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Abstract: Synchronized low-frequency BOLD fluctuations are observed in dissociable large-scale, distributed
networks with functional specialization. Two such networks, referred to as the task-positive network (TPN)
and the task-negative network (TNN) because they tend to be active or inactive during cognitively demand-
ing tasks, show reproducible anticorrelation of resting BOLD fluctuations after removal of the global brain
signal. Because global signal regression mandates that anticorrelated regions to a given seed region must
exist, it is unclear whether such anticorrelations are an artifact of global regression or an intrinsic property of
neural activity. In this study, we demonstrate from simulated data that spurious anticorrelations are intro-
duced during global regression for any two networks as a linear function of their size. Using actual resting
state data, we also show that both the TPN and TNN become anticorrelated with the orbits when soft tissues
are included in the global regression algorithm. Finally, we propose a technique using phase-shifted soft tis-
sue regression (PSTCor) that allows improved correction of global physiological artifacts without global
regression that shows improved anatomic specificity to global regression but does not show significant net-
work anticorrelations. These results imply that observed anticorrelations between TNN and TPN may be
largely or entirely artifactual in the resting state. These results also imply that differences in network anticor-
relations attributed to pathophysiological or behavioral states may be due to differences in network size or
recruitment rather than actual anticorrelations.Hum Brain Mapp 32:919–934, 2011. VC 2010Wiley-Liss, Inc.
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INTRODUCTION

The discovery of correlated spontaneous BOLD fMRI
fluctuations in functionally related brain regions [Biswal
et al., 1995] has subsequently led to the observation of dis-
tributed networks of synchronized BOLD signal [Damoi-
seaux et al., 2006; Fox and Raichle, 2007]. Seed-based
correlation and independent component analysis techni-
ques have allowed dissociation of dorsal and ventral atten-
tional [Fox et al., 2006], default mode [Greicius and
Menon, 2004; Greicius et al., 2003, 2008; Raichle et al.,
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2001], visual [Golland et al., 2007; Nir et al., 2006], sensori-
motor [Biswal et al., 1995; Cordes et al., 2000, 2001], sub-
cortical [Di Martino et al., 2008], memory [Vincent et al.,
2006], salience [Seeley et al., 2007], and executive control
networks [Seeley et al., 2007; Sridharan et al., 2008]. Such
networks show consistent anatomical boundaries corre-
lated with measures of structural connectivity [Greicius
et al., 2008; Hagmann et al., 2008; Honey et al., 2009] and
task-related activation [Smith et al., 2009].

Studies of higher level cerebral network architecture
have suggested a modular organization of the brain into
five primary modules corresponding to default mode or
task-negative network (TNN), attentional or task-positive
network (TPN), occipital/visual, sensorimotor/auditory,
and limbic/paralimbic networks [He et al., 2009], with re-
producible cortical hubs of connectivity in heteromodal
association cortex [Buckner et al., 2009]. Of these func-
tional connectivity networks, the TNN [Fair et al., 2008;
Fox and Raichle, 2007; Fransson, 2006; Greicius et al., 2003;
Raichle and Snyder, 2007; Raichle et al., 2001] and TPN
[Fox et al., 2005, 2006; Golland et al., 2007; Seeley et al.,
2007; Tian et al., 2007] have received greatest attention.

The TNN, consisting of regions in the posterior cingu-
late/precuneus, temporoparietal junction, medial prefron-
tal, hippocampi, and anterior middle temporal gyrus,
reproducibly shows decreases in activity across a wide
array of attentionally demanding tasks [Gusnard and
Raichle, 2001; McKiernan et al., 2003]. The TPN typically
shows increased activity for similar demanding tasks and
includes frontal eye fields, dorsolateral prefrontal cortex,
intraparietal sulcus, lateral parietal, frontoinsular, anterior
cingulate, and lateral occipital regions [Corbetta and Shul-
man, 2002; Fox et al., 2006]. Independent observations sug-
gest that these networks not only show opposite task-
associated activity, but may also show anticorrelated fluc-
tuations at rest [Fox et al., 2005; Fransson, 2005]. Such anti-
correlations, however, were masked by a strong global
signal resulting in high correlation of BOLD fluctuations
in nearly all brain regions [Macey et al., 2004].

This global signal represents a fundamental problem in
elucidating functional connectivity networks in that physi-
ological artifacts such as heart rate, respiration, and scan-
ner noise that are seen throughout the brain artificially
obscure synchronous correlations between brain regions.
This global signal results in most areas of the brain showing
significant correlation with each other, and a method for
removing this signal is necessary to improve anatomic speci-
ficity of connectivity networks. By removing this global sig-
nal through a technique such as global regression or related
strategy, TPN and TNN anticorrelations have been observed.
Also using this kind of technique, others have studied net-
work anticorrelations as a tool to understand high-level neu-
ral architecture [Kelly et al., 2008; Tian et al., 2007; Uddin
et al., 2008] and as a probe for neuropathology [Bluhm et al.,
2007; Wang et al., 2007; Williamson, 2007].

However, the validity of global signal regression has
been questioned as a preprocessing technique [Murphy

et al., 2009]. Global regression mathematically requires
some brain regions to become anticorrelated [Fox et al.,
2009; Murphy et al., 2009], allowing for the possibility that
such anticorrelations may be artifactual. Simulations indi-
cated that pure noise voxels may become anticorrelated
with a fluctuation of interest, and the effect increased as
the size of the network containing the fluctuation
increased [Murphy et al., 2009]. Therefore, areas that may
be anticorrelated after global regression simply reflect
areas that are uncorrelated or least correlated before global
regression [Murphy et al., 2009].

Subsequently, it has been argued that although such
spurious anticorrelations are possible, a neural basis for
network anticorrelations is likely [Fox et al., 2009]. Fox
and colleagues proposed three primary arguments for the
validity of observed network anticorrelations. First, they
observe that the global signal is not preferentially seen in
areas that become anticorrelated after global regression
and argue that the characteristic spatial distribution of
observed anticorrelations requires a biological basis. Sec-
ond, they demonstrate that improved anatomic specificity
is seen in connectivity maps following global regression,
suggesting that the technique improves detection of neu-
ral-based connectivity. Finally, they demonstrate that anti-
correlations are seen even in the presence of a modified
regression algorithm using as little as 5% of the global sig-
nal as a regressor [Fox et al., 2009].

