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Abstract
Despite considerable advances toward understanding the molecular pathophysiology of the
neurodegenerative dementias, the mechanisms linking molecular changes to neuropathology and
the latter to clinical symptoms remain largely obscure. Connectivity is a distinctive feature of the
brain and the integrity of functional network dynamics is critical for normal functioning. A better
understanding of network disruption in the neurodegenerative dementias may help bridge the gap
between molecular changes, pathology and symptoms. Recent findings on functional network
disruption as assessed with “resting-state” or intrinsic connectivity fMRI and EEG/MEG have
shown distinct patterns of network disruption across the major neurodegenerative diseases. These
network abnormalities are relatively specific to the clinical syndromes, and in Alzheimer's disease
and frontotemporal dementia network disruption tracks the pattern of pathological changes. These
findings may have a practical impact on diagnostic accuracy, allowing earlier detection of
neurodegenerative diseases even at the pre-symptomatic stage, and tracking of disease
progression.

1. Introduction
Historically, clinicians have recognized patients with neurodegenerative dementias based on
their clinical symptoms. In recent years, basic science advances have allowed researchers to
re-categorize these diseases based on molecular phenotype, i.e. which toxic, misfolded
disease protein aggregates are observed in the brain post-mortem, such as beta amyloid (Aβ)
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and hyperphosphorylated tau (HP-tau) in Alzheimer's Disease (AD); tau, TAR DNA-binding
protein of 43 kDa (TDP-43), or fused in sarcoma (FUS) in frontotemporal dementia (FTD),
and alpha-synuclein in Parkinson's Disease (PD) and Dementia with Lewy Bodies (DLB).1
These pathological changes are considered early events in a cascade that begins at the
synaptic and neuronal levels and ultimately leads to the clinical syndrome. Within this
temporal window, quantifiable biological, imaging, and physiological markers of pathology
have been identified that can be considered in vivo intermediate phenotypes. Such surrogate
markers of pathology can clarify disease pathophysiology, i.e. link the molecular phenotype
to clinical symptoms and have the potential to facilitate earlier, more accurate diagnosis and
monitoring of disease progression. In AD, PET amyloid ligands enable in vivo mapping of
cerebral Aβ deposition,2 whereas structural MRI has been shown to reflect HP-tau-related
neurodegeneration.3 These biomarkers have recently been incorporated into the new AD
diagnostic criteria.4,5 In disorders such as PD, FTD and DLB, structural biomarkers have
clarified disease pathophysiology by showing patterns of atrophy associated with
histopathology on the one hand,6-8 and clinical symptoms on the other (Table 1).8,9

Localization-based approaches (such as in vivo mapping of molecular changes and
neurodegeneration) have helped build much of the current knowledge regarding disease
pathophysiology. These approaches, however, are less suited to investigate neuronal/
synaptic dysfunction, which is thought to underlie cognitive and functional deficits. Because
brain functions rely on the integrity of dynamic communication between interconnected
brain regions and circuits, a network perspective accounting for such interactions has the
potential to provide novel and meaningful intermediate phenotypes of pathology (Table 1).
Prevalent views on the relationship between symptoms and pathology in AD help illustrate
this notion (Figure 1). In typical AD, the progression of symptoms follows a relatively
stereotyped order which mirrors the topographic progression of HP-tau:10 episodic memory
loss occurs first (hippocampus and medial temporal lobe, posterior cingulate cortex),
followed by semantic memory loss (lateral temporal cortex), aphasic, apraxic, and
visuospatial symptoms (frontal, temporal, and parietal neocortex), and finally motor and
visual deficits (sensorimotor and occipital cortex). Although atypical variants exist,11 this
orderly progression may reflect incremental spread throughout interconnected regions within
large-scale networks, and ultimate spread into adjacent or upstream regions.

The brain can be viewed as a complex neural network consisting of structurally and
functionally interconnected regions at multiple scales (Panel 1).12 At the macroscopic level,
neural networks can be investigated non-invasively in health and disease with functional
MRI and neurophysiological techniques (electro- and magneto-encephalography, EEG and
MEG).13,14 The aim of this review is to provide a comprehensive overview of findings on
functional network disruption in the most prevalent neurodegenerative dementias. Although
several excellent reviews have addressed functional networks disruption in AD and in
psychiatric conditions,15-20 here we summarize studies across multiple neurodegenerative
dementias. By including FTD, PD dementia and DLB, we highlight functional network
similarities and differences among conditions that share common mechanisms (toxic protein
aggregation and neuronal loss) but have distinct clinical phenotypes. Toward this aim,
resting-state “task-free” functional imaging and neurophysiological studies will be reviewed.
Because our primary goal is to review functional methods that are broadly applicable across
neurodegenerative diseases, we have omitted task-activation studies, which require the
design of disease-specific experiments (for a review of its applications in AD, see Dickerson
2007),21 as well as studies of gray matter structural covariance.22,23
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2. Techniques to investigate networks integrity
fMRI, EEG and MEG techniques enable researchers to investigate large-scale neural
networks at different spatial and temporal resolutions. Functional connectivity between brain
regions is measured at a spatial resolution as low as 2-3 millimeters using fMRI and at about
5-30 millimeters with EEG/MEG. fMRI and neurophysiological techniques contrast most
sharply in their temporal and spatial resolutions, which differ by three orders of magnitude
(seconds versus milliseconds). Structural connectivity within networks can be measured at a
spatial resolution of 3-6 millimeters using diffusion tensor imaging (DTI).

