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protein expressions
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Abstract Previously, we reported that oral feeding of 1%
green tea polyphenols (GTPs) aggravated the dextran
sulfate sodium (DSS)-induced colitis in mice. In the present
study, we assessed the toxicity of 1% GTPs in several
organs from normal and DSS-exposed mice. Sixty-two
male ICR mice were initially divided into four groups. Non-
treated group (group 1, n=15) was given standard diet and
water, GTPs (group 2, n=15) received 1% GTPs in diet and
water, DSS (group 3, n=15) received diet and 5% DSS in
water, and GTPs + DSS group (group 4, n=17) received
1% GTPs in diet and 5% DSS in water. We found that
group 4 significantly increased (P<0.05) kidney weight, the
levels of serum creatinine and thiobarbituric acid-reactive
substances in both kidney and liver, as compared with those
in group 3. The mRNA expression levels of antioxidant
enzymes and heat-shock proteins (HSPs) in group 4 were
lower than those of group 3. For instance, heme oxygenase-

1 (HO-1), HSP27, and 90 mRNA in the kidney of group 4
were dramatically down-regulated as compared with those
of group 3. Furthermore, 1% GTPs diet decreased the
expression of HO-1, NAD(P)H:quinone oxidoreductase 1
(NQO1) and HSP90 in kidney and liver of non-treated
mice. Taken together, our results indicate that high-dose
GTPs diet disrupts kidney functions through the reduction
of antioxidant enzymes and heat-shock protein expressions
in not only colitis but also non-treated ICR mice.
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Inflammatory bowel disease (IBD), including ulcerative
colitis and Crohn's disease, is a group of chronic disorders
of the intestinal tract characterized by excessive production
of reactive oxygen species (ROS) and cytokines (Araki et
al. 2003). The etiology of IBD is believed to involve
inappropriate host responses to complex commensal micro-
bial flora in the gut and originates from mucosal barrier
dysfunction, such as an abnormal leaky mucus layer, altered
tight junction protein expression, and increased epithelial
apoptosis (Araki et al. 2010).

To study the mechanisms of action underlying IBD,
dextran sulfate sodium (DSS)-induced colitis models have
been used in many laboratories including ours (Kwon et al.
2005). DSS exhibits toxic effects toward colonic epithelium
and destroys the mucosal barrier, allowing bacteria to
contact lamina propria cells (Kitajima et al. 1999a, b).
Excess generation of ROS caused by the gut microenvi-
ronment breaks intestinal antioxidant systems in mice with
DSS-induced colitis, thereby contributing to intestinal
oxidative injury and initiating pro-inflammatory signaling
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(Tanaka et al. 2007). In addition, several studies have
demonstrated that inhibition of an antioxidant enzyme,
heme oxygenase-1 (HO-1), leads to aggravation of DSS-
induced colitis (Paul et al. 2005; Wang et al. 2001).

Heat shock proteins (HSPs) are a class of stress-inducible
proteins that play roles as molecular chaperones and protect
cells against proteotoxic damage from a variety of physiolog-
ical and environmental stimuli (Musch et al. 1996; Wischmeyer
et al. 1997). Interestingly, the expressions of HSP70 and
HSP27 were found to be down-regulated in actively inflamed
mucosa from individuals with IBD (Bhattacharrya et al. 2009;
Köken et al. 2004). It is worth noting that the production of
pro-inflammatory cytokines, such as tumor necrosis factor
(TNF)-α and interleukin, were also found to be increased in
IBD, while it down-regulated HSP70 by targeting its
translation stage (Hu et al. 2007). The above background
suggests that inflammatory signaling molecules aggravate
colitis by down-regulating HSPs, thereby disrupting intestinal
homeostasis.

Green tea is a popular and widely consumed beverage. It
contains characteristic polyphenolic constituents, generally
known as green tea polyphenols (GTPs), which include (−)-
epigallocatechin-3-gallate (EGCG), (−)-epicatechin gallate,
(−)-epigallocatechin, and (−)-epicatechin. (Isemura et al.
2000). EGCG, the most abundant polyphenol, has versatile
preventive effects toward several chronic diseases including
cancer, inflammation, heart disease, diabetes, and neurode-
generative diseases (Chung et al. 2001; Li et al. 2010;
Hosakawa et al. 2010; Suganuma et al. 1998; Paquay et al.
2000; Cai and Lin 2009; Rezai-Zadeh et al. 2008). In
addition, GTPs are strong antioxidants against ROS as well
as inducers of several antioxidant proteins [HO-1, NAD(P)
H:quinone oxidoreductase 1 (NQO1), glutathione S-transfer-
ase pi (GSTP1), manganese superoxide dismutase] (Sahin et
al. 2010; Ogborne et al. 2008; Na et al. 2008).

