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Abstract
Alkene insertion into Pd–N bonds is a key step in Pd-catalyzed oxidative amidation of alkenes. A
series of well-defined Pd(II)-sulfonamidate complexes have been prepared and shown to react via
insertion of a tethered alkene. The Pd–amidate and resulting Pd–alkyl species have been
crystallographically characterized. The alkene insertion reaction is found to be reversible, but
complete conversion to oxidative amination products is observed in the presence of O2.
Electronic-effect studies reveal that alkene insertion into the Pd–N bond is favored kinetically and
thermodynamically with electron-rich amidates.

The discovery of PdII-catalyzed oxidative coupling of ethylene and water (the Wacker
Process) >50 years ago inspired extensive efforts to develop methods for the oxidative
amination of alkenes (aza-Wacker reactions).1 Early studies showed that many alkyl- and
arylamine nucleophiles coordinate strongly to PdII and inhibit catalytic turnover, and
therefore much of this work focused on stoichiometric reactions of nitrogen nucleophiles
with preformed PdII–alkene complexes.2 In 1982, Hegedus and McKearin demonstrated that
p-toluenesulfonamides (tosylamides) could be used in catalytic intramolecular aza-Wacker
reactions, with benzoquinone as the oxidant.3 More recently, amide-type nucleophiles have
been used in aerobic oxidative amination reactions,4 including enantioselective5 and
intermolecular6 applications. Mechanistic studies suggest that these aza-Wacker reactions
often proceed via alkene insertion into the Pd– N bond of the amidate ligand, not attack of a
nitrogen nucleophile onto a PdII–coordinated alkene.7,8 The first fundamental studies of
alkene insertion into Pd–N bonds have been reported only recently by the groups of Wolfe
and Hartwig with PdII–anilide complexes.9–11 Analogous reactions with Pd–amidates are
unknown. Here, we describe well-defined PdII–sulfonamidate complexes that undergo
alkene insertion into the Pd–N bond, and the reaction is shown to be reversible. The
presence of O2 influences the fate of the resulting alkyl-PdII species. These observations,
elaborated below, have important implications for catalytic reactions, including oxidative
and non-oxidative transformations.

A well-defined PdII–sulfonamidate complex, suitable for fundamental investigation, was
prepared by adding a solution of (tBu2bpy)PdCl2 (1, tBu2bpy = 4,4′-di-tert-butyl-2,2′-
bipyridine) to a suspension of sodium tosylamidate (2a) in CH2Cl2 at room temperature. The
air- stable Pd-amidate complex 3a was obtained in good yield (eq 1) and was characterized
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by 1H and 13C NMR spectroscopy, mass spectrometry and X-ray crystallography (Figure 1,
left).12 Initial attempts to observe alkene insertion into the Pd–N bond of 3a were carried out
in benzene, THF and dichloromethane, but no reaction was observed (Scheme 1). In
chloroform, however, 3a reacted very slowly at room temperature, affording the alkyl-PdII

amidopalladation (AP) product 4a in good yield (Figure 1, right). At higher temperatures, 4a
underwent further reaction via β-hydride elimination and could not be obtained cleanly from
the reaction mixture. The reaction proved to be much more efficient in dimethylsulfoxide
(DMSO) as the solvent, proceeding in 84% yield in 12 h.

(1)

The beneficial effect of a polar solvent (DMSO) suggested that the reaction proceeds via an
ionic intermediate. At least two reasonable ionic mechanisms can be considered: (1)
dissociation of the amidate, followed by alkene coordination and nucleophilic attack of the
pendant amidate on the alkene (trans-AP), or (2) chloride dissociation, followed by alkene
coordination and insertion into the Pd–N bond (cis-AP), and reassociation of the chloride
ligand to the PdII center. Two experimental observations provide support for the latter, cis-
AP pathway. Addition of chloride to the reaction mixture strongly inhibits the reaction
(Figure 2), consistent with a mechanism involving pre-equilibrium dissociation of chloride
prior to the AP step. In addition, we prepared a Pd-sulfonamidate complex with a
stereochemically defined, deuterium-labeled substrate probe (5, Scheme 2).13 The reaction
of this complex under an atmosphere of O2 led to products 6 and 7, which arise from cis-AP
of the alkene, followed by β-hydride elimination. No products arising from competing trans-
AP of the alkene were observed.

As expected from the reaction illustrated in Scheme 2, the alkyl-PdII complex 4a is
susceptible to β-hydride elimination. Heating a DMSO solution of 4a to 60 °C under aerobic
conditions led to a mixture of isomeric products 8a, 8a′ and 8a″ (eq 2).14 A different
outcome was observed, however, when the reaction was performed under anaerobic
conditions: the β-hydride elimination products 8a–8a″ were obtained in 50% yield, together
with a 40% yield of 4-pentenyl tosylamide 9 (eq 3).