To evaluate these interpretations of the validity of global
regression and network anticorrelations, we performed simu-
lations by varying the size and noise of two separate net-
works of interest to determine under what conditions
uncorrelated networks will become anticorrelated following
global regression. These results can explain why anticorrela-
tions are observed in a reproducible spatial distribution.

Soft tissue voxels do not contain neuronal elements as
the brain does and thus do not contribute to the BOLD
signal components related to neural activity. Yet, these tis-
sues are perfused and may allow characterization of global
signal contaminants related to physiological sources, scan-
ner drift, or other variation in time of blood oxygenation
levels not easily assessed with standard physiological
monitoring techniques. Using actual resting state data, we
also evaluated the effect of introducing such soft tissue
voxels of the face, calvarium, and scalp to the global
regression analysis and propose that similarly induced
anticorrelations in the soft tissues are a model for intro-
duction of spurious anticorrelations, lending support to
the claim that network anticorrelations after global regres-
sion are artifactual.

Finally, we propose an alternate method for correction
of the global signal that makes use of physiological wave-
forms as well as regressors obtained from subject motion
parameters, white matter, CSF, and soft tissues of the face
and calvarium (phase-shifted soft tissue correction
[PSTCor]) that shows improved anatomic specificity to
global regression, but does not exhibit significant network
anticorrelations.
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MATERIALS AND METHODS

Simulated Whole-Brain BOLD Time Series

To evaluate the conditions under which global signal
regression may artifactually induce network anticorrela-
tions, it is helpful to have a system where the actual rela-
tionship of the networks in question are known. We
therefore devised a simulation in which artificially gener-
ated BOLD data could be analyzed to observe the effects
of global regression. The simulated datasets included a
noise signal that varied from voxel to voxel, a superim-
posed global signal shared between all voxels, and signal
from two internally correlated networks, analogous to the
TPN and TNN (Fig. 1).

Brain noise was included in the simulation because it is
present in actual BOLD data, and because components of
the noise may be correlated or anticorrelated by chance to a
signal of interest, making noise an important parameter in
understanding the behavior of correlated networks. To best
approximate actual noise in the brain, we modeled the fre-
quency distribution of the noise after the frequency content
of spontaneous BOLD fluctuations [Anderson, 2008; Cordes
et al., 2001], which is comprised of frequencies ranging
from approximately 0.005 Hz to 0.1 Hz, with a 1/frequency
distribution (‘‘pink noise’’). For each voxel in an in-brain
mask (brainmask.nii from SPM8, resampled at 3 � 3 � 3
mm3 voxels), we generated three sine waves of equal am-
plitude, with frequency selected from the interval [0.005,
0.1] with probability weighting of 1/frequency. Phase for
each of the components was randomly selected. The result-
ing time series was sampled every 2 s, to produce 240 vol-
umes, similar to the actual BOLD data we describe below.

To simulate the global signal, we added an additional
sine wave of equal amplitude to the noise signal to every
voxel’s time series. This ‘‘global’’ signal had frequency of
0.375/2p (0.06 Hz). To simulate the effects of correlated
networks, four spherical regions of interest were selected
to represent the TNN (MNI coordinates: Precuneus 0, �52,
40; left parietal �48, �61, 34; right parietal 42, �58, 34;
medial prefrontal �3, 56, �5). A 10 mm diameter region of
interest around each of these coordinates was identified
and to these voxels were added a sine wave of frequency
0.25/2p (0.04 Hz). An additional four regions of interest
were selected to represent the TPN, also 10 mm diameter
spherical regions. To these 4 regions, a sine wave of fre-
quency 0.5/2p (0.08 Hz) was added. Frequencies were
selected to create uncorrelated (orthogonal) signals
between the TPN and TNN, and between both networks
and the global signal. The amplitude of the TPN and TNN
signals were equal to the global signal.

After adding each of the component signals to the simu-
lated BOLD images, the images were spatially smoothed
(FWHM 8 � 8 � 8 mm3) and a correlation analysis was
performed to a posterior cingulate seed region. Pearson
correlation coefficients were obtained between each voxel’s
time series and the seed region’s time series, and an image
of correlation values was obtained.

Global regression was then performed on the simulated
dataset by obtaining the mean time series from a single
whole-brain ROI. For each voxel, a general linear model
was performed to estimate the optimal component of this
whole-brain time series present in the voxel’s time series,
and this component was subtracted from the voxel’s time
series [Fox et al., 2009; Murphy et al., 2009]. Correlation
analysis was then repeated on the global regression data-
set to a posterior cingulate seed region, and an image of
correlation values was obtained.

Simulated Whole-Brain BOLD Time Series

Using Actual TPN/TNN Boundaries

An analogous, but more realistic simulation was then
performed, using actual boundaries of the TPN and TNN.
This simulation was identical to that described above,
except that instead of four small ROI’s selected to intro-
duce a simulated TPN and TNN, voxels belonging to the
TPN and TNN were selected based on actual resting state

Figure 1.

Areas of least correlation to default mode network do not neces-

sarily become anticorrelated after global regression. A: Location of

regions of interest corresponding to simulated TNN and TPN show

highest correlation to posterior cingulate seed in TPN and lowest

correlation in TNN prior to global regression. Scale bar shows cor-

relation values to posterior cingulate seed. B: Following global regres-

sion, the TNN is strongly correlated, but the remaining brain shows

patchwork pattern of correlation and anticorrelation that is unrelated

to presence of uncorrelated TNN signal. [Color figure can be viewed

in the online issue, which is available at wileyonlinelibrary.com.]
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data. The resting state BOLD acquisition and postprocess-
ing is described below. Briefly, voxels showing significant
correlation to a posterior cingulate seed region after global
regression (q < 0.05, FDR) were selected for the TNN and
voxels showing significant anticorrelation to a posterior
cingulate seed with statistical threshold of q < 0.05, false
discovery rate (FDR) was selected for the TPN. (Fig. 2)

Otherwise, noise, global, TPN, and TNN were intro-
duced into simulated BOLD data as above. An image of
each voxel’s correlation to a posterior cingulate seed ROI
was obtained before and after global regression procedure
on the simulated dataset as above.

