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Age-related Purkinje cell death is steroid dependent: ROR«x
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Abstract A major problem of ageing is progressive
impairment of neuronal function and ultimately cell
death. Since sex steroids are neuroprotective, their
decrease with age may underlie age-related neuronal
degeneration. To test this, we examined Purkinje cell
numbers, plasma sex steroids and cerebellar neuro-
steroid concentrations during normal ageing (wild-
type mice, WT), in our model of precocious ageing
(Rora*”2, heterozygous staggerer mice in which
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expression of the neuroprotective factor RORo is
disrupted) and after long-term hormone insufficiency
(WT post-gonadectomy). During normal ageing
(WT), circulating sex steroids declined prior to or in
parallel with Purkinje cell loss, which began at
18 months of age. Although Purkinje cell death was
advanced in WT long-term steroid deficiency, this
premature neuronal loss did not begin until 9 months,
indicating that vulnerability to sex steroid deficiency

S. Janmaat

Molecular Imaging and Electron Microscopy, University
Medical Centre,

Groningen 9700 AD, The Netherlands

S. Janmaat - P. Luiten * T. Groothuis

Department of Molecular Neurobiology and Biological
Psychiatry, University of Groningen,

9750 AA Haren, The Netherlands

J. Mariani
AP-HP, Hopital Charles Foix, UEF,
94200 Ivry-sur-Seine, France

@ Springer



566

AGE (2011) 33:565-578

is a phenomenon of ageing Purkinje neurons. In
precocious ageing (Rora'”?), circulating sex steroids
decreased prematurely, in conjunction with marked
Purkinje cell death from 9 months. Although Rora®"¢
Purkinje cells are vulnerable through their RORx
haplo-insufficiency, it is only as they age (after
9 months) that sex steroid failure becomes critical.
Finally, cerebellar neurosteroids did not decrease with
age in either genotype or gender; but were profoundly
reduced by 3 months in male Rora™% cerebella,
which may contribute to the fragility of their Purkinje
neurons. These data suggest that ageing Purkinje cells
are maintained by circulating sex steroids, rather than
local neurosteroids, and that in Rora'”# their age-
related death is advanced by premature sex steroid
loss induced by ROR« haplo-insufficiency.

Keywords Ageing - ROR - Cerebellum - Purkinje
cells - Sex steroid hormones - Neurosteroids

Introduction

A major problem in the ageing nervous system is the
progression of neuronal dysfunction, atrophy and cell
death. One of the factors that have been implicated in
this progressive neurodegeneration is the decrease in
gonadal steroids with advancing age (Smith et al.
2005). However, because steroids can be generated in
the brain de novo from cholesterol (neurosteroids),
the relation between sex steroids and age-related
neuronal degeneration remains unclear (Schumacher
et al. 2003; Veiga et al. 2004). Such information is
important given the equivocal neuropsychological
benefits and known side effects of systemic steroid
hormone replacement for both men and women (for
review see Pike et al. 2009) and current research to
develop strategies that augment neurosteroids as a
potentially better neuroprotective treatment for the
aged brain (Azcoitia et al. 2005).

Cerebellar Purkinje cells provide a model with
which to investigate the relative roles of circulating
sex steroids and neurosteroids in age-related neuronal
death. Purkinje cells are vulnerable neurons that die
during ageing in both humans and rodents (Rogers et
al. 1984; Andersen et al. 2003; Zhang et al. 2010). As
Purkinje cells age, there is initial synaptic dysfunction
(Rogers et al. 1980; Woodruff-Pak et al. 2010) with
associated motor and cognitive decline (Thouvarecq
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et al. 2001; Woodruff-Pak 2006) followed by dendrit-
ic atrophy (Quackenbush et al. 1990; Zhang et al.
2006) and finally cell death (Woodruff-Pak 2006;
Zhang et al. 2006; Woodruff-Pak et al. 2010).
Purkinje cells are also targets of sex steroid action,
expressing sex steroid receptors (Qin et al. 2007) and
being protected by oestrogens and progestins during
development (Tsutsui 2008; Biamonte et al. 2009)
and following injury (Jung et al. 2002; Ardeshiri et al.
2006; Kelley et al. 2008). Moreover, oestrogens and
progesterone promote Purkinje cell dendritic growth,
spine formation and synaptic responses (Smith et al.
1987; Sakamoto et al. 2001; Sasahara et al. 2007),
parameters that are the first to decay during Purkinje
cell ageing (Rogers et al. 1980; Quackenbush et al.
1990; Zhang et al. 2006, 2010). Therefore, it may be
proposed that Purkinje cells of all ages respond to sex
steroids and that their progression through synaptic
dysfunction, dendritic atrophy and death is secondary
to the decline of sex steroid support during ageing.
However, because Purkinje cells also synthesise
neurosteroids (Tsutsui et al. 2003), the impact of
gonadal sex steroids on Purkinje cell death during
ageing remains unknown.