Recently, high-dose EGCG was reported to induce hepato-
toxicity, as demonstrated by increased formation of malonyl-
dialdehyde (MDA) and 4-hydroxynonenal (4-HNE) (Lambert
et al. 2010). Along a similar line, we found that EGCG
enhanced the expression of pro-matrix metalloproteinase-7 by
inducing oxidative stress in HT-29 human colorectal cancer
cells (Kim et al. 2007). Furthermore, a 1% GTP diet
enhanced pro-inflammatory cytokines, aggravated colitis,
and tended to promote colon carcinogenesis in DSS-
exposed colons, while it decreased the activities of superoxide
dismutase (SOD) and catalase in non-treated mice (Kim et al.
2010). In addition, several human cases of hepatotoxicity
following consumption of dietary supplementation containing
green tea extracts have been reported (Mazzanti et al. 2009).

In the present study, oral feeding of 1%GTPs caused kidney
and liver dysfunctions, as revealed by increases in serum
aspartate 2-oxoglutarate aminotransferase (AST), alanine
aminotransferase (ALT), and creatinine, as well as thiobarbi-

turic acid-reactive substances (TBARS) levels in kidneys and
livers, together with down-regulation of antioxidant enzymes
and HSPs, in both normal and DSS-treated ICR mice.

Materials and methods

Chemicals

A GTP mixture containing 70% total catechins, 35%
EGCG, and 3% caffeine was obtained from LKT laborato-
ries, (West St. Paul, MN). DSS with a molecular weight of
36–50 kDa was purchased from MP Biomedicals, (LLC
Aurora, OH). All other chemicals and kits were obtained
from Wako Pure Chemical Industries (Osaka, Japan), unless
specified otherwise.

Animals

Male-specific pathogen-free ICR mice (17–19 g, 4 weeks old)
were purchased from Japan SLC (Shizuoka, Japan) and
housed five per cage. All mice were fed rodent MF pellets
(Oriental Yeast, Kyoto, Japan) and given fresh tap water ad
libitum, while being kept at 22–26°C with a relative humidity
of 55–65% under a 12-h (0600–1800 hours) light/dark cycle
for 6 days prior to the experiment. The mice were treated in
accordance with the “Guidelines for the Treatment of
Experimental Animals” of Kyoto University and the experi-
mental protocol was approved by the Experimentation
Committee of the same institution (approval number 21-42).

Experimental design

The experimental design is illustrated in Fig. 1. Mice were
randomly divided into four groups: non-treated (group 1),
GTPs-treated (group 2), DSS-treated (group 3), and GTPs +
DSS-treated (group 4). The GTP-fed groups were given a diet
containing 1% GTPs. DSS-treated groups were given 5%
DSS (w/v) in water ad libitum, which induced experimental
colitis. Body weights and food intake of each group were
recorded each day until the end of experiment. All mice were
euthanized by deep anesthesia with diethyl ether for deter-
mining the effects of dietary GTPs on DSS-induced colitis.