Simplified Simulation to Model Effects of

Network Size, Noise, and Anticorrelations

A simplified model analogous to the simulations above
was performed to allow computationally tractable repeti-
tion of the simulation while varying three parameters: Size
of the TPN and TNN, amplitude of the noise signal, and
actual anticorrelations of the TPN and TNN. (Fig. 3)

For this simulation, instead of using whole brain data-
sets, only 100 voxels were included. The size of the TPN
and TNN was studied by allowing each network to com-
prise a fixed number of voxels ranging from 2 voxels each
to 50 voxels each (the entire dataset). For all simulations,
TPN and TNN had the same size. The amplitude of the
noise signal was varied logarithmically higher and lower
relative to the global signal to study effects of noise on
network correlations. Finally, an inverted (anticorrelated)
version of the TNN signal was added to the TPN with sys-
tematically varied amplitude to represent true anticorrela-
tions of varying magnitude.

Correlation values were obtained between each of the 100
voxels in the dataset and a single voxel belonging to the
TNN. Global regression was performed as above by estimat-

ing for each voxel’s time series the best fit to the mean time
series of all 100 voxels using general linear model, and sub-
tracting this component from each voxel’s time series. Then,
correlation values between each of the 100 voxels and a sin-
gle voxel belonging to the TNN was repeated.

Figure 3.

Network anticorrelations after global regression are a linear func-

tion of the size of the networks. A: 100 voxel simulation with sim-

ilar parameters to those above shows little effect of increased

network size on correlation within the TNN (left). But TPN and

TNN (right) become increasingly anticorrelated following global

regression as network size increases. B: Similar results are seen in

simulations for which a 10% anticorrelated signal was introduced

into the TPN. The initial baseline anticorrelation is greater, but a

similar linear trend towards greater anticorrelations with network

size is seen. [Color figure can be viewed in the online issue, which

is available at wileyonlinelibrary.com.]

Figure 2.

Large networks become anticorrelated after global regression.

Simulation is identical to Figure 1 except that actual boundaries

of TPN and TNN were used from resting state data obtained

from 27 subjects. In this case, the TPN becomes strongly anti-

correlated to the TNN. [Color figure can be viewed in the

online issue, which is available at wileyonlinelibrary.com.]
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Subject Characteristics—Actual BOLD Data

Twenty-seven normal healthy adult participants were
examined after informed consent, in accordance with pro-
cedures approved by the University of Utah Institutional
Review Board. Subjects ranged in age from 17 to 54 (mean
23.7 � 7.7 s.d., 14 male, 13 female). Healthy subjects had
no DSM-IV Axis I diagnoses based on diagnostic semi-
structured psychiatric interview. All participants under-
went psychiatric screening via the Structured Clinical
Interview for DSM-IV Patient Version (SCID-P), which is a
widely used diagnostic instrument to reliably determine
Axis I disorders in clinical populations [First et al., 1996].
All subjects were screened for anxiety by Hamilton Anxi-
ety Rating Scale [Hamilton, 1969] and depression by Ham-
ilton Depression Rating Scale [Hamilton, 1960]
immediately prior to MRI scanning. Exclusion criteria for
all subjects included: Major sensorimotor handicaps; full
scale IQ <70, learning disability, history of claustrophobia,
head trauma, loss of consciousness, autism, schizophrenia,
anorexia or bulimia nervosa, alcohol or drug dependence/
abuse based on DSM-IV criteria (during 2 months prior to
scan, or total past history of �12 months), electroconvul-
sive therapy; active medical or neurological disease; metal
fragments or implants; and current pregnancy or lactation.
Data from two additional subjects were discarded prior to
analysis due to excessive patient motion.

Data Acquisition

Images were acquired on Siemens 3 Tesla Trio scanner
with 12-channel head coil. The scanning protocol consisted
of initial 1 mm isotropic MPRAGE acquisition for an ana-
tomic template. BOLD echoplanar images (TR ¼ 2.0 s, TE
¼ 28 ms, GRAPPA parallel acquisition with acceleration
factor ¼ 2, 40 slices at 3 mm slice thickness, 64 � 64 ma-
trix) were obtained during the resting state, where subjects
were instructed to ‘‘Keep your eyes open and remain
awake and try to let thoughts pass through your mind
without focusing on any particular mental activity.’’ Pro-
spective motion correction was performed during BOLD
imaging with PACE sequence. An 8-min scan (240 vol-
umes) was obtained for each subject. An additional field
map scan was obtained for each subject for the purposes
of distortion correction.

For each subject, an additional BOLD fMRI scan was
obtained of 4-min duration (125 volumes) using identical
parameters to the resting BOLD data during a bilateral fin-
ger movement task. The task consisted of a block design
with the word ‘‘TASK’’ or ‘‘REST’’ alternately displayed
via LCD projector on a screen within the bore of the scan-
ner every 20 s. During ‘‘TASK’’ blocks, subjects were
instructed to alternately touch their thumbs to each of the
other four fingers of each hand in succession throughout
the task period. During ‘‘REST’’ blocks, subjects were
instructed to stop all movement of their fingers.

For all BOLD sequences, simultaneous plethysmograph
(pulse oximeter) and chest excursion (respiratory belt) wave-
forms were recorded for offline analysis. Waveforms were
recorded directly on the scanning computer, allowing syn-
chronization of images with physiological waveforms. Stim-
ulus computer was synchronized to the onset of the first
BOLD image via fiber optic pulse emitted by the scanner.

fMRI Postprocessing

The following sequence was used for image postprocess-
ing of all BOLD image datasets.

1. RETROICOR [Glover et al., 2000] was performed
using AFNI software package [Cox, 1996] for initial
correction of signal components due to respiratory
and cardiac artifacts.

2. Slice timing correction was performed in SPM8 soft-
ware (Wellcome Trust, London) for Matlab (Math-
works, Natick MA) to correct for timing differences
attributable to interleaved MRI acquisition and slice
acquisition timing within each TR.

3. Realign and unwarp procedure (SPM8) was used for
distortion correction and concurrent motion correction
of all BOLD images using field map sequence to cre-
ate voxel displacement map. Motion parameters were
stored for later use in regression analysis.

4. Coregistration (SPM8) of BOLD images to MPRAGE
anatomic image for each subject

5. Segmentation (SPM8, thorough clean) of gray matter,
white matter, and CSF components for each subject’s
MPRAGE image.

6. Normalization (SPM8) by registering MPRAGE scans to
the MNI template brain (T1.nii) in SPM8 allowing addi-
tional registration of coregistered gray matter, white mat-
ter, CSF, and BOLD images to MNI space. Gray matter,
white matter, CSF, and BOLD images were sampled at 3
� 3 � 3 mm3 resolution in this step corresponding to
acquisition resolution of BOLD images.