A potential link between sex steroids and age-related
Purkinje cell death arises from the heterozygous
staggerer mouse (Rora™*%), in which mutant RORox
(retinoic acid receptor-related orphan receptor alpha)
does not function (Hamilton et al. 1996). In Rora""¢
mice, Purkinje cells undergo the same age-related
degenerative changes as normal cells, only at a much
younger age (Caston et al. 1995; Doulazmi et al. 1999;
Hadj-Sahraoui et al. 2001; Caston et al. 2003, 2004).
Although it has been proposed that premature atrophy
and death of Rora™*¢ Purkinje cells is intrinsic to the
gene defect (Herrup and Mullen 1981), there is a
gender difference in their Purkinje cell loss that occurs
earlier in males (Doulazmi et al. 1999). This suggests
that differences in sex steroidogenesis may underlie the
premature degeneration of Rora’"*¢ Purkinje cells. This
premise is supported by the involvement of ROR«x in
endocrine function; it regulates enzymes involved in
sex steroid synthesis (Kang et al. 2007; Wada et al.
2008; Odawara et al. 2009) and homozygous staggerer
mice, which do not have RORx, have impaired
reproductive capability (Feron and Baudoin 1992;
Guastavino and Larsson 1992).

To test the hypothesis that gonadal steroids and
neurosteroids are involved in age-related Purkinje cell
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death, we analysed Purkinje cell numbers and related
them to plasma sex steroid and cerebellar neurosteroid
concentrations during normal ageing (wild-type mice,
WT). We then validated our theory experimentally:
measuring sex steroids in a mouse model in which
Purkinje cells are known to age prematurely (Rora’”*®
mice) and finally evaluating the role of steroids by
examining the time-course of cell death following
long-term sex steroid insufficiency post-gonadectomy.
Our data reveal that circulating sex steroids fall in
advance of or in parallel with Purkinje cell death
during both normal and precocious ageing and that
Purkinje cell death is advanced when there is sex
steroid insufficiency. While cerebellar neurosteroids
do not decrease with age they are profoundly reduced
in male Rora "¢ cerebella, which may enhance and/or
explain the vulnerability of Rora™*¢ Purkinje cells in
males. These data suggest that circulating sex ste-
roids, rather than local neurosteroids, play an impor-
tant neuroprotective role in the ageing cerebellum,
which has important implications for treatment strat-
egies of age-related neurodegenerative phenomena.

Materials and methods
Animals

Heterozygote staggerer (Rora’*¢) and WT mice were
bred from heterozygous C57Bl/6 (Rora'”*€) pairs in
our colony at the IFR 83 Biologie Integrative (Paris,
France). Intact male and female WT and Rora™¢ and
gonadectomised WT mice were used for the measure-
ments of Purkinje cell numbers and steroid concen-
trations at 3, 9, 13, 18 and 24 months of age. Females
were randomly cycled. All efforts were made to
minimise the number of animals used. Animals had
access to food and water ad libitum and were housed
under controlled temperature (24+2°C) and a 14/10-
h light/dark cycle. All animal procedures were per-
formed under the guidelines established by ‘le Comité
National d’Ethique pour les Sciences de la Vie et de la
Santé’ and the European Communities Council Direc-
tive of November 24, 1986 (86/609/EEC).

Genotype analysis

Genomic DNA was extracted from tail biopsies as
previously described (Gautheron et al. 2009). Briefly,

tissue was digested overnight at 55°C with proteinase
K (Qiagen, Courtaboeuf, France) in TSE buffer
containing in millimolar: 25 Tris—HCI pH 8.0, 75
NaCl, 25 EDTA pH 8.0 and SDS 1% (Sigma—
Aldrich, Saint Quentin, France). DNA fragments were
precipitated with isopropanol and washed with 70%
ethanol prior to being dissolved in 100 pl of distilled
water. DNA was amplified in two sets of reactions,
one for each allele by PCR. The staggerer allele
primers were: 5'-CGTTTGGCAAACTCCACC-3" and
5-GATTGAAAGCTGACTCGTTCC-3'". The WT al-
lele primers were: 5-TCTCCCTTCTCAGTCCT-
GACA-3' and 5-TATATTCCACCACACGGCAA-3".
The amplified fragments (318 bp Rora” and 450 bp
Rora®) were detected by electrophoresis on a 2%
agarose gel.

Gonadectomy and hormone replacement therapy

WT animals were bilaterally gonadectomised at
4 weeks of age under avertin anaesthesia (0.024
cc/g i.p.) and kept until 9, 13, 18 or 24 months, when
blood was collected for sex steroid analysis and brains
dissected for cell counts. All gonadectomised mice
had steroids levels below detection limits.