RNA extraction and reverse transcription polymer chain
reaction analysis

Total RNA was prepared using Trizol (Invitrogen, Tokyo,
Japan), as described in the manufacturer's instructions. For
reverse transcription (RT-PCR) analysis, 1 μg of RNA was
reverse transcribed using an RNA PCR kit (TaKaRa, Shiga,
Japan) with oligo dT-adaptor primer, as recommended by the
supplier. PCR was done using a thermal cycler (PTC-0100;
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MJ Research, Cambridge, MA) with mouse hypoxanthine
phosphoribosyl transferase (HPRT), HO-1, NQO-1,
MnSOD, GSTP1, HSP27, HSP70, and HSP90 primers, as
follows: HPRT, 5′-GTAATGATCAGTCAACGGGGAC-3′
(forward) and 5′-CCAGCAAGCTTGCAACCTTAACCA-3′
(reverse); HO-1, 5′-TCCCAGACACCGCTCCTCCAG-3′
(forward) and 5′-GGATTTGGGGCTGCTGGTTTC-3′ (re-
verse); NQO1, 5′-TCGGAGAACTTTCAGTACCC-3′ (for-
ward) and 5-GCAGAGAGTACATGGAGCC-3 (reverse);
GSTP1, 5-TGCCACCGTACACCATTGTGT-3 (forward)
and 5′-CAGCAGGTCCAGCAAGTTGTA-3′ (reverse);
MnSOD, 5′-GCACATTAACGCGCAGTCA-3′ (forward)
and 5′-AGCCTCCAGCAACTCTCCTT-3′ (reverse);
HSP27, 5′-TGCTTCACCCGGAAATACAC-3′ (forward)
and 5′-CTCGAAAGTAACCGGAATGG-3′ (reverse);
HSP70, 5′-TGGTGCTGACGAAGATGAAG-3′ (forward)
and 5′-AGGTCGAAGATGAGCACGTT-3′ (reverse); and
HSP90, 5′-AAAGGCAGAGGCTGACAAGA-3′ (forward)
and 5′-AGGGGAGGCATTTCTTCAGT-3′ (reverse). The
PCR products were subjected to electrophoresis in 3%
agarose gels and stained with 0.01% SYBR Gold (Molecular
Probes, Eugene, OR). Band intensities were quantified using
NIH image and no PCR saturation was confirmed. HPRT
was used as the internal standard (Kwon et al. 2005).

AST, ALT, and creatinine measurements

Blood was collected from the inferior vena cava and serum
was obtained by centrifugation at 3,000×g for 10 min at 4°C
for analyses of biomarkers. AST, ALT, and creatinine were

quantified using commercial kits (Wako Pure Chemical
Industries).

Lipid peroxidation determined by measurement of TBARS

Kidney and liver samples (each ~25 mg) were homoge-
nized in 250 μl of RIPA buffer (25 mM Tris-HCl pH 7.6,
150 mM NaCl, 1% NP-40, 1% deoxycholic acid, 0.1%
sodium dodecyl sulfate) on ice. The homogenates were
centrifuged at 1,600×g for 10 min at 4°C and the
supernatants were subjected to assays. Lipid peroxidation
in the kidneys and livers were assessed by measuring
TBARS using a TBARS Assay kit (Cayman Chemical
Company, Ann Arbor, Ml).

Statistical analysis

The results are presented as the mean±standard deviation
(SD) for each group. Statistical significance was assessed
using one-way repeated ANOVA with a Tukey test. Differ-
ences were considered significant at p<0.05.

Results

General observations

We examined the effects of a 1% GTPs diet over a 6-day
observation period. None of the mice in groups 1 and 2
died during the observation period, whereas 40% of the
mice in group 3 (DSS only) and 60% in group 4 (GTPs +
DSS) died by day 6 (Fig. 2a). Surprisingly, half of the mice
in group 4 died by day 4. Mouse body weights in groups 3
and 4 began to decrease at 4 days after DSS exposure, and
were significantly lower than those in groups 1 and 2 by
day 6 (Fig. 2b). Time-dependent changes of both food and
water intake showed tendencies similar to those of body
weight (Fig. 2c, d).

Spleen, liver, and kidney weights

Colorectal length shortening reflects the extent of colonic
damage in DSS-exposed mice (Okayasu et al. 1990). As
shown in Fig. 3a, colorectal length in group 3 was shortened
as compared to that in group 1, while GTPs supplementation
did not have an effect (group 1 vs. 2, group 3 vs. 4). The
spleen weight in group 3 was significantly greater (2.3-fold)
as compared to group 1, whereas 1% GTPs in the diet
suppressed that weight increase (Fig. 3b). Furthermore, liver
weight in group 2 was significantly lower than that in group 1
(Fig. 3c). Notably, the kidney weight in group 4 was
significantly increased (1.3-fold) as compared to group 3
(Fig. 3d).