Global Regression

After the above postprocessing steps, resting BOLD
images for each subject were then subjected to a global
signal regression analysis [Fox et al., 2009; Murphy et al.,
2009] using in-house software written in Matlab. For each
subject, an in-brain binary mask was used to extract the
mean value of in-brain voxels (brainmask.nii in SPM8 tool-
box) for each image in the time series. This mean time se-
ries was then used as a regressor in a general linear model
(glmfit.m in Matlab Statistics Toolbox) for the time series
at each voxel in the brain, and the best fit was subtracted
from the voxel’s time series data, producing the global sig-
nal corrected time series images. Prior to regression, each
voxel’s time series was bandpass filtered with a frequency
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window of 0.005 Hz to 0.1 Hz [Cordes et al., 2001] and lin-
early detrended to correct for scanner drift. These images
were used for subsequent analysis.

Components for PSTCor

An alternate procedure (PSTCor) to global regression
was performed using 12 signal components instead of the
global signal for general linear model regression analysis.
These components were:

1. White matter time series obtained from the mean
time series of voxels within two regions of interest in
the bilateral centrum semiovale (MNI coordinates:
Left: x ¼ �27, y ¼ �7, z ¼ 30; right: x ¼ 27, y ¼ �7, z
¼ 30, each ROI had 10 mm radius). Before extracting
time series, an exclusive mask was performed with
the gray matter segmented image from each subject
to eliminate voxels containing gray matter.

2. CSF time series obtained from the lateral ventricles.
This was obtained from selecting voxels from the CSF
segmented image for each subject within the bound-
ing box defined by MNI coordinates: �35 < x < 35,
�60 < y < 30, 0 < z < 30.

3. Soft tissue time series. The soft tissue restriction mask
was created by averaging normalized MPRAGE scans
for all 27 subjects and thresholding to obtain a binary
image consisting of the face, calvarium, and brain.
From this brain and soft tissue binary mask, the in-
brain mask (brainmask.nii in SPM8) was subtracted to
obtain a soft tissue only mask. From this mask, the
top five slices were zeroed out because these slices
showed small variations in coregistration across sub-
jects near the vertex where the calvarium slopes in
rapidly on axial slices. The same soft tissue mask was
used for all subjects to obtain soft tissue time series.

4. Respiration volume per time convolved with respira-
tion response function (RVT/RRF). Details are obtained
from previous reports [Birn et al., 2008b; Chang et al.,
2009]. Briefly, maxima and minima were determined
from a respiratory belt measurement. These maxima
and minima were interpolated to the imaging TR. Res-
piration period was obtained as the difference between
successive maxima, and time series of respiration pe-
riod was interpolated to the imaging TR. RVT was cal-
culated by subtracting the maxima and minima and
dividing by the period for each time point [Birn et al.,
2006]. This time series was then convolved with respi-
ration response function [Birn et al., 2008b]:

RRFðtÞ ¼ 0:6 t2:1 e�t=1:6 � 0:0023 t3:54 e�t=4:25

and the convolved time series was used as a regressor.
5. Respiratory belt measurement, integrated over each

TR to obtain average position of chest during each
imaging volume.

6. Pulse oximeter, integrated over each TR.
7–12. Time series of motion parameters from automated

realignment procedure (realign and unwarp step
from postprocessing, above).

Phase Shifting

For the first six components above, the time series were
phase shifted to achieve optimal correlation with the mean
gray matter signal. Several of these components, most
notably the soft tissue component, exhibited peak correla-
tion with the gray matter signal at a time offset other than
zero lag. For the soft tissue component, this may represent
differences in timing between perfusion from the external
carotid and internal carotid circulations, or changes in the
speed at which perfusion occurs in the microvasculature
due to alterations in vascular resistance between intracra-
nial and extracranial circulation.

Each of these first six components was shifted by obtain-
ing a cross-correlogram:

CðmÞ ¼
PN�m

n¼1 xnþmynffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
n¼1 x

2
n

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
n¼1 y

2
n

q

for time series xi and yi and time lag m corresponding to
the time series of interest and the mean time series of gray
matter voxels obtained from segmented gray matter image
for each subject. This correlogram reduces to the Pearson
correlation coefficient at zero lag. Correlograms were com-
puted for time lags between �16 and þ16 s. The 16 s time
window was chosen based on a prior report that respira-
tory fluctuations were maximally correlated with the
BOLD signal within a 15 s lag time frame [Birn et al.,
2006].

The peak correlation (positive or negative) was identi-
fied for each cross-correlogram. We then phase-shifted the
time series of the soft tissue, CSF, white matter, and physi-
ological waveforms in time by the measured lag to obtain
time series for each regressor of optimal synchrony with
the gray matter signal. The first eight volumes and last
eight volumes of each BOLD run were discarded to ensure
that regressor time series overlapped with remaining
BOLD images. No phase shifting was performed for
motion parameters because these are measured at zero lag
from image data.

PSTCor

Once the 12 component time series were computed for
each subject, and WM, CSF, soft tissue, and physiological
signals were phase-shifted for optimal correlation, a gen-
eral linear model was used with these 12 time series as
regressors to compute for each voxel’s time series the opti-
mal contribution of each of the components. Prior to this
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analysis, a linear detrend operation was performed on
each time series. Best fits for each component were then
subtracted from the voxel’s time series and resulting
PSTCor-adjusted images were used for subsequent
analysis.

Correlation Images

Correlation images were computed for each of four dif-
ferent postprocessed datasets, all of which were processed
with RETROICOR, slice timing correction, motion and dis-
tortion correction, coregistration, and spatial
normalization:

• No regression (RETROICOR only).
• Global regression.
• Global soft tissue regression (Fig. 4), identical to
global regression but including both soft tissue and in-
brain masks in global time series.

• PSTCor.

For these four sets of images, correlation images were
computed to the following seed regions.

• Precuneus/posterior cingulate (MNI: x ¼ �5, y ¼ �52,
z ¼ 40) [Fox et al., 2005].

• Left intraparietal sulcus (MNI: x ¼ �50, y ¼ �41, z ¼
52) [Fox et al., 2005].