Twenty-four hours after gonadectomy, animals
received subcutaneous 90-day time-release hormone
pellets (Innovative Research of America, FL. USA)
releasing either 17p-estradiol (1,3,5-estratriene-
3,173-diol; 8.0 pg/day), progesterone (4-pregnene-
3,20-dione, 0.38 mg/day) or vehicle. In addition,
gonadectomised males were treated with dihydrotes-
tosterone (5x-androstan-17[3-ol-3-one, 0.14 mg/day)
which cannot be converted to 17(3-estradiol by
aromatase. Hormone pellets were replaced under short
isoflurane anaesthesia (3.5% isoflurane; 0.5% O,),
four times over 1 year of treatment. Blood was
collected every 3 months early in the light cycle (2—
3 h after lights-on) to measure steroid concentrations
by radioimmunoassay (RIA; Diagnostic Systems
Laboratories, Inc., USA).

Body weight of different experimental groups was
monitored on a regular basis. Initial group sizes of
intact and castrated mice ranged from five to ten but
were reduced to only two to five mice at 18 and
24 months due to a high incidence of late onset
mortality. In the hormone replacement therapy exper-
iment, initial group sizes ranged from five to eight
animals.
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Blood and brain collection for analysis of steroid
levels

Blood samples were collected 2-3 h after lights-on,
centrifuged at 3,000xg for 10 min at 4°C, and the
plasma stored at —80°C until subsequent analysis. For
brain steroids, animals were sacrificed by rapid
cervical dislocation at 3, 9 and 13 months of age.
The cerebellum was quickly removed on ice and
stored at —80°C until steroid analysis

Measurement of steroid concentrations

Steroid analysis was carried out on individual plasma/
cerebellar samples according to a previously de-
scribed method (Liere et al. 2000; Weill-Engerer et
al. 2002; Liere et al. 2004).

Briefly, 60-68-mg cerebellum and 150-300-ul plas-
ma were used. Steroids were extracted from each
sample with ten volumes of methanol together with
the appropriate internal standards (Steraloids) added for
steroid quantification: in plasma samples, “Hs-testoster-
one (2 ng) for testosterone; “Hs-17p-estradiol (2 ng)
for 173-estradiol and 19-nor-progesterone (2 ng) for
progesterone; in cerebellar samples, 5[3-androstane-
3B-0l-17-one (1 ng) for pregnenolone and S«-
pregnane-3x-ol-20-one (allopregnanolone), and *Hg-
5x-pregnane-3,20-dione, “Hg-50c dihydroprogesterone
(2 ng) for Sux-dihydroprogesterone. Pregnenolone,
progesterone and allopregnanolone were kind gifts
from Roussel-Uclaf (Romainville, France), 5«-
dihydroprogesterone, 5[(3-androstane-33-0l-17-one and
estradiol were purchased from Sigma. The unconju-
gated steroids were purified and isolated by solid phase
extraction (SPE) on C18 silica minicolumns (Interna-
tional Sorbent technology, Mid Glamorgan, UK) with
5 ml MeOH/H,O (90/10, v/v) with the recycling
procedure (Liere et al. 2004). They were filtered and
submitted to high-performance liquid chromatography
(HPLC) coupled to a 202 model Gilson fraction
collector. HPLC was achieved with a Lichrosorb Diol
column (25 cmx4.6 mm, 5 um) and the solvent
system consisted of hexane and mixture A (90:10, v/v),
the latter composed of hexane-isopropanol (85:15, v/v).
The elution was performed at a flow rate of 1 ml/min
at 30°C. Fraction I containing 5x-dihydroprogesterone
and ?Hg-5x-dihydroprogesterone was collected be-
tween 3 and 11 min. Fraction II containing pregnen-
olone, progesterone, testosterone and 17[3-estradiol and
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corresponding internal standards was collected from 10
to 30 min. The fraction II was derivatized with
heptafluorobutyric anhydride (Pierce Chemical CA.,
Rockford, IL, USA), and the fraction I with N-methyl-
N-trimethylsilyl-trifluoroacetamide/ammonium iodure/
dithioerythritol, before identification and quantification
by gas chromatography—mass spectrometry (GC-MS).
GC injection was carried out in the splitless mode with a
GC 8000 Top gas chromatograph (Carlo Erba) and the
oven temperature was ramped up from 50°C to 330°C at
20°C/min. The mass spectrometer (model 150, Finnigan
Automass, Argenteuil, France) was operated in the
electron impact mode with ionisation energy of
70 eV in single ion monitoring mode. Identification
of derivatized steroids was performed according to
the GC retention time and ratio between the signals
of two diagnostic ions. Quantification was carried
out according to the major diagnostic ion (quanti-
fication ion). Each GC-MS measurement of indi-
vidual plasma or brain sample was made in
duplicate. The detection limits for plasma proges-
terone, testosterone and 173-estradiol were respec-
tively 0.01, 0.03 and 0.01 ng/ml. The detection limits
for brain pregnenolone, progesterone, 5x-
dihydroprogesterone and allopregnanolone respectively
0.80, 0.10, 0.10 and 0.20 ng/g.