2.1 Functional network mapping at high spatial resolution: task-free fMRI
Resting-state or “intrinsic connectivity” fMRI measures spontaneous low frequency
(<0·08-0·1 Hz) fluctuations in the blood oxygen level dependent (BOLD) signal while
subjects lie quietly in the scanner and perform no specific task.24 The BOLD signal reflects
changes in the ratio between oxy- and deoxy-haemoglobin following neuronal activity,
therefore resting fMRI provides an indirect marker of neuronal function on a time scale of
seconds. Functional connectivity is defined by temporal correlations (over minutes of data
acquisition) of the BOLD signal between spatially distinct regions.24

Resting-state networks can be identified with several analytical methods, including “seed”
or region-of-interest based methods and independent component analysis (ICA).24 Region-
of-interest based approaches measure the temporal correlation between an a priori selected
brain region and all other brain voxels. The choice of the seed region is investigator driven
and depends on the goals of the analysis. This approach identifies a network of brain areas
(“nodes”; Panel 1) functionally connected with the seed region. ICA is a data-driven method
that does not require a priori hypotheses about the regions of interest. This approach enables
identification of multiple networks consisting of spatially independent and temporally
correlated regions.25 Several networks have been consistently identified with either method
(Figure 2):26 the default mode network (DMN), a posterior cingulate cortex-precuneus/
medial temporal/lateral temporoparietal/medial frontal network that often deactivates during
cognitively demanding tasks;27 bilateral executive-control networks made up of lateral
frontal-parietal nodes;28 the salience network, an anterior cingulate/frontoinsular system
with links to limbic and subcortical autonomic control centers,28 a dorsal attentional system
embedded in high frontoparietal sensorimotor association regions,29 and networks related to
primary visual, auditory, and sensorimotor regions.26 One area of active work concerns how
many brain networks can be meaningfully outlined at the group and single-subject levels
with these methods.

In the absence of an experimental task, these networks show a tight spatial correspondence
with the neuronal circuits activated during cognitive, emotional, and sensorimotor tasks.30

Moreover, connectivity strength within these networks “at rest” has been related to cognitive
and emotional state,28,31 further supporting resting-state fMRI as a tool to investigate
symptoms and deficits in the context of disease. Functional networks can also be
investigated within a graph theoretical framework (see section 2.4) by defining brain regions
as the network nodes (e.g., through atlas-based or functional brain parcellation) and the
temporal correlation strengths between node pairs as the weighted edges.

2.2 Functional network mapping at high temporal resolution: task-free EEG and MEG
A complementary approach to study resting-state networks is based on the synchrony of
spontaneous electrical and magnetic activity of the brain. Oscillating neuronal assemblies
are assumed to reflect cognitive processing,32 and generate a fluctuating electromagnetic
field that can be detected with scalp electrodes. EEG detects the electrical component of this
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field with a high temporal resolution (millisecond range) and provides a direct reflection of
(large-scale) neuronal activity. Factors that limit the use of EEG are the relatively modest
spatial resolution and the difficulty recording subcortical sources of activity. In this regard,
MEG provides an important step forward. MEG records the very weak magnetic field
around the brain (±100-1000 femtoTesla), which requires advanced equipment including
superconducting quantum devices and a magnetically shielded room, but offers clear
advantages including higher spatial resolution (±5 millimeters), less artifact interference,
and a shorter set-up time without electrodes.33 The EEG and MEG signals are usually
analyzed in separate frequency bands: delta (between 0-4 Hz), theta (4-8 Hz), alpha (8-13
Hz), beta (13-30 Hz) and gamma (30-45 Hz).

Oscillatory synchronization between different brain regions can be quantified with several
procedures. Coherence, one of the most popular synchronization measures, describes the
linear similarity between two EEG/MEG time-series at a given frequency.34 Examples of
more advanced markers of functional coupling are the Synchronization Likelihood, which is
sensitive to both linear and non-linear interdependencies between EEG/MEG signals, and
the Phase Lag Index, which overcomes the problem of volume conduction, whereby
neighboring electrodes detect common sources, spuriously increasing synchronization.13

Functional networks can be constructed by taking signals recorded at different regions as
network nodes, and their mutual synchronization as connection strengths (Figure 3).13

Subsequently, these networks can be analyzed using graph theoretical algorithms, as
outlined in the section 2.4.