• Right primary visual cortex (MNI: x ¼ 9, y ¼ �91, z ¼
�8). These coordinates were obtained from peak acti-
vation to visual checkerboard stimuli [Anderson, 2008].

• Left primary auditory cortex (MNI: x ¼ �57, y ¼ �16,
z ¼ 1). These coordinates were obtained from peak
activation from an auditory language task [Anderson
et al., 2010].

• Left primary motor cortex (MNI: x ¼ �48, y ¼ �24, z
¼ 60). These coordinates were obtained from peak
activation from bilateral finger movement task
obtained as part of this study.

• Prefrontal cortex. Seed mask was obtained from Brod-
mann areas 8, 9, and 10 obtained from SPM8 Anatomy
Toolbox [Eickhoff et al., 2005], masked to include only
gray matter regions within these regions using SPM8
gray matter mask (gray.nii).

• Soft tissue mask. The same mask was used as
described above for PSTCor. Correlation to this mask
was compared with correlation to other seeds for
improved anatomic specificity.

Correlation images were calculated by computing Pear-
son correlation coefficients (zero lag) between mean time
series of voxels within the seed region with time series of
every voxel in the brain. Except for prefrontal cortex, all
other seed time series were obtained from 5 mm radius
ROI. Correlation values were converted into Z-scores by
Fisher Transformation by taking the hyperbolic arctangent
at each voxel [Fox et al., 2009; Murphy et al., 2009].

Group-level analysis was performed in SPM8 on the Z-
score images to obtain significance maps of correlation
and anticorrelation with the seed regions.

Smoothing was performed on Z-score maps with full-
width half-maximum parameter of 8 � 8 � 8 mm3 to
reduce pixelated noise in images and improve intersubject
registration of functional data prior to group analyses.

Bilateral Finger Movement Task Activation

Activation maps to bilateral finger movement task
described above were computed using block design with
general linear model in SPM8. Activation maps were
obtained for each subject, and contrast images were used
for second-level group analysis with statistical threshold-
ing at q < 0.05, FDR correction for multiple comparisons.

RESULTS

Simulated data was constructed to evaluate under
what circumstances network anticorrelations could arise

Figure 4.

Global regression to combined brain and soft tissue mask indu-

ces anticorrelations between the orbits and both task-positive

and task-negative networks. Results are thresholded at q <
0.05, FDR. A: Correlation to left intraparietal sulcus seed

region. B: Correlation to posterior cingulate seed region. Images

are shown in radiological format (subject left is on image right).

[Color figure can be viewed in the online issue, which is avail-

able at wileyonlinelibrary.com.]
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in uncorrelated networks. Data consisted of 240 whole-
brain images, where time series for individual voxels
were constructed from a superposition four signals: A
noise signal unique to each voxel, a shared global signal
common to all voxels, a task-positive network signal
(only in voxels designated as TPN) and a task-negative
network signal (only in voxels designated as TNN). The
global, TPN, and TNN components were constructed
from sine waves of differing frequencies such as to be
mutually orthogonal or uncorrelated. The noise signal,
equal in amplitude to the other components, was con-
structed from three sine waves with frequency selected
from a 1/frequency distribution that mirrors frequency
content in actual resting state BOLD fluctuations [Ander-
son, 2008; Cordes et al., 2001].

Anticorrelations Arise in Largest Networks,

Not Least Correlated Networks

The regions comprising the TPN and TNN are shown in
Figure 1A, before global regression was performed. There
is strong global correlation with a posterior cingulate seed
region, highest among voxels in the TNN, and lowest
among voxels in the TPN. Following global regression, a
similar correlation analysis with the posterior cingulate
seed region was performed on the simulated data (Fig.
1B). The TNN remains highly correlated, but there is a
spatially heterogeneous pattern of correlation and anticor-
relation among remaining brain voxels with no relation-
ship to the TPN.

This data shows that simply being uncorrelated or least
correlated with the TNN is not sufficient to induce anticor-
relations in the TPN. In the presence of even small
amounts of noise (tested at 1% of the global signal ampli-
tude), many brain voxels have small components that by
chance are slightly anticorrelated with the TNN signal,
and it is these voxels that become strongly anticorrelated,
rather than the orthogonal TPN signal, following global
regression. The TPN regions, by contrast, showed correla-
tion values close to zero with the TNN following global
regression.

A very different result was obtained when the size of
the networks in the simulation was increased. Instead of
using small regions of interest to simulate the TPN and
TNN, actual boundaries obtained from resting state data
from 27 subjects were used in the simulation. Noise and
global signal were identical to the simulation in Figure 1.
In this case, shown in Figure 2, the areas that became anti-
correlated following global regression matched precisely
the boundaries of the TPN and TNN, with anticorrelated
regions exclusively within the TPN. Moreover, the hetero-
geneous pattern of noise observed in the prior simulation
was not seen. Rather, the strong anticorrelations induced
in the TPN showed only minimal fluctuation from voxel
to voxel.

Effect of Network Size on Induced

Anticorrelations

To systematically examine the effect of network size on
induced anticorrelations from global regression, a simpli-
fied simulation consisted only of 100 voxels, with the size
of the TPN and TNN varying from 2 voxels each to 50
voxels each. Thus, at their largest size, the two networks
occupy the entire volume of the dataset, while at the lower
limit of size, occupy only 4% of the volume. Global, noise,
and orthogonal TPN and TNN signals were otherwise
identical to the prior simulations. Noise amplitude was
varied at 10, 100, and 500% of the global signal amplitude.

Results for this simulation are shown in Figure 3A. As
the size of the networks increases, there is a linear trend in
induced anticorrelations between the TPN and TNN that
becomes completely anticorrelated when the networks
consume all the voxels in the simulation. Increasing noise
decreases these induced anticorrelations, and decreasing
noise approaches a straight line where the anticorrelation
between the two networks is exclusively determined by
the size of the networks. In contrast, network size has
almost no effect on correlation within the TNN.

When true anticorrelations exist prior to global regres-
sion, a similar pattern is seen (Fig. 3B). In this case, where
an inverted TNN signal was added to the TPN of 10% am-
plitude of the global signal, the anticorrelations of the net-
works starts below zero, and shows a linear increasing
trend with increased network size as before. Higher levels
of true anticorrelation shifted the baseline anticorrelation
down when the networks were small, but similarly
showed a linear trend toward higher anticorrelation as
network size increased.