Histology and Purkinje cell quantitation

Under deep anaesthesia with 3.5% chloral-hydrate,
mice were transcardially perfused with physiological
saline and 4% paraformaldehyde in 0.1 M sodium
phosphate-buffered saline (pH 7.4). Brains were
dissected, post-fixed in 4% paraformaldehyde at 4°C
overnight, then dehydrated, cleared and embedded in
paraffin. Serial sagittal brain sections of 8 um were
stained with cresyl violet Nissl stain, which allows
easy identification of the soma and nucleus of all
Purkinje cells (Frederic et al. 1992).

Purkinje cells were counted on a Leica microscope
(Leica Paris, France) in male and female mice aged 3,
9, 13, 18 and 24 months. Counts were made blind and
verified by a second investigator. Purkinje cell
profiles were determined in every 40th section of
the whole cerebellum as previously described
(Doulazmi et al. 1999). In each parasagittal section,
the Purkinje cell layer was examined using an x100
objective (x1000 total magnification) and every
Purkinje cell with a visible nucleus was counted. To
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estimate the total number of Purkinje cells in each
animal, profile counts were multiplied by 40 and
corrected by the Hendry correction factor (Hendry
1976). This method provides similar Purkinje cell
numerical estimates as other stereological techniques
(Zanjani et al. 1996; Fan et al. 2001; Zanjani et al.
2004) and permits direct comparison with previously
published Purkinje cell counts of this mutant.

Statistical analysis
Steroid concentrations

In order to have a normal distribution of sex steroids
concentrations, we logged the data and verified
normality by the Kolmogorov—Smirnov Goodness-
of-Fit test. In case of a log-normal distribution, the
differences in testosterone, 173-estradiol and proges-
terone concentrations were assessed by a two-way
(genotype, age) analysis of variance (ANOVA) with
post hoc comparisons by the Newman—Keuls test.
Since progesterone concentrations in males were not
normally distributed after log-transformation, we
applied non parametric ANOVA (Kruskal-Wallis with
Mann—Whitney post hoc tests). We used the Spear-
man's rank correlation test to study the correlation
between log plasma steroid concentrations and Pur-
kinje cell number. Data are presented as the mean+
SEM. Significance was defined at P<0.05.

Cell counts

The difference between mean Purkinje cell numbers
during ageing was assessed by 2- or 3-way analysis of
variance (ANOVA) with post-hoc Newman—Keuls
test. Following castration and hormone treatment
Purkinje cell numbers were compared by the Krus-
kal-Wallis test. Data are presented as the mean+
SEM. Significance was defined at P<0.05.

Results

Circulating sex steroids decrease with age in advance
of Purkinje cell death

It is known that female mice have fewer Purkinje cells
than males and that these neurons begin to die from
18 months in WT mice and much earlier in Rora*"¢

mice (Doulazmi et al. 1999). To test the potential link
between Purkinje cell death and circulating sex
steroids, we measured plasma sex steroids between 3
and 24 months and correlated them with Purkinje cell
numbers from the same animals. We analysed four to
eight animals at each of five-age points for both
genders in both genotypes.

We confirmed the gender difference in WT
Purkinje cell numbers (Doulazmi et al. 1999), with
WT males having 7% more Purkinje cells than
females (F, =17, P<0.0001; Fig. la and a'), and
the loss of Purkinje cells from 18 months in WTs and
much earlier (F,5=145, P<0.0001) in Rora "¢
mice (Fig. 2; Doulazmi et al. 1999). Because Purkinje
cell death begins earlier in Rora™*¢ males (Fig. la
and a'; Doulazmi et al. 1999), we observed that from
9 months of age Rora™"*¢ males and females had the
same number of Purkinje cells (compare Fig. 1a vs. a',
Fig. 3).

Concerning sex steroids, in mice of both genotypes
and genders plasma concentrations decreased with age
(173-estradiol F4 g5=5, P<0.001; progesterone Fy gs=
20, P<0.0001; testosterone F4 g5=2.6, P<0.05). There
was also an effect of genotype, with plasma concen-
trations being lower in Rora™*¢ animals (17B-estradi-
ol, F, g5s=16, P<0.0001; progesterone, I gs=17, P<
0.0001; testosterone, F; gs=12.6, P<0.001).

Additional analysis revealed that in WT mice
progesterone (P<0.01; Fig. 1c) and 17[3-estradiol
(P<0.05; Fig 1b) decreased in males from around
9 months, i.e. before Purkinje cell death (Fig. 1a).
Also, testosterone fell from 18 months (P<0.05) in
parallel with Purkinje cell loss (Fig. 1d vs. a). In
contrast, in WT females changes in plasma sex
steroids with age were less evident consistent with
our use of randomly cycled mice, in which large
hormonal variations due to the estrus cycle will mask
smaller changes with age (Nelson et al. 1981).
However, progesterone decreased from 13 months
(P<0.01; Fig. 1c'), while 17f3-estradiol did not show
clear variance with age (Fig. 1b') and testosterone was
too low to detect any changes.