2.3 Markers of structural connectivity: DTI
Regions with synchronous BOLD signal, electrical or magnetic fluctuations often (but not
always) feature some form of direct physical connection. DTI assesses the structural
integrity of brain connections (i.e. axons and fiber tracts) by measuring changes in the
diffusion of water molecules through tissues.35 Two markers of structural integrity are
commonly investigated: fractional anisotropy, a marker of white matter (WM) fiber
disruption (loss of fiber coherence, demyelination, axonal loss), and mean diffusivity, a
marker for cell density.35 Axial and radial diffusivity may provide more specific markers of
axonal damage and demyelination.35 Common methods to investigate structural disruption
are voxel-wise, DTI tractography and ROI-based techniques.35 DTI tractography may be
preferable on an individual subject basis, allowing one to reconstruct and visualize specific
WM connections between cortical nodes (Figure 4).36 Graph theoretical analysis can be
used to build structural networks and study their topology, in a way similar to that used to
investigate resting-state fMRI and EEG/MEG-derived functional networks.

2.4 Network organization
Graph theory provides a framework for exploring brain network organization in normal and
pathological conditions.13,14,37 Graph theoretical analysis to fMRI, EEG/MEG and DTI data
can model the whole brain as a single network and investigate its properties such as network
structure, modularity, and robustness to damage (Panel 2).14 The healthy human brain is
thought to be organized into a ‘small-world’ topology,38 a network architecture that
combines an efficient balance between local (short range) and global (long range)
connectivity. This small-world configuration is considered better suited for information
transfer and thus presumably for cognitive processing than the topology of ‘random’ or
‘regular’ networks.39 Graph theory can also extract functional subnetworks (‘modules’) and
quantify interactions between them by using data-driven modularity algorithms.40 Another
area of graph theory is devoted to the investigation of highly connected (‘hub’) nodes, since
these regions are critical for network integrity (Panel 2).
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Increasing evidence suggests that functional and structural network properties are related to
development,41 age and cognition.42-44 Older (mean age of 67) vs. Young (mean age of 24)
adults show a distinct modular organization of the brain, the former with greater
connectivity between posterior and central regions, and the latter showing higher
connectivity between fronto-cingulo-parietal modules.42 In addition, IQ score has been
negatively correlated with global functional connectivity (characteristic path length) in
young adults,43 and the structural efficiency of networks has been negatively associated with
age, and positively correlated with processing speed, visuospatial and executive functions.44

3. Disruption of functional networks is associated with clinical impairment
Imaging and lesion studies have led to valuable insights into the functional anatomy of the
brain, and localization principles are vital to the clinical neurologist. As outlined in the
introduction, however, localization-based perspectives often fail to explain the complex
interrelationship between neurodegenerative pathology and clinical symptoms. Even ‘focal’
lesions like stroke (e.g. ‘strategic’ infarction), brain tumour or traumatic brain injury can
cause widespread disturbance of functional connectivity and unexpected cognitive
symptoms that can be explained by a variety of lesion locations.45-47 There is also
increasing evidence that local damage can change the overall network structure in a way that
can lead to pathological hypersynchronization and epilepsy.48 In an elegant simulation
study,49 the effect of focal brain lesions on the patterns of functional connectivity was
investigated by simulating lesions at different brain locations. The study showed that focal
lesions located in the precuneus, medial anterior cingulate cortex, temporo-parietal junction,
or superior frontal cortex produced widespread and pronounced changes in functional
connectivity with intra-hemispheric and contralateral regions. Conversely, lesions to the
visual or motor cortex had limited effects on global connectivity.49 Neurodegenerative
processes, characterised by gradual and selective spreading of pathology across brain
regions, might cause a progressive targeted network injury, leading to specific
“disconnection syndromes” and progressive cognitive dysfunction.50,51 The difference
between neurological disorders due to focal lesions and most neurodegenerative diseases is
that in the former case networks are affected at random, with no specific topographic and
chronological pattern, whereas in the latter case networks are affected with a relatively
stereotyped sequence. Network analysis may therefore help to explain the link between local
damage, long-range disconnection, and more widespread physiological and clinical
dysfunction. Literature in this emerging field is still scarce but already points to intriguing
new hypotheses, as described in this section.

3.1 Alzheimer's Disease
AD results from deposition of Aβ in the neocortex and HP-tau in the entorhinal cortex and
hippocampus.52,53 More recent evidence suggests that even earlier HP-tau-related
neurofibrillary changes may occur in the brainstem dorsal raphe nucleus or the locus
ceruleus.54 In humans HP-tau pathology is associated with memory deficits,55 whereas Aβ
deposition is not directly related to cognition,55 but shows topographical correspondence
with the DMN.56 Moreover, the sequence of functional and structural disruption within and
between DMN regions is reminiscent of the spread of tau pathology. Buckner et al. mapped
in vivo PIB-PET Aβ deposition in patients with AD and cortical hubs in healthy controls and
showed that regions of high Aβ deposition in patients largely overlap with DMN cortical
hubs in the healthy brain, especially the posterior cingulate cortex.56 Disruption of DMN
regions in AD has been consistently reported by resting-state fMRI studies using ICA or
seed-based methods.57-61 Similar changes have been reported in subjects with mild
cognitive impairment, a condition which is believed to often represent pre-clinical AD.62-64