Anticorrelations can be Induced in Soft Tissues

by Global Regression

As a further illustration of this process, we included soft
tissues in the global regression algorithm by taking the
mean of all in-brain and soft tissue voxels as the global
regressor for all 27 subjects and performed a correlation
analysis to the TPN using a left intraparietal sulcus seed.
Results are shown in Figure 4A. In this case, there is a
large cluster of voxels in the orbits including extraocular
muscles, globes, and vitreous that exhibit anticorrelations.
Within the brain parenchyma, anticorrelated TPN and
TNN boundaries are similar to those seen without includ-
ing the soft tissues in the global signal.

Anticorrelations within the orbits were highly significant
across the 27 subjects, with FDR-corrected q-value of
0.00027. When a posterior cingulate seed was used, a simi-
lar region in the globes was also anticorrelated to the
TNN. (FDR, q < 6.8 E-06, Fig. 4B). Thus global regression
induced anticorrelations in the orbits to both the TPN and
TNN. No significant anticorrelations with either seed were
observed prior to global regression.
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Given that no brain voxels are within this anticorrelated
cluster in the orbits, it is biologically implausible to inter-
pret these tissues as having a time course that is actually
anticorrelated to the neural-based fluctuations giving rise
to both the TPN and TNN time series. A much more likely
explanation is that the orbits constitute a self-correlated
group of voxels with time series related to eye movements
during the scan. Because this ‘‘network’’ is of sufficient
size, it contributes to the global signal used in the regres-
sion analysis. When components of the global signal are
subtracted from brain voxels in the TPN or TNN during
the regression analysis, a component of this signal attribut-
able to the orbits is also subtracted, resulting in anticorre-
lations between the TPN and TNN with the orbits. We
propose that a similar mechanism contributes substantially
to the anticorrelations seen between the TPN and TNN af-
ter global regression.

PSTCor: An Alternative to Global Regression

If global regression can introduce large, spurious anti-
correlations between networks, an alternative technique
less susceptible to these artifacts would be desirable. Alter-
native techniques using signals from white matter, CSF,
and physiological waveforms have been proposed as an
alternate correction technique [Fox et al., 2009; Murphy
et al., 2009]. Yet using these signals as regressors results in
poor anatomic specificity of connectivity maps [Fox et al.,
2009], with most of the brain still exhibiting substantial
positive correlations that limit the ability to define bounda-
ries of functional connectivity networks.

An improvement to this technique can be attained by
including additional regressors to the technique, but stop-
ping short of using the mean brain or gray matter signals
as regressors. Improved techniques for extracting physio-
logical noise related to cardiac and respiratory fluctuations
and aliasing could be included [Chang et al., 2009]. In
addition, there is substantial information about global arti-
facts within voxels in the soft tissues of the face and calva-
rium that may represent a particularly useful regressor.

We show results from a combination regression tech-
nique (PSTCor) that uses regressors from white matter,
CSF, soft tissues, physiological waveforms, and motion pa-
rameters. The white matter, CSF, and soft tissue masks
used to extract time series for regression are shown in Fig-
ure 5A. After RETROICOR, substantial correlation between
these time series and the global gray matter time series
persists. Mean cross-correlograms for each of the parame-
ters above with the mean gray matter signal are shown in
Figure 5B.

In addition to significant correlation with the gray mat-
ter signal from each of these regressors (although contribu-
tion of motion parameters is very small), there are
significant phase shifts relative to the gray matter signal in
several components. Respiratory belt and pulse oximeter
signals were most commonly negatively correlated with

the gray matter signal at lags between 4 and 8 s. Gray
matter time series preceded soft tissue time series variably
between subjects at lags between 2 and 10 s, with second-
ary peak at zero lag. Respiration volume per time after
convolution with a respiratory response function [Birn
et al., 2008a] was positively correlated with BOLD signal
at close to zero lag. CSF and WM were generally optimal
at zero lag in most subjects.

To facilitate an optimal correction from these compo-
nents, the phase of each component was allowed to vary
to best coincide with mean gray matter signal, except for
motion parameters which were obtained at zero lag from
measured realignment parameters unlikely to be improved
by phase shifting. After regression with these components,
correlation images with various seed regions were com-
puted and compared with the same images postprocessed
with global regression.

Network Anticorrelations With PSTCor

Compared With Global Regression

Correlation to a posterior cingulate seed showed charac-
teristic pattern [Fox et al., 2005] of significant positive cor-
relation in the precuneus, medial prefrontal, middle
temporal, temporoparietal junction, and hippocampal
regions, with significant negative correlation in the frontal
eye fields, intraparietal sulci, mid/anterior cingulate, fron-
toinsula, lateral occipital, and dorsolateral prefrontal
regions (Fig. 6A). When averaged across subjects, most
TPN regions showed anticorrelation values to the seed
exceeding �0.5.

No voxels showed significant anticorrelation in data
processed with RETROICOR only (Fig. 6B) or PSTCor (Fig.
6C). For additional specificity, the RETROICOR and
PSTCor correlation images were compared with correla-
tion to the soft tissue mask. Mean correlation values (con-
verted to Z-scores prior to averaging and converted back
to correlation after averaging) for PSTCor processed data
to posterior cingulate seed is shown in Figure 6D.
Although no significant anticorrelations were seen in this
sample, a slight trend toward anticorrelation was present
in a few regions of the TPN, most notably the bilateral
frontoinsula. An additional weak trend toward anticorrela-
tion was seen in the atrium of the right lateral ventricle,
which may represent small introduced anticorrelations in
the CSF, given its presence as a regressor in PSTCor. These
anticorrelation values were about �0.05, an order of mag-
nitude less than those seen with global regression.

It is also noted that correlation values in PSTCor proc-
essed data in areas outside the TNN seen with global
regression did show weakly positive correlation values,
generally less than 0.1. This may indicate incomplete re-
moval of the global signal, and may suggest that genuine
anticorrelations in the TPN may exist that are underrepre-
sented by this technique. Yet these residual correlation val-
ues are very small, substantially smaller than the large
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global correlation values of around 0.4 seen without
PSTCor. Using the correction of comparing correlation val-
ues to seed regions to correlation values to the soft tissue
mask resulted in exclusion of voxels with these weak resid-
ual correlations, as shown in Figure 6C. This was not the
case for data processed with RETROICOR only (Fig. 6B),
which even after comparison to soft tissue mask correlation
still showed poor anatomic specificity of TNN regions.