Correspondingly in Rora™® mice, plasma sex
steroids also decreased either before or in parallel to
the acceleration in Purkinje cell death at 9 months of
age (Fig. 1). In males, progesterone and 173-estradiol
were reduced from 3 months (P<0.05 each; Fig. 1b
and c) so that they were less than WT (P<0.001, P<
0.05, respectively; Fig. 1b, c). Also, testosterone
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Fig. 1 Purkinje cell number and circulating sex steroids
decrease with age. Evolution of Purkinje cell numbers (a and
a') and circulating sex steroid concentrations 17f3-estradiol (b
and b'), progesterone (¢ and ¢') and testosterone (d) in wild-type
(WT) and heterozygous staggerer (Rora*"*®) males (left panels)
and females (right panels) from 3 to 24 months of age. Values
are represented as mean+S.E.M; n=4-8. The ages when rapid

levels fell from 9 months, the time when Purkinje cell
death accelerates (Fig. 1a vs 1d). In female Rora"*®
mice, progesterone decreased with age (P<0.01
Fig. 1c'), 17p-estradiol was less than in WT (P<
0.01) even before Purkinje cells loss (Fig. 1a' vs 1b'),
and testosterone was almost undetectable.

In addition, these changes in plasma sex steroid
concentrations correlated with Purkinje cell numbers
of the same animals. Specifically, in males Purkinje
cell numbers correlated directly with plasma 17f3-
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Purkinje cell death commences are indicated by vertical dashed
(WT) or dotted (Rora™"¢) lines. Significant differences WT vs.
Rora'": single asterisk P<0.05; double asterisk P<0.01;
triple asterisk P<0.001. Significant differences within geno-
types: single number sign P<0.05; double number sign P<
0.01; triple number sign P<0.001

estradiol, progesterone and testosterone concentration
in both WT and Rora™”*¢ mice (17p-estradiol,
Spearman Rho=0.5, P<0.01; progesterone, Rho=
0.63, P<0.01; testosterone, Rho=0.46, P<0.05). In
females, Purkinje cell numbers correlated with 17(3-
estradiol (Spearman Rho=0.36, P<0.05) but not with
progesterone concentrations, possibly because we
used randomly cycled females.

In summary, in WT and Rora™*¢ animals circulat-
ing 17f3-estradiol and progesterone were reduced in
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Fig. 2 Fewer Purkinje cells in the aged Rora™¢ than WT
cerebellum. Micrographs of cerebellum stained with cresyl
violet showing the Purkinje cell layer of WT (a) and Rora™¢

advance of Purkinje cell death and, in males,
testosterone fell in parallel with cell loss.

Long-term hormone deficiency advances Purkinje cell
death in ageing mice

Since circulating sex steroids appeared to decrease in
advance of Purkinje cell death and were reduced in
Rora™”% mice even at 3 months, we tested whether
hormone deficiency precipitates Purkinje cell death
during normal ageing. To do this, we reproduced the
hormone deficient Rora™*¢ state by gonadectomy of
WT mice and counted their Purkinje cells between 9
and 24 months.

Long-term gonadectomy altered Purkinje cell
survival. Consistent with absent circulating sex
steroids (see Gonadectomy and hormone replacement
therapy in Materials and methods section) develop-
mental sexually dimorphic changes in neuronal

(b) cerebella at 18 months of age. The density of the Purkinje
cells (single asterisk) is less in the Rora™# tissue. Bar=>50 pum

survival did not take place (Litteria 1994), thus
gonadectomised mice of both genders had the same
number of Purkinje cells. Also gonadectomy ad-
vanced Purkinje cell loss, with both genders steadily
losing Purkinje cells from 9 months of age (F579=11
P<0.0001; Fig. 3). Thus, because Purkinje cells do
not start to die in intact WT mice until 18 months,
gonadectomised WT males had significantly fewer
Purkinje cells than intact males at 13 (—9%) and 18
(—18%) months (P<0.05, Fig. 3). However in
gonadectomised females, the advanced Purkinje cell
death (9 vs. 18 months; P<0.05), commenced from
the number of Purkinje cells usually found in males,
so that overall the number of Purkinje cells did not
become significantly less than in intact females
(Fig. 3).

To explore the relation of individual sex steroids to
the advanced Purkinje cell loss in gonadectomised
animals, we tested the effect of individual hormone
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Fig. 3 Hormone deficiency advances Purkinje cell loss. Mean
(£ S.E.M) number of Purkinje cells (PC) of intact and
gonadectomized (GDX) WT and Rora™¢ mice from 3 to
24 months. In WT mice, PC death begins earlier in gonadec-
tomised (GD.X) than intact mice. Also GDX removes the sexual
dimorphism of PC numbers (Litteria 1994) so that GDX males
and females have the same numbers of PCs. In Rora™*¢ mice in
association with their endocrine deficiency there is also no
sexual dimorphism in the number of Rora™*¢ PCs, which have
already begun to die by 3 months of age and whose death
accelerates from 9 months of age. T=range of PC number in
males at 1 month (Doulazmi et al. 1999). Significant differ-
ences intact vs. GDX: single asterisk P<0.05. Significant
differences WT male vs. female: section sign P<0.0001

replacement therapy for 12 months to normalise
circulating sex steroids. Plasma 17f3-estradiol, pro-
gesterone and dihydrotestosterone were monitored
every 3 months and were in the physiological range
(data not shown). However for both genders, at
13 months of age there were no apparent differences
in Purkinje cell number between gonadectomised
mice with or without replacement of individual
hormones, 17[3-estradiol, progesterone or dihydrotes-
tosterone for 1 year (Fig. 4).