Early DMN functional disruption in AD involves the medial temporal lobe and posterior
cingulate cortex/precuneus,57,58,62,63 subsequently worsening and extending to the lateral
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parietal and medial frontal regions with increasing disease severity.59 Structural connectivity
disruption follows a similar pattern: the posterior WM tracts, connecting the hippocampus/
medial temporal lobe with the posterior cingulate cortex and the limbic regions, are affected
first,65-67 whereas frontal WM tracts (genu of corpus callosum, anterior cingulum) are
minimally affected, except for the uncinate and arcuate fasciculi, which connect temporal to
frontal cortex.66-68 Electrophysiological studies are consistent with fMRI studies in
reporting a reduction of cortico-cortical connectivity in AD. EEG and MEG analyses have
shown reduced connectivity between long distance fronto-parietal and fronto-temporal
regions in the alpha and beta frequency bands.69-71 These frequency bands show good
topographic correspondence with the DMN and the greatest correlation between EEG power
and DMN fMRI fluctuations.72,73

When tau pathology has extended through the entire network, cognitive deficits generally
involve multiple domains and patients will have developed overt AD. Therefore the
breakdown of this network due to neurodegeneration may track progression to dementia. In
subjects with mild cognitive impairment, preliminary evidence indicates that reduced DMN
connectivity is a significant predictor of conversion to AD independently of global
atrophy.74 Interestingly, the predictive value of DMN connectivity was no longer significant
when memory performance was taken into account,74 suggesting that functional
connectivity changes are related to memory deficits.

In addition to reduced DMN connectivity, increased intrinsic connectivity has been reported
by several resting-state fMRI studies between frontal-parietal regions.59,61,63 The basis for
these connectivity increases remains unclear; although some authors suggest that they
represent compensatory mechanisms,59,61,63 there is as yet no evidence that such changes
improve cognition. An alternative explanation is that damage to one network enhances
connectivity within regions that normally feature an anti-correlated relationship with the
damaged network.58

Graph theoretical analysis of network organization in AD has shown a loss of small-world
structure toward a more ‘random’ network topology,75-78 indicated by a reduction in the
clustering coefficient values,75,76,78 and lower characteristic path length.75,77,78 The
topography of network abnormalities assessed with this technique is in line with previous
studies, showing reduced connectivity in the hippocampus and posterior parietal regions
with fMRI,76,77 and in the alpha (8-10Hz) and beta (13-30Hz) frequency bands with
MEG.75,78 In addition, Stam et al. have shown greater ‘hub’ vulnerability in AD, as
simulated targeted attacks to highly connected nodes better explained the network changes
observed in the alpha frequency band than ‘random’ removal of nodes.75 A single study has
assessed structural network connectivity, reporting abnormal network topology in AD.79

3.2 Frontotemporal dementia
FTD refers to a group of clinical syndromes associated with underlying frontotemporal
lobar degeneration (FTLD) pathology. Three major clinical syndromes are recognized: a
behavioural variant (bvFTD), which presents with social-emotional dysfunction, and two
primary progressive aphasia (PPA) subtypes, the semantic and nonfluent/agrammatic
variants.80 A high proportion of FTLD cases present associated motor neuron disease. A
third PPA subtype, the logopenic variant, has been included in the recently revised
diagnostic criteria,81 although many patients with this variant show underlying AD at
autopsy. FTLD pathology, in turn, can be divided into three major molecular classes based
on the underlying disease protein: tau (FTLD-tau), TDP-43 (FTLD-TDP), or FUS (FTLD-
FUS).80 For some clinical syndromes, such as semantic variant PPA and FTD with motor
neuron disease, the underlying FTLD molecular class can be predicted with good confidence
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during life.82,83 For other syndromes, such as bvFTD, existing criteria do not reliably predict
the underlying molecular pathology.83

Recent work has revealed that bvFTD syndrome, like typical AD, reflect the progressive
degeneration of a specific large-scale network, the “salience network”.6,84 This network is
involved in processing emotionally significant stimuli and is inversely correlated with the
DMN in task-free settings,28 leading Seeley and colleagues to predict that bvFTD and AD
would feature divergent network connectivity patterns.85 This hypothesis was subsequently
tested using task-free fMRI and ICA analysis of the DMN and salience networks in patients
with bvFTD and AD.58 The study identified divergent patterns in the two clinical groups,
with reduced salience network connectivity and increased DMN connectivity in bvFTD and
the opposite pattern in AD. In addition, reduced salience network connectivity in bvFTD
patients was associated with greater disease severity.58 A score incorporating DMN and
salience network connectivities better discriminated between the two clinical groups than
did either network alone,58 suggesting that network-based patterns which are sensitive to
decreases and increases may prove more specific to a given disease. Studies of structural
connectivity in bvFTD support the disruption of specific frontal-temporal WM tracts, such
as the bilateral uncinate and anterior cingulate tracts.66,86 The FTD language syndromes
(PPAs) have not yet been directly investigated with resting-state network mapping, however
atrophy-mapping studies suggest that they are likewise associated with degeneration of
specific networks.84 DTI studies indeed support the disruption of specific WM tracts within
the PPA-targeted networks.86,87

Neurophysiological literature on functional networks in FTLD is almost non-existent. One
resting-state EEG study assessed functional connectivity in AD, FTLD, and persons with
subjective memory complaints, and failed to find group differences.88 A subsequent MEG
study of network organization in FTD patients however showed changes in the opposite
direction to that observed in AD patients, toward an overly regular, ordered topology.78 This
intriguing contrast aligns with resting-state fMRI results in AD and FTD58 to suggest that
these disorders may exert divergent effects on large-scale networks (Figure 5),89 and that
these effects may help distinguish these disorders during life.