When correlation images in global regression-processed
data were compared with correlation to the soft tissue
mask (not shown), the result was poor identification of the

TNN, with many of the classical regions of the TNN no
longer significant after multiple comparison correction. In
general, correlation T-scores were higher for both RETROI-
COR and PSTCor for all regions of the TNN than with
global regression.

Thalamocortical Specificity After PSTCor

The superior anatomic specificity in connectivity net-
works seen after global regression has been argued as a
validation of the technique [Fox et al., 2009]. We used a

Figure 5.

Phase-shifted Soft Tissue Regression (PSTCor). A: White matter,

CSF, and soft tissue masks used as regressors for one subject. B: Av-

erage cross-correlograms of the mean gray matter time series to the

time series for white matter (WM), CSF, soft tissues, respiration vol-

ume per time convolved with respiratory response function (RVT/

RRF), chest expansion (Respirations, integrated over 2 s epochs to

correspond to each image volume), pulse oximetry (Pulse, integrated

over 2 s epochs), and six motion parameters from realignment pro-

cedure. Cross-correlograms were averaged for 27 subjects, and

shaded areas show one standard error of the mean above and below

the cross-correlograms. [Color figure can be viewed in the online

issue, which is available at wileyonlinelibrary.com.]
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similar approach to Fox et al. to assess thalamocortical
specificity of connectivity maps after PSTCor compared
with global regression. Seed masks of right primary visual
cortex (V1), left primary auditory cortex (A1), and prefron-
tal cortex are shown in Figure 7, left, analogous to Fox
et al. Figure 4. As in Figure 6, the PSTCor results of corre-
lation to anatomic seeds are shown compared with correla-
tion to the soft tissue mask, and global regression results
are not because this additional step resulted in no detecta-
ble signal in the thalamus for global regression results at
significance levels as low as P ¼ 0.05, uncorrected. As in
Fox et al., significance levels were allowed to vary to iden-
tify areas within the thalamus with highest correlation to
the seed.

Correlation with V1 seed showed significant correlation
using both techniques in the expected location of the lat-
eral geniculate nuclei, similar in location for both techni-
ques (Fig. 7A). Correlation with A1 seed showed similar
localization of peak thalamic activity in the expected loca-
tion of the medial geniculate nuclei (Fig. 7B). However, for
the global regression data, no correlation was seen in the
thalamus after multiple comparison correction, with tha-
lamic correlation shown for P < 0.05, uncorrected. Simi-
larly, correlation to a prefrontal cortex mask showed
correlation in the anterior thalamus for both techniques
(Fig. 7C), but this was not significant in the global regres-
sion data after multiple comparison correction.

Correspondence of Correlation Maps to Motor

Task Activation

As an additional test of anatomic specificity, correlation
maps for global regression and PSTCor data were obtained
to a seed in the left primary motor cortex. This seed was
chosen as the peak activation in a bilateral finger move-
ment task performed in the same subjects during the same
scan sessions in which the resting state data was acquired.
The seed used is shown in Figure 8A, and the activation
map to the task is shown in Figure 8D.

Significant activation was seen in bilateral primary sen-
sorimotor cortex, supplementary motor area, bilateral basal
ganglia, ventral posterior nucleus of the thalamus, poste-
rior middle temporal cortex, dorsolateral prefrontal cortex,
and bilateral superior lateral cerebellum regions.

Both global regression Figure 8B and PSTCor Figure 8C
correlation maps showed correlation with bilateral sensori-
motor, supplementary motor area, posterior middle tem-
poral, and dorsolateral prefrontal cortex. Only PSTCor
showed additional areas of significant (FDR, q < 0.05) cor-
relation in the basal ganglia, thalamus, and superior cere-
bellum, in anatomic locations closely matching those seen
with motor task activation. Although only right-sided cere-
bellar correlation was observed in PSTCor data, this might
be expected to have stronger connectivity to left motor cor-
tex given contralateral activation. Bilateral activation was
seen in the motor task because the task involved similar

Figure 6.

Resting state fMRI data—default mode network. Slice locations

are at z ¼ �18, 10, 48, MNI coordinates. A: Correlation to

posterior cingulate/precuneus seed following global regression (q

< 0.05, FDR). B: Following RETROICOR, images show voxels

with significantly greater correlation to posterior cingulate seed

than to soft tissue mask. (Paired t-test, FDR corrected, q <
0.05). C: Following RETROICOR and PSTCor, images show vox-

els with significantly greater correlation to posterior cingulate

seed than to soft tissue mask. (Paired t-test, FDR corrected, q

< 0.05). D: Following RETROICOR and PSTCor, images show

mean correlation to posterior cingulate seed. Correlation values

were converted using Fisher z-transform prior to averaging

across subjects, then converted back to correlation values after

averaging. Subject left is on image right for all images.
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activation of both hands. Global regression data did not
show basal ganglia, thalamic, or cerebellar correlation
even when significance threshold was relaxed to P ¼ 0.05,
uncorrected (shown in Fig. 8B).

DISCUSSION

We demonstrate with simulated data that two networks
with uncorrelated (orthogonal) signals will become anti-
correlated following global regression as a linear function
of the size of the networks relative to brain volume. Yet
global regression has no significant effect on positive cor-
relation values within a network defined by a seed time
series. This effect is more pronounced at lower noise lev-
els, but is seen even at noise levels of an order of magni-
tude greater than the signals of interest.

Heuristically, this can be understood in terms of signal
components. When a global signal common to all voxels is

present, this signal is ‘‘contaminated’’ by TPN and TNN
signals as a function of the size of the network [Murphy
et al., 2009]. When global regression is performed, voxels in
the TPN will have a nontrivial component of the global sig-
nal, so some of the contaminated global signal will be sub-
tracted from the voxel’s time series. As a result, an inverted
copy of the TNN ‘‘contamination’’ will be subtracted from
the voxel’s time series, inducing anticorrelations. This effect
becomes very strong when the size of the networks are
nontrivial compared with total brain volume, as is the case
for observed TPN and TNN from resting state data.

This observation accounts for one of the primary objec-
tions to an artifactual explanation for network anticorrela-
tions [Fox et al., 2009]. Because the TPN has a shared
signal component in the time series across the network
which is preserved from subject to subject, and comprises
a relatively large brain volume, induced anticorrelations
are expected in precisely this region. Moreover, these

Figure 7.