In summary, in ageing WT animals Purkinje cell
death is advanced after long-term deficiency of sex
steroids, although replacement of individual hor-
mones could not reverse this premature cell loss.

Cerebellar neurosteroid concentrations do not change
with age

Our data indicate a relation between circulating sex
steroids and Purkinje cell survival, with neuronal loss
being preceded by falling 17f3-estradiol and progester-
one and precipitated by long-term hormone deficiency.
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However there is a delay between falling steroid levels
and Purkinje cell loss, which may be due to the
neuroprotective properties of Purkinje cell-synthesised
neurosteroids. Therefore, we measured cerebellar neuro-
steroids before and during Purkinje cell death in WT and
Rora"™8 mice (n=6 for each gender and genotype).

In WT animals, cerebellar neurosteroids did not vary
between 3 and 13 months of age (Fig. 5). However, at all
ages there was a gender difference with lower neuro-
steroid (pregnenolone, S5«-dihydroprogesterone and
allopregnanolone) concentrations in females compared
to males (F;,5=36 P<0.0001; F|2=26 P<0.0001;
F120=29 P<0.0001, respectively; compare Fig. 5 left
and right columns). These data parallel the stable
number of Purkinje cells between 3 and 13 months
and smaller number of Purkinje cells in the female
cerebellum (Figs. 1 and 3; Doulazmi et al. 1999).

In addition, in Rora™*® mutant mice cerebellar
steroids also did not change between 3 and 13 months
(Fig. 5). Furthermore in contrast to WT, cerebellar
steroid concentrations were the same in male and
female Rora™ ¢ mice (Fig. 5, compare left and right
columns). As a consequence, compared to WT cerebel-
lar neurosteroids were reduced in Rora™* males
(pregnenolone £ ,9=13 P<0.001, 5o-dihydroproges-
terone [ ,0=4 P<0.05, allopregnanolone F,9=15
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Fig. 4 No effect of hormone treatment on Purkinje cell death.
Mean (£ S.E.M) number of Purkinje cells of 13-month old
intact or gonadectomized (GDX) WT animals treated for
12 months with placebo (GDX-oil), 17f3-estradiol (+E2),
progesterone (+Prog) or dihydrotestosterone (DHT). GDX
WT males had fewer PCs than intact WT. There were no
significant differences in PC number between the different
hormone treatment groups of gonadectomized males and
females. Significant differences intact vs. GDX: single asterisk
P<0.05
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Fig. 5 Cerebellar neurosteroids do not decrease with age. Concen-
trations (mean+S.E.M) of cerebellar neurosteroids, pregnenolone,
allopregnanolone and 5o-dihydroprogesterone in 3—13-month-old
wild-type (WT) and Rora™¢ mice (n=6 per group). In WT, these
neurosteroid concentrations are higher in males than females and in

P<0.001). Thus in contrast to WT, in Rora™*¢ mice
there is no correlation between stable neurosteroid
concentrations and falling numbers of Purkinje cells.

In summary, cerebellar neurosteroid concentrations
do not change between 3 and 13 months, and,
although they are reduced in Rora™¢ males, their
profile does not accord with ongoing Purkinje cell
loss in the Rora”¢ cerebellum.

Discussion
In this study, we examined the relation between age-

related neuronal degeneration and sex steroids during
normal ageing, and in Rora"® and gonadectomised

3 9 13
months

RORo”*® the sexual dimorphism disappears, with reduced neuro-
steroid concentrations in males. Significant differences WT vs.
Rora™™: single asterisk P<0.05; triple asterisk P<0.001. Signifi-
cant differences WT male vs. female: section sign P<0.05

experimental models. Our data reveal a statistical
correlation between age, Purkinje cell loss and falling
levels of circulating sex steroids, and a deficit in both
circulating sex steroids and cerebellar neurosteroids in
Rora”"*¢ mice. From these data, we propose that during
ageing Purkinje cell death is sex steroid dependent and
that the precocious neuronal loss in Rora™¢ animals
results from premature sex steroid deficiency.