Whether the underlying FTD molecular class can be identified by its impact on network-
specific connectivity, however, remains unknown. Considering the role of anatomy (rather
than the specific misfolded protein) in driving the clinical syndrome, there is reason to
suspect that anatomically based methods (including resting-state network mapping) may
struggle to reliably differentiate patients with bvFTD due to FTLD-tau vs. FTLD-TDP vs.
FTLD-FUS, for example. On the other hand, it remains possible that to date bvFTD remains
an overly inclusive clinical syndrome. If so, further clinical or anatomical differentiation
may improve our ability to predict pathology during life.90,91

3.3 Parkinson's Disease and Dementia with Lewy bodies
PD and DLB are two neurodegenerative syndromes associated with deposition of alpha-
synuclein-containing Lewy bodies and Lewy neurites within brainstem, limbic, and cortical
neurons.92 In spite of a common molecular substrate, PD and DLB syndromes show
important differences with regard to the timing and severity of symptoms.93 A proportion of
patients with PD develop dementia in later disease stages (Parkinson disease dementia,
PDD), clinically resembling DLB.93

Available evidence suggests that PD and DLB are associated with distinct patterns of
functional network dysfunction, namely increased basal ganglia-thalamocortical
connectivity in PD and reduced global and local cortico-cortical connectivity in patients
with dementia. The basal ganglia-thalamocortical loop includes the striatum, globus
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pallidus, thalamus, subthalamic nucleus, and substantia nigra; and cortical motor areas
(primary motor cortex, supplementary motor area, premotor cortex).94 Resting-state fMRI
studies of this network have consistently reported increased connectivity between the basal
ganglia and motor regions in PD patients.95-98 These network abnormalities were
normalised after levodopa administration.95,98 In addition, reduced connectivity within this
network has been reported by resting-state fMRI studies between the putamen and parietal
and motor areas.95,96 Resting-state EEG/MEG studies reported increased connectivity in the
alpha and beta (8-30 Hz) frequency ranges, between the subthalamic nucleus and the motor
cortex,99 and cortico-cortically.100 A resting-state MEG study of patients in early, drug-
naive stages showed an increase in alpha band (8-10 Hz) cortico-cortical functional
connectivity that expanded toward other frequency bands (4-30 Hz range) with increasing
disease severity.101 Increased connectivity affected both global and local connections and
was associated with motor deficits.100,101 Less clear is whether levodopa administration and
deep brain stimulation normalise these abnormalities, as one study showed a normalization
of connectivity after intervention in association with motor improvement,100 and another
showed a further increase in connectivity.99 In PDD, preliminary studies indicate a different
pattern, with decreased functional connectivity reminiscent of the changes in AD.102 In
DLB, the most consistent finding is a reduction of global cortico-cortical coherence in the
alpha (8-13Hz) frequency band.103-105 A MEG study specifically assessed coherence in long
(anterior and posterior) and short (lateral and medial) cortico-cortical connections, reporting
more pronounced loss of connectivity in long- than short-distance connections in this
frequency band.103 Inconsistent changes have been reported in the delta (0·5-4Hz) frequency
range.104,105

In PD and DLB, a clear correspondence between structural and functional connectivity
changes in specific networks is difficult to draw, in part because DLB has yet to be linked to
a particular network detectable with resting-state fMRI.106 DTI demonstrates
microstructural abnormalities in the basal ganglia of PD patients,107-109 but evidence of
structural disconnection within this circuit is limited.109,110 Reduced connectivity in the
frontal and parietal association tracts has been reported but without detecting a clear pattern
of WM involvement.111-113 PD patients who develop dementia show a specific involvement
of the posterior cingulum compared with both PD and controls.114,115 In DLB, the most
consistent finding is a reduction of connectivity in the inferior longitudinal
fasciculus,114,116-118 which connects the posterior temporal and occipital visual cortices, a
finding in line with the occurrence of visual hallucinations in these patients.116 In addition,
DLB patients show reduced connectivity between fronto-temporal and fronto-occipital
regions compared to controls.114,118 This pattern of WM disruption is overall similar to that
detected in patients with PDD,114 and AD,118 but damage in the visual association areas is
more pronounced in DLB than in other dementias.114,118 Because these studies were based
on patients diagnosed on clinical grounds, whereas DLB and AD pathologies often co-occur
at autopsy,119 it is perhaps not surprising that efforts to date show significant overlap in the
patterns of network disruption in DLB and AD.103,116,118

Graph theory studies of network organization in PD, PDD and DLB are scarce. One study
investigated motor circuits connectivity in PD, reporting abnormal basal ganglia-
thalamocortical connectivity in line with previous fMRI studies,120 and another study
showed reduced global efficiency.121