Resting state fMRI data—anatomic specificity of thalamocortical

connectivity. Significance levels were varied to show areas within

the thalamus of greatest correlation to the seed region. A: Corre-

lation to right primary visual cortical seed (slice location z ¼ �8,

MNI). Center images show correlation to V1 seed greater than

correlation to soft tissue mask following RETROICOR and PSTCor

(Paired t-test, q < 0.001, FDR). Right images show correlation fol-

lowing global regression (q < 0.05, FDR. Slice locations: z ¼ 1, y

¼ �29, MNI.) B: Correlation to left primary auditory cortical seed

(slice location z ¼ 1, MNI). Center images show correlation to

seed greater than correlation to soft tissue mask following RETRO-

ICOR and PSTCor (Paired t-test, q < 0.01, FDR). Right images

show correlation following global regression (P < 0.05, uncor-

rected. Slice locations: z ¼ 1, y ¼ �20, MNI.) C: Correlation to

prefrontal cortical mask (slice location z ¼ 40). Center images

show correlation to seed greater than correlation to soft tissue

mask following RETROICOR and PSTCor (Paired t-test, q <
0.00001, FDR). Right images show correlation following global

regression (P < 0.05, uncorrected. Slice locations: z ¼ 1, y ¼ �20,

MNI.) All images show subject left on image right. [Color figure

can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]

r Anderson et al. r

r 930 r



anticorrelations would be in the same regions across sub-
jects, accounting for consistent location of anticorrelations
in random effects analyses. Thus, it may be expected to
have strong, consistent observed anticorrelations in the
TPN even if the TPN and TNN time courses were com-
pletely uncorrelated, simply based on the size of the net-
work and the consistent boundaries of the TPN.

In data acquired from healthy subjects, we also show
that spurious anticorrelations can arise in precisely this
manner by showing consistent anticorrelations across sub-
jects in the orbits to both the TPN and TNN. This is likely

mediated by a shared signal component in the orbits, pre-
sumably related to eye movements, that allows induced
anticorrelations in this region. This result also demon-
strates how a shared signal comprising a region even as
small as 5% of the total brain volume is sufficient to
induce significant anticorrelations, and may explain why
anticorrelations were persistently observed even after
exclusion of much of the TPN and TNN by restriction
mask when calculating the global signal [Fox et al., 2009].

As an alternative to global regression, we propose an
enhanced regression procedure (PSTCor) that includes

Figure 8.

Task-activated compared with resting fMRI data—Anatomic speci-

ficity of connectivity compared with motor task activation. A:

Seed region in left primary motor cortex (MNI coordinates: �48,

�24, 60) obtained from peak activation in bilateral finger move-

ment task. B: Correlation to seed region following global regres-

sion (P < 0.05, uncorrected. Slice locations at z ¼ 41, z ¼ 10, z ¼
�35, MNI.) No significant correlation was seen in the basal gan-

glia, thalami, or cerebellum. C: Correlation to seed region greater

than to soft tissue mask following RETROICOR and PSTCor (q <
0.05, FDR.) D: Activation to a bilateral finger movement task in

the same 27 subjects produced by general linear model (q < 0.05,

FDR). [Color figure can be viewed in the online issue, which is

available at wileyonlinelibrary.com.]
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motion parameters, white matter, CSF, soft tissues, respira-
tion volume per time, respiratory belt, and pulse oximeter
signals. Although techniques such as RETROICOR already
incorporate physiological waveform correction, the addi-
tion of optimally phase-shifted physiological waveforms as
well as soft tissue, CSF, white matter and motion signals
allows for improved correction of the global signal. This
technique showed only a weak trend toward anticorrela-
tions in the TPN and TNN, with nonsignificant anticorre-
lation values an order of magnitude smaller than those
seen with global regression.

It is possible that our combined regression procedure is
simply inadequate in removing global contaminants, and
that anticorrelations are stronger than we observe. In fact,
some level of under-representation of anticorrelations may
be suggested by small residual positive correlation values
of about 0.1 between posterior cingulate seed and white
matter or areas of the cortex not generally associated with
the TNN.

Yet it seems unlikely that this weak residual correlation
is masking the much larger anticorrelations seen with
global regression, particularly with a clear alternate expla-
nation shown in simulated data that anticorrelations are
produced by global regression for networks of this size.
Nevertheless, it is well known that the TPN and TNN
have an anticorrelated relationship during execution of
complex tasks [Raichle et al., 2001]. A neural architecture
where the TNN and TPN show some moment to moment
anticorrelation within the resting state is possible even
given our results. Future studies, including those involv-
ing brain electrical or magnetic activity, may help quantify
the extent to which some anticorrelations may be present
in brain networks in the resting state.

If the large anticorrelations seen with global regression,
however, are substantially artifactual, this makes problem-
atic studies using this technique for assessment of func-
tional network connectivity, quantitative comparison of
network anticorrelations between healthy and disease
states, or inferences about neural architecture based on the
magnitude of these anticorrelations.

The alternative procedure, PSTCor, we demonstrate
using soft tissues, white matter, CSF, and physiological pa-
rameters as regressors additionally shows improved ana-
tomic specificity to global regression compared with
activation results from a motor task and comparable or
better thalamocortical specificity of correlation networks.
Using this technique with the additional step of comparing
seed-based correlation results to analogous correlation to
soft tissues, allows highly specific definition of functional
network boundaries without the introduction of salient
artifacts in relationships between brain networks.

Murphy et al., note that another common technique for
evaluating resting state networks, independent component
analysis, may inherently involve something analogous to
global regression in that the global signal is typically iden-
tified with one component [Murphy et al., 2009]. It is
unclear the effect that size of correlated networks may

have on functional network connectivity measurements
obtained with independent component analysis.

CONCLUSION

Network anticorrelations after global signal removal can
be introduced even in completely uncorrelated networks if
the networks are of sufficient size, detectable above 5% of
brain volume. Such anticorrelations do not necessarily
arise in the least correlated regions to a given network, but
rather as a linear function of the size of the networks.
Because spurious anticorrelations can be introduced fol-
lowing global regression, interpretation of quantitative net-
work anticorrelations as a measurement of neural
architecture, or assessment of anticorrelation strength
between diseased and healthy populations may be prob-
lematic. An alternate correction technique, PSTCor, is
described that shows improved anatomic specificity to
global regression but does not exhibit large network
anticorrelations.
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