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Mycophenolic acid mediated mitochondrial membrane
potential transition change lead to T lymphocyte
apoptosis
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Purpose: This study demonstrated that apoptosis induced by mycophenolic acid (MPA) is mediated by mitochondrial mem-
brane potential transition (MPT) changes in Jurkat cells. Methods: Cell viability and MPT changes were measured by flow
cytometry. Western blotting was performed to evaluate the expression of Bcl-2 family proteins, Bid, truncated Bid (tBid), cy-
tochrome ¢, voltage dependent anion channel (VDAC), poly ADP-ribose polymerase (PARP), and protein kinase C-3
(PKC-§). The catalytic activity of caspase-9 and -3 was also measured. Results: Cell viability was decreased in time- and
dose-dependent manners. Bcl-2 protein expression was decreased, but Bax protein expression was identified. A decreased
Bcl-X1 /Bcl-Xs ratio was also noted. The expression of tBid protein also increased in a time-dependent manner in Jurkat cells
treated with MPA. While normal MPT appeared as orange fluorescence, abnormal MPT corresponded to green fluorescence.
Green fluorescence increased as orange decreased in the MPA-treated cells. Significantly increased concentrations of MPA
induced the release of cytosolic cytochrome c. MPA also augmented the catalytic activity of caspase-9 and caspase-3 in Jurkat
cells. Our findings demonstrated that MPA-induced apoptosis is mediated by MPT changes accompanied by decreased
Bcl-XL expression and the appearance of tBid protein. The release of cytosolic cytochrome ¢ from mitochondria and in-
creased catalytic activity of caspase-9 and caspase-3 were observed in MPA-treated Jurkat cells. Conclusion: These results
suggest that mitochondrial dysfunction caused by MPA induces human T lymphocyte apoptosis.
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INTRODUCTION

Mycophenolic acid (MPA) is a selective inhibitor of en-
zymes such as inosine monophosphate dehydrogenase
that has a role in guanosine synthesis. MPA also disrupts
DNA synthesis in T and B lymphocytes, and suppresses

immune functions by inducing apoptosis. However, the

underlying signaling pathways are not known. Apoptotic
signaling is conducted through the death receptor, mi-
tochondrial, and endoplasmic reticulum-mediated stress
protein pathways. Key biochemical events involved in the
induction of apoptosis include the up-regulated ex-
pression of pro-apoptotic proteins and/or down-regu-

lation of anti-apoptotic proteins. The primary apoptotic
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signal transduction cascade associated with programmed
cell death involves members of the Bcl-2 family [1].
Proteins belonging to the Bcl-2 family either promote cell
survival (Bcl-2 and Bcl-X.) or induce apoptosis (Bax) [2].
Increased levels of Bax and/or decreases in Bcl-2 ex-
pression leads to the loss of mitochondrial membrane
potential. This is a key event in apoptosis induction, and
involves a reduction of ATP levels, influx of ions that de-
creases the mitochondrial membrane potential, and the
opening of mitochondrial permeability transition pores
[3]. Loss of mitochondrial membrane potential is cata-
strophic for cells and leads to the release of cytochrome ¢
into the cytosol [3]. Mitochondrial dysfunction has been
shown to participate in the induction of apoptosis and has
been suggested to activate the apoptotic pathway.

This study evaluated the mitochondrial membrane po-
tential transition (MPT) changes that lead to MPA-medi-
ated apoptosis in Jurkat cells. Cell viability and MPT
changes were measured by flow cytometry. Western blot-
ting was performed to evaluate the expression of Bcl-2
family proteins, Bid, tBid, cytochrome c, voltage depend-
ent anion channel (VDAC), and protein kinase C-6 (PKC-
3). The catalytic activity of caspase-9 and -3 in the Jurkat

cells was also measured.

Human Jurkat T cells, a T lymphocytic cell line, were ob-
tained from the Korean Collection for Type Cultures
(KCTC, Seoul, Korea) and maintained in Roswell Park
Memorial Institute medium (RPMI)-1640 (Gibco BRL,
Grand Island, NY, USA) tissue culture medium supple-
mented with 10% fetal calf serum at 37°C in 5% CO»,. MPA
(Sigma Chemical Co., St. Louis, MO, USA) was liquefied
and dissolved at a concentration of 10 mg/mL in dime-
thylsufoxide (DMSO), stored at -20°C, and diluted in the
RPMI-1640 at final concentration of 0.5 to 100 M/mL.