(2)
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(3)

The formation of 9 in eq 3 was unexpected, but this result can be rationalized if alkene
insertion into the Pd–N bond is reversible (i.e., 4a ⇆ 3a). According to the mechanism in
Scheme 3, β-hydride elimination from 4a forms the enamide products 8a–8a″ together with
a PdII–hydride species 10. In the absence of O2,15 HCl can form via reductive elimination
from 10 and react with 3a to afford the alkenyl tosylamide 9. This proposal implies that HCl
reacts much more rapidly with 3a than with 4a. In order to test this hypothesis, excess HCl
(~60 equiv) was added to a DMSO-d6 solution of 4a at room temperature. Rapid and
quantitative formation of 9 was observed in this reaction, together with (tBu2bpy)PdCl2 (1,
eq 4); pyrrolidine 11, the product of protonolysis of the Pd–C bond of 4a, was not observed.

(4)

Additional, more-direct evidence for reversible amidopalladation of the alkene was obtained
in the investigation of a series of substituted PdII-sulfonamidate complexes (Figure 3). The
reactions of four different para-substituted benzenesulfonamidate complexes [X = Me (3a),
OMe (3b), Cl (3c) and NO2 (3d)] were monitored by 1H NMR spectroscopy at 30 °C in
DMSO-d6 under aerobic conditions (Figure 3a). Each of the Pd complexes underwent clean
amidopalladation of the alkene to afford an equilibrium mixture of complexes 3a–d and the
corresponding alkyl–PdII species 4a–d (Figure 3b), together with slower concomitant
formation of heterocycles 8–8″a–d via β-hydride elimination from 4a–d. The data were fit
to a simplified kinetic model, 3 ⇆ 4 → 8–8″, that enabled quantitative comparison of
kinetic and thermodynamic constants associated with the two observable steps (Figure 3c).
Electronic effects on these parameters were probed via Hammett analysis (Figure 3d).16

Alkene insertion into the Pd–N bond (i.e., cis-AP, k1) is favored for electron-rich amidates.
This trend is similar to that observed previously for irrreversible alkene insertion into Pd–
anilides, and it is consistent with an alkene insertion mechanism that formally corresponds
to intramolecular nucleophilic attack of the amidate ligand onto the coordinated alkene.9 The
reverse reaction, β-amidate elimination, (k−1) is favored for electron-deficient amidates
(Figures 3c and 3d). Together, these trends cause the equilibrium constant to be largest for
the p-Me derivatives 3/4a (K1 ~ 10) and smallest for the electron-deficient p-NO2 derivative
3/4d (K1 ~ 1) (Figure 3c). That K1 is largest for the p-Me, and not the p-OMe derivative,
appears to reflect the lack of “resonance” electronic effects in the amidate elimination step
k−1; the Hammett correlation for k−1 is best fit with the “inductive” Hammett parameter σI,
rather than σp, which incorporates both resonance and inductive effects. The k2 values
estimated from these fits show that β-hydride elimination is favored with more-electron-rich
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derivatives, consistent with a formal “hydride”-transfer mechanism in which electron-
donating groups stabilize the build-up of positive charge on the adjacent carbon atom in the
transition state. The combined electronic effects, K1·k2, reveal that the p-Me (tosylamidate)
derivative 3a is the most reactive complex toward formation of the oxidative amidation
products 8–8″.

Overall, these observations have important implications for catalysis. For example, the
development of enantioselective Wacker-type oxidation reactions has been a long-standing
challenge in the field of asymmetric catalysis.17 Alkene insertion into the Pd–N bond of 3a
results in formation of a new stereogenic center (Scheme 1), and such steps provide the basis
for enantioselective oxidative amination reactions (e.g., eq 5).5c Recent work has
highlighted the importance of controlling the stereochemical course of the nucleopalladation
step in enantioselective reactions (i.e., cis- vs. trans-nucleopalladation).1f The results
reported here reveal that nucleopalladation could be reversible, in which case β-hydride
elimination or another termination step will be the stereochemistry-determining step of the
reaction. To our knowledge, this possibility has not been considered previously in Wacker-
type reactions.

(5)

Reversible C–N bond formation has been observed in reactions involving trans-AP of an
alkene,18 but reversible insertion of an alkene into a Pd–N bond has not been observed
previously. The latter observation, combined with the significantly more-facile protonolysis
of Pd–N bonds relative to Pd–C bonds (cf. eq 4), represents a key challenge for the
development of Pd-catalyzed hydroamination reactions that proceed via cis-AP pathways.

In summary, this study has led to key insights into reactions of PdII–sulfonamidates with
alkenes, perhaps most notably demonstrating that alkene insertion into the Pd–N bonds of
such species is facile and reversible. This work provides an important foundation for more-
thorough characterization of cis-amidopalladation reactions relevant to important catalytic
transformations.
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Figure 1.
X-ray crystal structures of 3a (left) and 4a (right) with thermal ellipsoids shown at 40% and
50% probability level, respectively. Most hydrogen atoms have been omitted for clarity.12
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Figure 2.
Chloride inhibition on amidopalladation for 3a
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Figure 3.
Kinetic studies of alkene insertion/β-hydride elimination reactions of four PdII–
sulfonamidate complexes. Conditions: 3.68 mM 3, 3.8 atm O2, DMSO, 30 °C, 7–12 h. Note:
Every fifth data point is shown to enhance clarity.
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Scheme 1.
Amidopalladation of an Alkene
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Scheme 2.
Isotopic Labeling Study Demonstrating that C–N Bond-Formation Proceeds via cis-
Amidopalladation
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Scheme 3.
Proposed Mechanism for the Parallel Formation of 8 and 9 under Anaerobic Conditions
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