6 (days)0

Tap water

MF pelleted diet
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Group no. 
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1% GTP in diet
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1% GTP in diet

n 

Fig. 1 Experimental groups. Experimental colitis was induced in
male ICR mice by administrating 5% DSS in drinking water ad
libitum throughout the experimental period. The non-treated group
(group 1, n=15) was given tap water and a basal diet ad libitum,
changed to fresh every day, for 6 days. The GTPs group (group 2, n=
15) was given tap water and fed a diet containing 1% GTPs for 6 days.
The DSS group (group 3, n=15) was fed a basal diet and given 5%
DSS (w/v) in tap water for 6 days to induce colitis. The 1% GTPs+5%
DSS group (group 4, n=17) was fed a diet containing 1% GTPs and
given 5% DSS (w/v) in tap water for 6 days
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Hepatic and renal function parameters and lipid
peroxidation level

Serum AST and ALT levels, which reflect hepatic functions,
were also measured. DSS (group 3) markedly increased
both parameters as compared to no treatment (group 1),
while 1% GTP (group 2) did not have a significant effect
(Fig. 4a, b). Elevation of TBARS is a reliable indicator of
lipid peroxidation, which might be closely related to tissue
damage (Lambert et al. 2010). As shown in Fig. 4c, the
hepatic TBARS level in group 4 was significantly greater
(1.9-fold) than that in group 3. Similarly, we found a
significant increase in group 2 as compared to group 1.
Next, we measured serum creatinine levels as a biomarker
of renal function (Nakagawa et al. 2004). Although DSS
exposure did not have an effect on serum creatinine (group
1 vs. group 3), the serum creatinine level in group 4 was

dramatically increased (2.9-fold) as compared to group 3
(Fig. 4d). Furthermore, TBARS levels in the kidneys of
mice fed with the GTPs diet (groups 2 and 4) were
markedly elevated than in those of their respective controls
(groups 1 and 3; Fig. 4e).
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Expression levels of antioxidant and xenobiotics
metabolizing enzymes

We also determined whether DSS and/or GTPs supplementa-
tion had effects on the expression levels of antioxidant and
xenobiotics metabolizing enzymes, including HO-1, NQO1,
MnSOD, and GSTP1, in the kidneys and liver (Fig. 5a). Both
renal and hepatic HO-1 mRNA expressions in group 2 were
slightly but significantly decreased (19% and 9.6%, respec-
tively) as compared with those in group 1. More strikingly,
those expressions in group 4 (GTPs + DSS) were abolished
(Fig. 5b). Furthermore, renal and hepatic NQO1 mRNA
expressions in groups 2 and 3 were dramatically decreased
as compared to those in group 1, while those in group 4 were
abolished (Fig. 5c). Similar results were seen for GSTP1
(Fig. 5d). Although renal MnSOD expression in groups 2
and 3 was significantly lower than in group 1, there was no
significant difference between groups 3 and 4 (Fig. 5e).
Interestingly, the expression levels of hepatic MnSOD were
consistent among the four groups (Fig. 5e).

Expression levels of HSPs

HSPs are induced in response to oxidative stress as well as
heat shock (Tanaka et al. 2007; Bhattacharrya et al. 2009).

Thus, we investigated whether 1% GTPs and/or DSS affect
the expression levels of HSP70, HSP27, and HSP90 mRNA
expressions in the mouse kidneys and livers (Fig. 6a).
Although renal HSP70 expression in group 2 did not
change as compared with that in group 1, it was abolished
in groups 3 and 4 (Fig. 6b). On the other hand, 1% GTPs
dramatically decreased hepatic HSP70 and HSP27 in
groups 2, 3, and 4 (Fig. 6b, c). In contrast, as compared
with group 1, renal HSP27 mRNA expression in groups 2
and 3 was not significantly different (Fig. 6c). It is
interesting to note that renal HSP27 in group 4 was
dramatically down-regulated as compared to the other three
groups (Fig. 6c). Finally, as shown in Fig. 6d, renal and
hepatic HSP90 mRNA expressions were the most sensitive
to the GTPs diet (group 1 vs. 2, group 3 vs. 4).