Cell viability was measured by an 3-[4,5-dimethylthia-
zol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) assay.
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Cells seeded at 100 pL/well in a flat-bottom 24-well plate.
The cells were incubated in a CO; culture medium to per-
mit cell attachment for more than 3 hours and then used
for the experiment. An MTT solution (5 mg/mL in phos-
phate-buffered saline) added at a 1/10 volume of the total
cell culture volume. After incubating for 4 hours, 0.01 N
HCI with 10% sodium dodecyl sulfate was added (100 pL/
well). After the formazan crystals formed by live cells had
been dissolved, the absorption of each well was measured
by an enzyme-linked immunosorbent assay plate reader
(Molecular Devices Co., Sunnyvale, CA, USA) at 540 nm.

Jurkat cells were lysed with lysis buffer (1% Triton X-
100, 0.32 M sucrose, 5 mM ethylenediaminetetraacetic acid
(EDTA), 1 mM phenylmethylsulfonyl fluoride (PMSF), 1
pg/mL aprotinin, 1 pg/mL leupeptin, 2 mM dithiothreitol
(DTT), and 10 mM Tris/HCI, pH 8.0) at 4°C for 15 minutes,
and then centrifuged at 20,000 x g for 15 minutes. The
cleared lysates were then treated with bicinchroninic acid
(BCA; Sigma Chemical Co.).

The lysates were then incubated with a fluorogenic sub-
strate in a buffer solvent (100 mM 4-(2-hydroxyethyl)-1-pi-
perazineethanesulfonic acid [HEPES], 10% sucrose, 0.1%
Chaps, pH 7.5, 1 mM PMSF, 1 ug/mL aprotinin, 1 pg/mL
leupeptin, and 2 mM DTT) at 37°C for 30 minutes, and flu-
orescence was measured with a fluorometer (Molecular
Devices Co.). Ac-DEVD-AMC (50 uM; Calbiochem, La
Jolla, CA, USA) was used as a fluorogenic substrate to
measure the enzymatic activity of caspase-3. The level of
caspase-3 activity was determined by measuring proteo-
lytic cleavage at a 380 nm excitation wavelength and 460
nm emission wavelength. Ac-LEHD-AFC (50 uM; Calbio-
chem) was used as a fluorogenic substrate to measure the
levels of caspase-9 activity by measuring proteolytic cleav-
age at a 400 nm excitation wavelength and 505 nm emis-

sion wavelength.

After treating Jurkat cells with MPA, the cells were col-
lected and washed twice with cold Hank's balanced salt
solution. The cells were lysed in radioimmunoprecipi-
tation assay buffer (50 mM HEPES, pH 7.4; 150 mM NaCl,
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Bcl-X1/Bcl-Xs ratio decreases in Jurkat cells treated with
mycophenolic acid (mycophenolic acid [MPA]; 5 uM). Cells were
treated with 5 UM MPA for various periods of time. Equal amounts
of protein from cell lysate were separated by 15% sodium dodecyl
sulfate polyacrylamide gel electrophoresis, transferred onto
nitrocellulose membranes, and immunoblotted with anti- Bcl-X¢
and anti-Bcl-Xs antibodies.

1% deoxycholate, 1 mM EDTA, 1 mM PMSEF, and 1 pg/mL
aprotinin) on ice for 30 minutes. Proteins in the lysates
were separated by electrophoresis and transferred to ni-
trocellulose membranes using a semi-dry electrotransfer
system (Illard Co., Seattle, WA, USA) at 4°C and 30 V for 16
hours. The membranes were incubated in blocking buffer
(10% skim milk) at room temperature for 2 hours, and then
probed with antibodies against Bcl-2 family proteins, Bid,
tBid, cytochrome ¢, VDAC, PARP, and PKC-5. The blots
were then incubated with a secondary horseradish perox-
idase-conjugated anti-rabbit immunoglobulin G (Santa
Cruz Biotechnology, Santa Cruz, CA, USA) at room tem-
perature for 1 hour Immunoreactive bands were detected
with an enhanced chemiluminescence kit and by expos-

ing the blots to film.