Death of ageing Purkinje cells is related to decreased
sex steroids

From the results from this study, we hypothesise that

a deficiency of circulating sex steroids causes age-
related Purkinje cell death. Our study provides three
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independent lines of evidence to support this hypoth-
esis. First, in normal ageing animals circulating
steroids fall just in advance of, or in parallel to,
Purkinje cell death. Importantly, throughout the
ageing process the number of surviving Purkinje cells
directly correlates with plasma sex steroid concen-
trations (17(3-estradiol, progesterone and testosterone
in males and 173-estradiol in females). Second, when
circulating sex steroids are removed prematurely by
gonadectomy, the onset of Purkinje cell death is
advanced from 18 to 9 months. This finding is
consistent with the known neuroprotective function
of sex steroids in development (Tsutsui 2008;
Biamonte et al. 2009), injury (De Nicola et al. 2009;
Fargo et al. 2009; Herson et al. 2009; Suzuki et al.
2009) and neurodegenerative disease (Bourque et al.
2009; Garcia-Segura and Balthazart 2009; Gold and
Voskuhl 2009) and adds that they have a similar
neuroprotective role during normal ageing. Third,
when Purkinje cell death is advanced in a genetic
model of premature ageing (Rora’ "% mice; Jarvis et
al. 2002; Boukhtouche et al. 2006a) we identify, for
the first time, that circulating sex steroid concen-
trations are prematurely reduced and that this sex
steroid loss precedes, or is concurrent with, Purkinje
cell death. Thus plasma sex steroid concentrations and
Purkinje cell numbers remain concordant during
ageing in both normal WT and Rora""*¢ mutant mice;
data which concur with sex steroid deficiency in
disorders involving neuronal loss, such as Alzheimer's
disease (Schumacher et al. 2003; Pike et al. 2009).
Although the temporal correlation of Purkinje cell
loss and falling steroid concentrations during ageing
could be just circumstantial, our data showing similar
but premature Purkinje cell loss in two different
models of endocrine deficiency (gonadectomy or
Rora’*¢ mutation) implies a causal relationship.

We further probed the relation between the require-
ment for circulating sex steroids and survival of ageing
Purkinje cells by testing whether hormone replacement
treatment prevented premature Purkinje neuron loss
following gonadectomy. Although our treatment did not
improve Purkinje cell survival, we only gave mono-
therapy and mice normally have circulating levels of all
three hormones: 173-estradiol, progesterone and testos-
terone. Indeed, consistent with our data, it has recently
been shown that dihydrotestosterone replacement in
orchidectomised rats does not increase brain steroid
concentrations (Pluchino et al. 2008), and that effective

@ Springer

neuroprotection requires the combination of exogenous
oestrogens and progestins (Smith et al. 1987; Kipp and
Beyer 2009; Lenzi et al. 2009). Therefore the failure of
individual sex steroids to prevent premature Purkinje
cell death post-gonadectomy, further supports the
hypothesis that survival of ageing Purkinje cells requires
the integrity of the whole circulating sex steroid profile.

Cerebellar neurosteroids do not decrease with age

Although our data reveal a clear relation between age-
related Purkinje cell death and circulating sex ste-
roids, Purkinje cells also synthesise neurosteroids
(Baulieu 1997; Tsutsui et al. 2003), for which changes
during normal ageing remain ill-defined (Schumacher
et al. 2003; Rosario et al. 2009) and which could
explain the delay between falling plasma steroids and
age-related Purkinje cell death.

We show that cerebellar neurosteroids do not
change between young adult (3 months) and aged
(13 months) animals. We also show that cerebellar
neurosteroid synthesis is sexually dimorphic in WTs
(being higher in males) but not in Rora™”¢, so that
Rora™"*¢ males have reduced cerebellar neurosteroids
compared to age-matched controls, even as young
adults (i.e. at 3 months). Given that progestins are
neuroprotective (Garcia-Segura and Balthazart 2009;
Herson et al. 2009), the expression profile we
observed is consistent with the stable, sexually
dimorphic number of WT Purkinje cells (this study;
Doulazmi et al. 1999) as well as compromised
survival of young adult male Rora""*¢ Purkinje cells.
However, we did not observe a significant decrease in
neurosteroid concentrations in Rora’*¢ females,
despite their accelerating age-related Purkinje cell loss
from 9 months. This is consistent with human studies
showing age-related decrease of brain sex steroids in
males but not in females (Rosario et al. 2009) and the
sexually dimorphic expression of key neurosteroido-
genic enzymes, such as StAR, P450scc and aromatase
(Lavaque et al. 2006). Taken together, our data do not
demonstrate a clear role for cerebellar neurosteroids in
the survival or death of ageing Purkinje cells.

Death of ageing Purkinje cells: interactions of sex
steroids and ROR«x

Although sex steroids are protective to immature
Purkinje cells (Tsutsui 2008; Biamonte et al. 2009),
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our data from hormone deficient mice (Rora™”*® and
gonadectomised WT) now add that sex steroids also
have an important neuroprotective role during normal
ageing. In these Rora'”¢ and gonadectomised WT
animals the number of Purkinje cells only declined
from 9 months of age (Fig. 3); i.e. hormone deprived
Purkinje cells continue to survive until the animals are
aged (i.e. to 9 months), thus revealing that vulnera-
bility to sex steroid deficiency is a phenomenon of the
ageing Purkinje cell rather than young adult neurons
which survive regardless.