3.4 Neurobiological and clinical implications of network disruption
Research findings reviewed here demonstrate that functional neuroimaging is able to detect
distinct patterns of network disruption across the major neurodegenerative diseases (Table
2). These networks are relatively specific to the clinical profiles and may represent
intermediate phenotypes between pathology and clinical syndromes. In AD, the topography

Pievani et al. Page 8

Lancet Neurol. Author manuscript; available in PMC 2012 September 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



of Aβ deposition overlaps with the DMN, broadly defined, whereas HP-tau pathology is
most prominent within a DMN subnetwork devoted to episodic memory.122 In FTD, the
salience network is profoundly disrupted in the behavioural variant. In PD, alpha-synuclein
pathology affects the cortico-striatal motor loops. In DLB, forebrain alpha-synuclein
deposition has not been matched to a specific network with resting-state techniques, but
neuropathological evidence supports an ascent through the brainstem to the limbic and
cortical regions associated with clinical symptoms.92 Disruption of ascending brainstem
projection systems may soon prove detectable with network-based methods.123

Important network differences have emerged from comparisons between PD, PDD and
DLB, with an opposite EEG-pattern of connectivity associated with dementia onset
(increased versus decreased connectivity). Interestingly, PDD and DLB changes were less
severe though similar to those of AD with respect to the involvement of long-distance
connections, although molecular in vivo and post-mortem studies do not support an
Alzheimer's etiology.119,124 With regard to longdistance connections, hub regions may play
a key role.125 Posterior parietal regions are among the brain regions with the highest
connectivity, consistent with their role as multimodal association areas.126 Damage to
heteromodal association hub regions, as seen prominently in AD,56,75 may prove
particularly disruptive by dis-integrating unimodal and polymodal representations that
normally converge at hubs after being processed in secondary and association cortices.126 In
PD cognitive symptoms are generally milder than in AD, and pathology targets the motor
circuits, whose damage may have more restricted effects on whole brain connectivity.49

Future studies will likely elucidate whether the relatively preserved cognition in PD is
explained by the relative sparing of cortical hub regions until late disease stages.115

From a clinical perspective, further pursuit of network-based strategies may lead to the
development of sensitive and specific biomarkers for diagnostic, prognostic, and disease-
monitoring purposes. Although the reviewed studies were conducted at the group level,
preliminary data about the sensitivity/specificity of network-derived markers seem
promising. In AD, two studies have explored the accuracy of resting fMRI derived-markers
to discriminate between AD patients and healthy elderly, reporting a sensitivity of 85% and
a specificity of 77% using DMN connectivity,57 and a sensitivity of 72% and a specificity of
78% using the clustering coefficient.76 In the study by Zhou and colleagues,58 the
combination of DMN and salience network activity allowed 100% separation of AD and
FTD, although the performance of these measures remains to be tested in independent
patient samples. Task-free fMRI and EEG/MEG techniques also offer practical advantages
over existing biomarkers, such as PET and cerebrospinal fluid sampling. In general, these
techniques are non-invasive and safe. Task-free fMRI data can be obtained in eight minutes
and added to the structural MRI most patients receive as part of a routine dementia
evaluation, creating minimal new costs for data acquisition. Moreover, fMRI and EEG/MEG
can be repeated as often as necessary (within clinical trials, for example), without
radioactivity exposure concerns. On the other hand, some factors might hurdle the clinical
implementation of these techniques in the short term. The expertise to analyse these data is
yet confined to few centres and the analysis itself is time-consuming.

4. Conclusions
4.1 Connectivity studies in the larger context

Brain connectivity studies allow to address questions that have so far escaped a convincing
answer. For example, what is the mechanism whereby in AD the deposition of Aβ and HP-
tau takes place in largely distinct but highly interconnected hub regions? Why damage
ensues to the whole network? Similar questions apply to alpha-synuclein in DLB and tau,
TDP-43, and FUS in FTD. Several working models for network-based molecular
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pathogenesis have begun to emerge. One parsimonious account contends that misfolded
disease proteins first spread intraneuronally, like prions, by inducing misfolding of adjacent
normally folded (or unfolded) proteins.127-130 This process may then move from pre- to
post-synaptic cells via one of several transmission modes.127 Evidence supporting a prion-
like mechanism has come from cellular and rodent models of tau, alpha-synuclein, and Aβ
disorders,127-129 as well as from patients with PD who received transplanted dopaminergic
neurons from fetal donors only to develop Lewy bodies within those neurons a few years
after transplantation.130 Other models emphasize the role of network-based dysregulation of
excitation-inhibition balance (especially at the local microcircuit level),131 disruption of
activity- or connectivity-based inter-neuronal trophic factor support,132 and the long-term
metabolic demands of high synaptic plasticity and turnover.133,134 These accounts need not
be considered mutually exclusive and each presents a potential therapeutic target for
exploration.