MPT changes were measured by flow cytometry (FACS
Calibur, BD Bioscience, San Jose, CA, USA). Jurkat cells
treated with MPA were stained with 10 pg/mL of JC-1
(Molecular Probes, Eugene, OR, USA) and incubated at
37°C for 30 minutes.

MPA decreased the viability of Jurkat cells in dose- and
time-dependent manners. Bcl-2 protein expression de-
creased and Bax protein expression appeared following
MPA treatment. Additionally, the Bcl-Xi/Bcl-Xs ratio de-
creased (Fig. 1). The level of tBid protein also increased in

a time-dependent manner in MPA-treated Jurkat cells
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MPA mediated mitochondrial membrane potential transition
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Mycophenolic acid (MPA) induces the truncated Bid (tBid)
protein in Jurkat cells. Cells were treated with 5 uM MPA for various
periods and separated into cytosolic and mitochondrial fractions.
The cytosolic fraction was separated by 15% sodium dodecyl sulfate
polyacrylamide gel electrophoresis and immunoblotted for Bid and
tBid. Antibody binding was visualized by enhanced chemillu-

minescence.

(Fig. 2). Normal MPT appears as orange fluorescence
while green fluorescence indicates abnormal MPT. In the
present study, green fluorescence increased while orange
decreased in the MPA-treated cells (Fig. 3). Treatment with
MPA also significantly increased the release of cytosolic
cytochrome c (Fig. 4). Enzymatic activation of caspase- 3
and -9 was measured by fluorogenic substrate to examine
the mechanism through which apoptosis is induced by
MPA. MPA increased the catalytic activity of both cas-
pase-3 and 9 in Jurkat cells in a time-dependent manner.
The enzymatic activation of caspase-9 gradually increased
after 6 hours, and reached a maximum (6.5-times greater
than the control group) after 30 hours, but rapidly de-
creased (Fig. 5A). Activation of caspase-3 was also gradu-
ally increased (Fig. 5B). The expression of PARP and pro-
tein kinase C-8 (PKC-6) was measured by Western blotting
to observe the changes of substrate in the cytoplasm re-
sulting from the activation of caspase-3. A 116 kDa PARP
band, one of caspase-3 substrates, was cleaved into a 85
kDa band after 6 hours of MPA treatment; after 24 hours,
more than 50% of the PARP had been cleaved. A 78 kDa
PKC-§, another substrate of caspase-3, was cleaved into a
40 kDa fragment after 12 hours of MPA treatment (Fig. 5C).
Taken together, our findings demonstrated that MPA in-
creased the catalytic activity of both caspase-9 and -3 in
Jurkat cells. We therefore concluded that MPA-induced
apoptosis in Jurkat cells is mediated by changes in MPT
and the expression of tBid protein via cyotchrome c re-

lease and the activity of caspase-9 and -3. Thus, MPA-
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Mycophenolic acid induces changes in mitochondrial membrane potential transition. Cells were stained with JC-1 and analyzed using
flow cytometry. MPT, membrane potential transition.

mediated mitochondrial dysfunction leads to human T
lymphocyte apoptosis.
Our study was carried out in human Jurkat cells which
share the characteristics of human T lymphocytes and are

a well-established model of human T cells. T lymphocytes
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are a major component of the immune system and are one
of the few immune cells found throughout the body. MPA
interrupts DNA synthesis in T and B lymphocytes, and
suppresses immune function by inducing apoptosis.

However, the signaling pathways involved in this proce-
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Mycophenolic acid (MPA) induces the cytosolic release of
cytochrome c from mitochondria in Jurkat cells. Cells were treated
with 5 uM MPA for various periods of time. Cells were separated
into cytosolic and mitochondrial fractions. The two fractions were
separated by 15% sodium dodecyl sulfate polyacrylamide gel
electrophoresis and immunoblotted for cytochrome c and voltage
dependent anion channel (VDAC). Immunoreactive signals were
visualized by enhanced chemilluminescence.
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MPA mediated mitochondrial membrane potential transition

dure are not well understood [4].