Discussion

GTPs have a variety of beneficial health functions,
including preventive effects toward diabetes and cancer.
Moreover, numerous human intervention and bioavailabil-
ity studies using green tea extracts or EGCG have reported
no serious adverse effects from their use (Wang et al. 2008;
Abboud et al. 2008; Mochizuki and Hasegawa 2010). On

800

A D

B

C

E

600

400

200

0

0

20

40

60

80

100

1 2 3 4

1
0

0.04

0.08

0.12

2 3 4

1
0

0

T
B

A
R

S
(M

D
A

 µ
m

ol
/ m

g 
pr

ot
ie

n)

T
B

A
R

S
(M

D
A

 µ
m

ol
/ m

g 
pr

ot
ie

n)
0.02

0.04

0.06

0.08

Se
ru

m
 c

re
at

in
in

e 
(m

g/
dl

)

1

0.5

1.5

2 3 4

A
ST

 (
U

\L
)

A
LT

 (
U

\L
)

Fig. 4 Effects of DSS and/or
1% GTPs supplementation on
hepatotoxicity and renal toxicity.
Blood was collected and serum
separated for determination of
serum AST (a), ALT (b), and
creatinine (d) levels. Obtained
kidneys and livers were homog-
enized using RIPA buffer, then
the supernatants were separated
for measurement of TBARS
levels in the livers (c) and
kidneys (e). Data are shown as
the mean±SD of seven to ten
samples. Bars with different let-
ters show significant differences
(P<0.05)

High-dose green tea polyphenols induce nephrotoxicity 657



the other hand, several recent studies have also noted that
excess intake of green tea supplements induced hepatotox-
icity in both rodents and humans (Lambert et al. 2010;
Mazzanti et al. 2009; Isbrucker et al. 2006). In addition, the
present study showed for the first time that high-dose GTPs
caused nephrotoxicity in mice as observed by increased
serum creatinine level (Fig. 4d). In support of those
findings, it is well known that GTPs and EGCG function

as pro-oxidants in vivo and in vitro, and exhibit genotox-
icity and tumor promotional potentials (Li et al. 2010; Kim
et al. 2010; Furukawa et al. 2003; Guo et al. 1996).
However, the molecular mechanisms underlying their
potential toxicity have not been fully elucidated.

A recent study by Lambert et al. reported that intragastric
administration of high-dose EGCG (1,500 mg/kg) caused
hepatotoxicity in mice (Lambert et al. 2010), while we
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observed in the present study that a 1% GTPs diet did not
aggravate liver function, as determined by serum AST and
ALT levels (Fig. 4a, b). These contrasting results may be due
to differences in experimental conditions. However, we also
found that hepatic HSP mRNA expression levels were
substantially down-regulated by the 1% GTPs diet in mice
not treated with DSS (Fig. 6a, right panel), suggesting hepatic
dysfunction based on essential roles of HSPs for homeostasis.
Moreover, a diet containing both GTPs and DSS dramatically
increased serum creatinine (Fig. 4d), the most reliable
biomarker of nephropathy (Nakagawa et al. 2004; Yamabe
et al. 2006). Notably, both green tea extracts and DSS have
been found to be widely distributed throughout a variety of
organs in mice, including the liver and kidneys (Suganuma et
al. 1998; Kitajima et al. 1999a, b). Collectively, biological
interplay between GTPs and DSS may have a crucial role in
the development of hepato- and nephrotoxicity.

Oxidative stress is accelerated by a combination of ROS
generation and impaired antioxidant capacity (Kankuri et
al. 2003; Keshavarzian et al. 1992; Osburn et al. 2006).
Previous pharmacological studies have shown that EGCG
is metabolized through methylation, glucuronidation, and
sulfation under normal physiological conditions, and then
subsequently excreted in urine (Okushio et al. 1999; Li et
al. 2001). It is important to note that, most, if not all,
metabolites are biologically inactivated and are thus much
less toxic than the intact form of EGCG. On the other hand,
an excess dose of EGCG drastically increased the level of
TBARS in mice, a reliable indicator of lipid peroxidation
for exerting toxic effects and rapid lethality (Lambert et al.
2010). In line with these observations, the present 1% GTPs
diet increased TBARS levels in the kidneys and liver
(Fig. 4c, e), which may have a mechanistic association with
its pro-oxidative property.
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As mentioned above, EGCG undergoes autoxidation to
generate ROS. Oxidized EGCG in the B-ring is non-
enzymatically converted to an EGCG o-quinone, which
rapidly reacts with glutathione or protein thiols via covalent
bindings (Mori et al. 2010). Thus, it is conceivable that
administration of high-dose GTPs leads to accumulation of
EGCG o-quinone, which escapes from inactivation processes
by metabolism. These bioactive electrophiles may be
responsible for inducing toxicity in the liver and kidneys.
In fact, formation of EGCG-thiol conjugates was detected
only at high doses (400 mg/kg) following intraperitoneal
injection in mice (Sang et al. 2005). Meanwhile, high-dose
EGCG reduced the expressions of antioxidant enzymes,
including HO-1, SOD, and catalase (Kweon et al. 2006; Kim
et al. 2010). Along a similar line, our present results revealed
that 1% GTPs dramatically decreased the mRNA expres-
sions of HO-1 and NQO1 in the kidneys and livers of non-
treated mice (Fig. 5b, c). It is of great importance to point out
that HO-1 was reported to attenuate the progression of
chronic kidney disease (Desbuards et al. 2009). Therefore,
we assume that high-dose GTPs act not only in a pro-oxidant
manner, but also down-regulate antioxidant enzymes, leading
to hepatic and renal dysfunctions.