Finally, although the mechanisms noted above are built around the idea that networks
constrain and determine the anatomical disease pattern, apparent network-based spread
could emerge, in a network-independent manner, if individual nodes within each target
network possessed differential vulnerability to the disease process, leading those nodes to
succumb sequentially according to their vulnerability. These mechanistic considerations
raise the question of whether neurodegenerative diseases should be considered primary
diseases of networks. Alternatively, networks might be damaged and disrupted in these
illnesses without representing the most relevant primary target. One ecumenical framework
might suggest that these diseases begin by targeting selectively vulnerable, region-specific
neuron classes, such that early-stage disease is best considered a primary “neuron-opathy”.
Next, the disease may spread within local microcircuitry, producing accentuated damage
within the site of initial injury. Long-range disease spread, during a next phase, might be
uniquely constrained by the long-range connectivity profile of the early-affected neurons
and microcircuits, such that later-stage disease is most accurately regarded as a “network-
opathy” and will require or benefit from treatments that target mechanisms of network-based
disease propagation.

4.2 Technical issues and limitations
The analysis of functional networks is a multi-step procedure, in which methodological
choices and assumptions must be made. The choice of the post-processing techniques such
as artifact reduction, filtering, normalization, and nuisance variable regression can influence
the results. Both ICA and seed-based analysis of fMRI data have technical and practical
limitations that remain to be addressed and have been outlined in a recent review.135

Similarly, graph theoretical network investigation requires methodological decisions that
can bias outcomes and conclusions. For example, appropriate statistical thresholding for
network definition and extraction remains a critical issue for this approach.14 In addition, it
is important to recognize that the spatial resolution of present EEG/MEG recording
techniques poses limitations on the measurement of deep brain neuronal activity and
therefore on the interpretation of the results.33 Finally, data about the sensitivity, specificity
and reliability of task-free fMRI and EEG/MEG data are still limited.136 However, despite
these important limitations, recent brain connectivity studies using different recording
techniques and analytical approaches show converging results,137 suggesting that a more
cohesive view of brain (dys)function in dementia may arise from the study of networks.

4.3 Future directions
In broad terms, the study of functional network disruption in the degenerative dementias is
in its infancy. Some conditions, such as AD, have been widely investigated with the
described approaches. Other illnesses, such as PDD and DLB, as well as FTD language
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variants, largely remain to be explored. In PD and DLB, a disease-specific ICA networks
has not yet been identified with task-free fMRI, but recent work suggests a link to a basal
ganglia network, anti-correlated with the DMN, which might be affected in these
disorders.123 Similarly, graph theoretical approaches may be used to assess functional
changes in the PD spectrum. In addition, novel and more sophisticated approaches such as
Bayesian network modelling may provide additional markers of connectivity by assessing
causal relationships between nodes. Preliminary findings from the analysis of DMN with
this method in AD look promising.138

In the coming years, technical improvements will help refine the topography of network
degeneration. In addition, a complete understanding of network organization will require
knowledge of how brain structure influences brain function, and vice versa. Strictly
speaking, functional connectivity is unrelated to anatomy, i.e. functionally connected
regions may show no direct structural connection, although the presence of structural
connectivity generally implies functional connectivity.139,140 For some brain regions, a
functional connection might be established by intermediate regions or through a common
source that drives activity in both regions. Efforts are under way to integrate structural and
functional connectivity into a common framework. Important advances are expected from a
recently funded $40M NIH project, which aims to identify the brain network architecture by
using advanced diffusion imaging with fMRI and EEG/MEG recordings (The Human
Connectome Project; http://www.humanconnectomeproject.org/).

How might increasing focus on functional brain networks lead to more effective dementia
therapies? The first hope relates to patient categorization, and AD provides an illustrative
example. Among healthy older persons without cognitive impairment, high levels of brain
Aβ are suspected to represent preclinical AD.141 Pinpointing presymptomatic, Aβ-associated
network disruption, as reported in several recent studies,142,143 might identify a subgroup
most likely to benefit from a disease-modifying pharmacological treatment. Similarly,
network analysis may provide sensitive markers of preclinical FTD (e.g., in gene mutation
carriers) and help to distinguish patients on the PD-DLB spectrum. Other approaches may
seek to recalibrate networks directly. Phase I trials of deep brain and transcranial magnetic
stimulation targeting cognitive circuits have shown improvement of network-wide metabolic
function or cognitive function in patients with AD.144,145 Finally, task-free fMRI and
neurophysiological methods provide attractive candidates for longitudinal, disease-
monitoring biomarkers due to the safe and repeatable nature of these techniques. Whether
these methods will prove successful in detecting and monitoring clinical change is a
question that awaits future studies. In light of cross-sectional correlations between network
connectivity strength and clinical severity,58,59 cautious optimism seems justified.
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Search strategy and selection criteria

References for this Review were identified through searches of PubMed with the search
terms “network”, “network dysfunction”, “connectivity”, “resting state functional MRI”,
“electroencephalography”, “magnetoencephalography”, “diffusion tensor imaging”,
“tractography”, “dementia”, “neurodegenerative disorders”, “frontotemporal dementia”,
“Alzheimer”, “mild cognitive impairment”, “Parkinson”, “Lewy bodies dementia”,
“stroke”, “tumour” from 1986 until June, 2011. In addition, articles were identified
through searches of the references of articles. Only papers published in English were
reviewed. The final list of publications was selected by the authors on the basis of
relevance to the topic.
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Panel 1Glossary of basic network concepts

Network A mathematical representation of a complex system made of a
finite number of nodes and links (see below). Many real-world
complex systems, such as biological, social, and neuronal
systems, can be modelled as networks.