Apoptosis, also known as a programmed cell death, is
one an essential physiological process involved in the
growth of normal organs and constant maintenance of
tissues. Hallmarks of apoptosis include cellular contrac-
tion of due to dehydration, cell membrane blebbing, in-
creased cytoplasmic calcium concentration, chromatin
condensation, DNA fragmentation in a characteristic
“ladder pattern” due to activated endonucleases, and
apoptotic body formation [5].

The major apoptotic signal transduction cascade in-
volves the Bcl-2 family proteins [6]. Bcl-2 is a protein asso-
ciated with human follicular lymphoma with a molecular
weight of 28 kDa. It is not involved in the cellular growth,
but acts to suppress apoptosis. The mechanism by which
Bcl-2 prevents apoptosis is known to play a role in control-

ling the integrity of the outer mitochondrial membrane. A
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Mycophenolic acid (MPA) increases the catalytic
activity of caspase-9 and -3 of Jurkat cells in a time-dependent
manner. Cells were treated with 5 uM MPA for various periods
of time and then lysed to measure the activity of these
proteases using fluorogenic biosubstrates. The lysate were
incubated with Ac-LEHD-AFC to examine caspase-9 (A) or
Ac-DEVD-AMC to monitor caspase-3 (B). Protein kinase C-6
(PKC-8) cleavage was measured by Western blotting with an
anti-PKC-8 antibody (C). “P < 0.05 by student t-test, com-
pared to control group.
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previous study concluded that the decreased ratio of Bcl-
Xu/Bcl-Xs by MPA directly correlated with apoptosis in
Jurkat cells [7]. Bcl-2 degradation was observed when cell
viability reduced below 20% (40 hours after MPA treat-
ment). In contrast to Bcl-2, Bax is known to promote apop-
tosis [8]. Expression of Bax was also observed. Thus, our
study showed that the expression of Bcl-2 and Bax had op-
posing effects on apoptosis in Jurkat cells treated with
MPA. Increases in the level of Bax and/or decreased Bcl-2
expression leads to loss of mitochondrial membrane po-
tential which is a key event in the induction of apoptosis.
This process involves a reduction in ATP levels, influx of
ions that leads to decreased mitochondrial membrane po-
tential, and opening of the mitochondrial permeability
transition pores [7].

Bid is one of proapoptotic Bcl-2 homology (BH) 3 only
proteins. BH3 only proteins promote mitochondrial outer
membrane permealization and essential for apoptosis
initiation. BH3 only proteins bind with high affinity and
specificity to anti-apoptotic Bcl-2 family member, thereby
Bax/Bak to elicit mitochondrial outer membrane permeali-
zation and activation of caspase cascade [9,10]. tBid targets
the mitochondria causing leakage of apoptogenic pro-
teins. Loss of mitochondrial membrane potential is cata-
strophic for cells and leads to release of cytochrome c into
the cytosol [11]. As the level of cytochrome c increases in
the cytosol, it interacts with Apaf-1. ATP then forms a com-
plex with procaspase-9, leading to activation of caspase-9
and -3 which results in PARP cleavage [12,13].

Activated caspase-3 cleaves various target protein such
as PARP, PKC-§, lamin, mitogen-activated protein/ex-
tracullular signal-regulated kinase, and other caspases.
Caspase-3 is central role of apoptosis. It also induces the
functional activation or inactivation of the molecular pro-
teins in cellular signaling pathway [14-16]. Our results
showed that apoptosis in Jurkat cells treated with MPA
was accompanied by activation of caspase-3 and -9 (Fig.
5A, B). The enzymatic activation's increase of caspase-3
and 9 and fragmentation of PARP and PKC-6 (Fig. 5C)
were also identified. In summary, we found that MPA-in-
duced apoptosis in Jurkat cells is mediated by MPT
changes and the expression of tBid via cyotchrome c re-

lease and the catalytic activity of caspase-9 and 3. This re-
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sult suggests that MPA causes mitochondrial dysfunction

that leads to human T lymphocyte apoptosis [17-19].
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