A re-development of hormone dependency as
Purkinje cells age is entirely consistent with physio-
logical changes which take place during ageing and
the functions of sex steroids. As the brain ages,
among other alterations that may adversely affect
neuronal survival, neurotrophic factor synthesis/sig-
nalling decreases (Bishop et al. 2010; Katoh-Semba et
al. 1998; Sonntag et al. 1999; Tapia-Arancibia et al.
2008; Luppi et al. 2009) and oxidative stress and free
radicals accumulate (Hanawalt 2008). Importantly for
age-related Purkinje cell death, sex steroids regulate
both these processes. First, sex steroids promote the
expression and signalling of brain-derived neuro-
trophic factor (BDNF; Begliuomini et al. 2007; Kaur
et al. 2007) and insulin-like growth factor-1 (IGF-1;
Garcia-Segura et al. 2006; Alonso et al. 2008; Luppi
et al. 2009), both of which are survival factors for
Purkinje cells (Larkfors et al. 1996; Lindholm et al.
1997; Fukudome et al. 2003). Indeed the neuro-
protective action of oestrogen and progesterone are
mediated through BDNF and IGF-1 receptor signal-
ling and their downstream pathways through MAP
kinase and phosphatidylinositol-3 kinase (Garcia-
Segura et al. 2006; Kaur et al. 2007; Alonso et al.
2008). Second, sex steroids protect against oxidative
stress and free radicals (Dubal et al. 1999; Ardeshiri et
al. 2006; Kelley et al. 2008; Jung et al. 2010),
processes to which Purkinje cells are known to be
sensitive (Horn and Schlote 1992; Brasko et al. 1995;
Fonnum and Lock 2000). Therefore in WT mice,
falling circulating sex steroid concentrations during
ageing (this study; Smith et al. 2005) and long-term
hormone insufficiency post-gonadectomy, can ad-
versely affect Purkinje cells by simultaneously reduc-
ing two key survival factors and protection against
oxidative stress; a combination which only becomes
critical as free radicals and oxidative stress accumu-
late with age (Hanawalt 2008).

This hypothesis linking the decrease in circulating
sex steroids with death of ageing Purkinje cells is
reinforced in Rora™”*% mice. In these mice, we show
that circulating sex steroids fall prematurely, consis-
tent with the role of ROR« regulating enzymes
involved in steroidogenesis, e.g. 3B-hydroxysteroid
dehydrogenases (Kang et al. 2007) and aromatase
(Odawara et al. 2009). In addition Rora™"*¢ Purkinje
cells, which are already intrinsically vulnerable due to
their genetic defect (Herrup and Mullen 1981) and
gradually degenerate from 1 month of age (Doulazmi
et al. 1999), die early (as demonstrated by accelerated
Purkinje cell loss in Rora™”¢ from 9 months).
However, the fact that Purkinje cell loss was only
gradual to 9 months confirms that Purkinje cell
susceptibility to circulating sex steroid deficiency is
a phenomenon of ageing; i.e. even though genetically
vulnerable Purkinje cells gradually die, it is only after
circulating sex steroids fail prematurely and Purkinje
cells become aged that their death accelerates. Given
that RORx itself promotes BDNF synthesis (Qiu et
al. 2007), IGF-1 signalling (Jaradat et al. 2006) and
anti-oxidant function (Boukhtouche et al. 2006b),
Roro haplo-insufficiency in the Rora™*® mouse
renders their Purkinje cells more vulnerable to
oxidative stress that accrues during ageing. This effect
would be exacerbated by the premature loss of neuro-
trophic and anti-oxidant properties of sex steroids,
initially endogenous neurosteroids (Sakamoto et al.
2001; Sasahara et al. 2007; Tsutsui 2008) then
circulating hormones. Since in WT animals RORx
expression does not appear to vary with age (Sharman
et al. 2007), we propose that the difference in Purkinje
cell number between Rora’™*¢ and gonadectomised WT
after 9 months of age reflects the added vulnerability
induced by Roro haplo-insufficiency on top of suscep-
tibility of ageing Purkinje cells to sex steroid deficiency.

Conclusions

In conclusion, this study reveals that age-related
cerebellar Purkinje cell neurodegeneration correlates
with the decline in circulating sex steroids in both WT
and Rora*”*® mice. In contrast, cerebellar neuroste-
roids do not decrease with age, but are decreased in
male Rora™¢ which might cause or enhance the
vulnerability of their mutant Purkinje cells. From
these data, we hypothesise that during normal ageing,
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death of Purkinje cells can be delayed by the
combination of circulating sex steroids or advanced
by premature sex steroid loss, such may be induced
by gonadal failure or Rorx haplo-insufficiency.
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