Node A basic network element.

Link (or edge) A connection between two nodes.

Neural
network

A complex system whose node and links are represented by
neurons and connections between them. Neural networks can
be defined at multiple scales: microscopic (neurons and
synapses), meso-scale (neural assembles and circuitry),
macro-scale (anatomical regions and fiber tracts). Connections
can be either structural or functional (see below). Node choice
largely depends on the technique used. Common choices for
imaging and neurophysiological techniques are grey matter
regions and electrodes.

Functional
connectivity

The presence of functional connections between nodes (e.g.,
synchronous neuronal oscillations). Functionally connected
nodes may show no direct physical connection.

Structural
connectivity

The presence of physical connections between nodes (e.g.,
fiber tracts).

Module Subset of network nodes with high internal connectivity.
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Panel 2Glossary of graph theory terms

Graph A visual representation of a network

Graph theory A branch of mathematics investigating network characteristics
such as topology (i.e., network structure), cost, efficiency and
robustness (see below).

Degree The total number of connections (edges) of a node. Can be
averaged over the whole network to obtain a global measure of
connection density or ‘wiring cost’.

Hub A highly connected node (i.e., with a high degree). These nodes
are relevant for efficient network communication, and damage
to these nodes may be especially disruptive for network
integrity.

Clustering
coefficient

The interconnectedness of a node's immediate neighbours (note
that neighbouring nodes need not be anatomically proximal).
Clustering coefficient values can be averaged over a region to
obtain a measure of local connectivity.

Path length The travel distance (number of intermediate links) from one
node to another. Path lengths between all nodes in a network
can be averaged to obtain the ‘characteristic’ path length, which
is a measure of global connectivity.

Small-world
network

A network topology characterised by a high clustering
coefficient coupled with a low characteristic path length. This
network structure is presumed to be optimal for efficient
communication between regions, and it can be found in many
real-world systems, including neural networks.

Random
network

A network topology characterised by lower clustering
coefficient and characteristic path length than small-world
networks.

Efficiency The inverse of the ‘characteristic’ path length, is considered a
measure of information processing capability.

Robustness Resilience of a network against damage to nodes or links. This
property is influenced by factors such as the degree, clustering
coefficient and the presence of hubs.

Modularity Extent to which a network can be described as a set of
interconnected sub-networks (‘modules’). Modular networks
are often relatively efficient and robust, and many real-world
networks (including neural networks) can be considered
modular.
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Figure 1.
The pathophysiological framework of neurodegenerative diseases: connectivity as an
intermediate phenotype between pathology and symptoms. The case of AD.
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Figure 2.
Functional connectivity on resting-state fMRI in healthy subjects. ICA-derived resting-state
fMRI networks (DMN, salience, left and right executive-control, visual and motor
networks)26-28 of a healthy 33-year old male. Red-to-yellow colours indicate the strength of
each voxel's connectivity to overall component time series (shown beneath each map).
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Figure 3.
Functional connectivity of resting-state EEG/MEG in healthy subjects. Headplot showing
functional MEG network of a healthy 63-year old female in the alpha (8-13 Hz; left) and
beta (13-30 Hz; right) frequency ranges.13 Coloured lines indicate different functional sub-
networks (modules), black lines represent their interconnections (only visualized in beta
band example). Background colours indicate connectivity strength (red indicates hub – i.e.
highly connected -regions). SL=synchronization likelihood.13 A=Anterior; P=Posterior;
L=Left; R=Right.
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Figure 4.
Structural connectivity assessed with DTI in a healthy (33-year old male) subject. DTI-
tractography identifies long (mainly visible in sagittal view as green and blue colour-coded
fibers) and short (mainly visible in axial and coronal views as red colour-coded fibers) WM
connections. Specific tracts can be identified which subserve distinct cognitive and non-
cognitive functions. The fornix and cingulum are mainly associated with memory and
emotional processing, cortico-cortical association and intra-hemispheric tracts are associated
with a broad range of cognitive processes, the corticospinal/cerebellar tracts are generally
involved in motor disorders.36
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Figure 5.
Schematic representation of (B) ‘small-world’ brain functional network and of (A) simulated
‘regular’ and (C) ‘random’ networks with the same number of nodes (n=35) and connections
(n=120). (A) Regular networks have many connections among neighbouring regions (red
lines) and few connections with distant nodes (light blue lines). (B) Small-world networks
have less local connections and more long distance connections. (C) Random networks have
few local connections and many connections among distant regions. Each network is shown
overlaid onto a standard template (upper row) and in schematic representation (middle row).
Nodes represent 35 cortical points of the left hemisphere drawn from the Automated
Anatomical Labeling template, and edges represent functionally connected nodes. The real-
world network was extracted from a single subject, the corresponding regular (A) and
random (C) networks were simulated using the Brain Connectivity Toolbox.89 The
corresponding theoretical Watts-Strogatz network models are also shown (lower row;
adapted from ref 38). Reproduced from Nature Publishing Group (permission requested).
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