HtrA1, matriptase and cathepsin K require further study. Similarly, while TIMP-3 is
known to be able to protect cartilage by inhibiting MMPs and ADAMTSs, the role of
endogenous serine and cysteine proteinase inhibitors in OA remains poorly studied. Given
that many pathways can stimulate an increase in proteinase expression, development of
inhibitors targeting the effector proteinases and using them in combination may block
cartilage damage more effectively than therapies aimed at only one activating factor.

OA is a disease involving the whole joint. To date, the role of proteinases in cartilage
structural changes has been studied extensively, but the role of proteinases and proteinase
inhibitors in synovial hypertrophy, osteophyte formation and subchondral bone remodelling
is less well understood. Interestingly, Mmp13−/− mice develop osteophytes more rapidly
than wild-type animals after surgical induction of OA [65]. The role of proteinases in joint
components other than cartilage is important to understand if proteinase inhibitors are to be
developed as OA therapeutics.
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ADAMTS a disintegrin and metalloproteinase with thrombospondin motifs

APC activated protein C
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CITED2 cAMP-responsive element-binding protein/p300-interacting transactivator
with Glu/Asp-rich carboxy-terminal domain 2

ECM extracellular matrix

ERK extracellularly-regulated kinase

FAPα fibroblast activation protein α

FGF-2 fibroblast growth factor 2

Gla γ-carboxyglutamate

HDAC histone deacetylase

HIF-2α hypoxia-inducible factor 2α

IGD interglobular domain

IGF insulin-like growth factor

IGFBP IGF binding protein

MMP matrix metalloproteinase

OA osteoarthritis

PACE4 paired basic amino acid cleaving enzyme 4

PAR protease-activated receptor

PC proprotein convertase

RUNX2 runt-related transcription factor 2

SIRT1 Sirtuin 1

TIMP tissue inhibitor of metalloproteinases

tPA tissue-type plasminogen activator

uPA urokinase-type plasminogen activator

WISP-1 Wnt-induced signalling protein 1
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Highlights

1. Osteoarthritis is a characterised by degradation of the cartilage extracellular
matrix

2. Collegen is degraded by matrix metalloproteinases such as MMP-13

3. Aggrecan is degraded by related ADAMTS metalloproteinases

4. Less abundant cartilage components are degraded by a variety of proteinases

5. Factors such as inflammation and mechanical damage stimulate enzyme
expression
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Figure 1. Cartoon representation of normal and osteoarthritic joint
OA is characterised by changes to various tissues within synovial joints. The cartilage
matrix is degraded by collagenases and aggrecanases, leading to fibrillation and subsequent
loss of the articulating cartilage surface. Synovial fibroblasts undergo hypertrophy and
inflammatory cells infiltrate the synovium. Bone remodelling leads to the formation of
osteophytes at the cartilage/bone interface and subchondral bone sclerosis.
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Figure 2. Schematic representation of domain structure of proteinases involved in OA cartilage
destruction
The MMPs, ADAMTSs and ADAMs all contain an N-terminal signal peptide (SP),
followed by a pro-domain (pro) and a metalloproteinase catalytic domain. The MMPs then
contain a hemopexin ancillary domain [233], while the ADAMTSs contain disintegrin,
thrombospondin (TS), cysteine-rich (CysR) and spacer ancillary domains [234]. The
ADAMs contain C-terminal disintegrin, CysR, epidermal growth factor-like (EGF-like),
transmembrane (TM) and cytoplasmic (Cyt) domains [235].
The serine proteinases involved in OA cartilage destruction are more structurally diverse
than the metalloproteinases. uPA consists of an N-terminal SP, followed by an EGF-like
domain, a Kringle domain and a C-terminal catalytic domain [236]. Matriptase 1 is a type II
transmembrane protein, with an N-terminal cytoplasmic domain followed by a TM region
[190]. This is followed by a sea urchin sperm protein/enteropeptidase/agrin (SEA) domain, 2
complement C1r/C1s, Uegf, Bmp1 (CUB) domains, 4 low-density lipoprotein receptor-
related protein (LRP) domains and a C-terminal catalytic domain [190]. APC consists of a γ-
carboxyglutamate (Gla) domain, followed by 2 EGF-domains and a trypsin-like serine
proteinase domain [237]. Proprotein convertases such as furin are subtilisin-like serine
proteinases consisting of an N-terminal SP and pro-domain, followed by a serine proteinase
catalytic domain, a conserved regulatory P domain and a CysR domain [238]. Some of the
proprotein convertases (e. g. furin) are type I transmembrane proteins and contain a C-
terminal TM and cytoplasmic domain, while others (e. g. PACE4) lack these domains and
are soluble [238]. HtrA1 consists of an N-terminal SP, followed by an insulin growth factor
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binding protein (IGFBP) domain, Kazal proteinase inhibitor (KI) domain, a trypsin-like
serine proteinase domain and a C-terminal PDZ domain [199].
The cathepsins have comparatively simple structures, consisting of an SP, pro-domain and
catalytic domain with no additional ancillary domains [239]. Classical calpains such as m-
calpain consist of 4 domains, with domain I (D1) and domain II (DII) forming the catalytic
domain, and domains III and IV (DIII and DIV) regulating catalytic activity and stability
[240]. Domain III is C2-like, and domain IV contains 5 EF-hand repeats. Caspases have all
contain a large and a small catalytic subunit. N-terminal to this is either an N-terminal
caspase recruitment domain (CARD) domain (e. g. in caspase 1, 2, 4 and 5) or an N-terminal
death effector domain (DED) (e. g. in caspase 8, 10) [241].
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Figure 3. Factors regulating expression and activity of collagenases and aggrecanases in OA
The expression and activity of collagenases (e. g. MMP-13 and MMP-1) and aggrecanases
(e. g. ADAMTS-4 and ADAMTS-5) can be stimulated (orange boxes) or inhibited (grey
boxes) by a number of inter-related mechanisms. Expression of the central transcription
factor RUNX2 is increased by mechanical and pro-inflammatory stimuli, which act via
HIF-2α, HDACs and Indian hedgehog. Expression of collagenolytic MMPs can also be
increased in response to FGF-2 and DDR-2 signalling, and collagenase activity increased by
matriptase activation of proMMP-1 and proMMP-3 zymogens and PAR-2 signalling. These
catabolic stimuli can be counteracted by a variety of chondroprotective signals. For
example, MMP13 expression can be reduced by the mechano-sensitive transcription factor
CITED, and ADAMTS5 expression can be reduced by miR-140 and the mechano-responsive
growth factor FGF-2.
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