It is interesting that down-regulation of HSP70 has been
found to be associated with IBD development (Bhattacharrya
et al. 2009; Köken et al. 2004; Hu et al. 2007). Although we
also reported that a 1% GTPs diet aggravated colitis in DSS-
exposed mice (Kim et al. 2010), it was not clear whether 1%
GTPs affected the expression HSP70 in that model. In our
present study, renal and hepatic HSP70 expressions were
dramatically suppressed by DSS exposure, while the 1%
GTPs diet did not affect those in DSS-induced colitis mice.
On the other hand, it should be noted that 1% GTPs
treatment decreased hepatic HSP70 by 21% as compared
with the non-treated mice (Fig. 6b). Anwar et al. showed that
HSP70 interacts with an unfolded form of NQO1 and
thereby inhibited its degradation (Anwar et al. 2002),
implying a supporting role of HSP70 in NQO1 stabilization.
In support of that notion, the expression patterns of HSP70
and NQO1 in the present four groups were positively
correlated, except for data from the kidneys in group 2
(Figs. 5c and 6b). Renal and hepatic HSP27 levels were also
remarkably down-regulated by the combination of GTPs and
DSS (Fig. 6c). Thus, the 1% GTPs diet might have induced
hepatic and renal toxicity, at least in part, by attenuating the
expressions of both HSP70 and HSP27. More strikingly,
HSP90 in kidneys and livers of the non-treated mice was
identified as a chaperone protein that is hyper-sensitive to
GTPs (Fig. 6d). These results are consistent with those of
Tran et al., who previously found that HSP90 was repressed
by EGCG in MCF-7 human breast cancer cells (Li et al.
2009; Tran et al. 2010). Because HSP90 is the most
abundant molecular chaperone and plays pivotal roles in

maintaining organ homeostasis (Shi et al. 2007; Hackl et al.
2010), its down-regulation by GTPs might be associated
with organ dysfunction and toxicity. In addition, it is
significant to note that increased HSP70 expression by both
glutamine and geranylgeranylacetone contributed to the
protection against inflammation including IBD (Ohkawara
et al. 2005; Xue et al. 2011).

The present 1% GTPs diet, which contained 35%
EGCG, decreased survival rates (Fig. 2a) and down-
regulated antioxidant and xenobiotic-metabolizing enzymes
in mice with DSS-induced colitis (Fig. 5a). In contrast, we
previously reported that a low-dose GTPs (0.1~0.25%) diet
had a tendency to improve both ulcers and inflammation in
a colitis model (Kim et al. 2010). Therefore, low or
moderate doses of GTPs may exhibit beneficial effects
toward DSS-induced hepatotoxicity and nephrotoxicity.
This hypothesis may be supported by Calabrese and
Baldwin who described the U-shaped toxicity of environ-
mental chemicals (Calabrese and Baldwin 2002).

Taken together, our findings indicate that a high-dose
GTPs diet exacerbates kidney and liver functions, presum-
ably through down-regulation of antioxidant enzymes and
HSPs, in both normal mice and those with DSS-induced
colitis. The effects of low and medium dose of GTPs diets on
these functions are now being investigated in our laboratory.
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