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Abstract
The use of microarray technology to measure gene expression on a genome-wide scale has been well established for
more than a decade. Methods to process and analyse the vast quantity of expression data generated by a typical
microarray experiment are similarly well-established. The Affymetrix Exon 1.0 ST array is a relatively new type of
array, which has the capability to assess expression at the individual exon level. This allows a more comprehensive
analysis of the transcriptome, and in particular enables the study of alternative splicing, a gene regulation mechanism
important in both normal conditions and in diseases. Some aspects of exon array data analysis are shared with
those for standard gene expression data but others present new challenges that have required development
of novel tools. Here, I will introduce the exon array and present a detailed example tutorial for analysis of data
generated using this platform.
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INTRODUCTION
Affymetrix have recently developed ‘whole tran-

script’ arrays, which are fundamentally different

to their traditional 30 expression arrays [1]. Probes

are designed along the entire length of the gene as

opposed to just the 30-end. Consequently, data from

all parts of the gene are available which avoids the

need to infer expression of the entire gene based on

measurements made at the 30-end. As well as giving a

better overall estimate of gene expression, it has the

added advantage so that expression of individual

exons can also be estimated.

The exon array consists of �1.4 million probesets

and >5 million individual probes. Each probeset

comprises four individual probes and usually corres-

ponds to a single exon (longer exons may have more

than one probeset designed to them). Again, there

are differences to the design of traditional 30 expres-

sion arrays, which have 11 probes per probeset, and

make use of ‘mismatch probes’, with the central base

mutated and intended to measure non-specific hy-

bridization. The exon array contains only perfect

match probes and non-specific hybridization is mea-

sured through two sets of negative control probes;

one set, referred to as ‘antigenomic background

probes’, is based on sequences having no match in

the human, mouse or rat genomes. The second set,

termed genomic background probes, are based on

probes designed to Genscan Suboptimal exon pre-

dictions (unlikely to be transcribed) from an old ver-

sion of the human genome (NCBI Build 31). In each

set, there are generally 1000 probes per GC-content

count (0–25 bases in the probe). This allows a

GC-based background correction to be performed

by matching the background signal to the GC con-

tent of each experimental probe, which is important

as the hybridization signal observed from control

probes tends to increase with GC content.

Probesets targeting individual exons can be further

grouped into ‘transcript clusters’ and gene-level
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expression estimates can be obtained by considering

all probes comprising a transcript cluster. The con-

tent of the exon array includes well-characterized

genes as well as more speculative regions of transcrip-

tion. Thus, it can potentially provide evidence for

novel transcripts in more exploratory experimental

designs. Depending on the level of evidence sup-

porting the existence of a particular exon, the pro-

besets are categorized as ‘core’ (annotated by

RefSeq), ‘extended’ (mRNA evidence) or ‘full’ (bio-

informatic prediction). The list of extended probesets

comprises those annotated as ‘core’ or ‘extended’ and

the list of full probesets includes ‘core’, ‘extended’

and ‘full’. The analysis at exon or gene level can be

restricted to any level of evidence as appropriate for

the study.

While the exon array can be used to analyse dif-

ferential gene expressions in exactly the same way

as traditional Affymetrix arrays, it has the advantage

of simultaneously providing data at the exon level.

Exon-level data can be used to investigate splicing

events, which determine how individual exons are

joined together to form a mature mRNA transcript.

Many genes exist as different isoforms, where the

exons at the gene locus are combined in different

ways to generate multiple forms of the gene. For

example, a cassette exon can give rise to two possible

transcripts—one form including the exon and the

other where it is ‘spliced out’ or skipped. There are

many variations of splicing events and they can be

combined together to generate a diverse set of tran-

scripts. Alternative usage of 30 sites, in particular, has

implications for the earlier 30 array design as shorter

isoforms of a gene may not be detected, resulting in

an incomplete estimate of gene expression.

Splicing is a highly regulated process and the idea

that aberrant splicing could underlie many diseases is

a very active area of research. The ability to investi-

gate splicing on a genome-wide scale using the exon

array is an exciting prospect. However, as is often the

case with such developments, new challenges in

terms of data analysis and interpretation can also

arise. I will demonstrate the use of Affymetrix

power tools (APT) [2] and R statistical software [3]

to process and analyse data from the exon array plat-

form. In particular, I will focus on data processing

and filtering steps necessary before running a splicing

analysis and briefly discuss ways to visualize and in-

terpret the results. It is important to note that the

methods presented here are just one way of ap-

proaching exon array data and many other tools

and software packages are available or are under de-

velopment in this fast-moving field.

Tools for exon array data analysis
APT is a suite of tools developed by Affymetrix for

processing and analysing data from any GeneChip�

array and can be obtained from http://www

.affymetrix.com/partners_programs/programs/

developer/tools/powertools.affx#1_2.

Standard processing of exon array data can be per-

formed in APT with basic command line knowledge

but there is also scope for more advanced users to

adjust various parameters as well.

The R Statistical Software Package is a powerful,

open-source environment for statistical data analysis

and visualisation. It is available from http://www

.r-project.org/.

To demonstrate the use of APT and R to analyse

exon array data, I will use a publicly available data

set that used this platform to investigate splicing in

high and low hypoxia cancer samples [4]. The data

are available from the Gene expression omnibus

(GEO) [5] website http://www.ncbi.nlm.nih.gov/

geo/ by searching for the data set accession

number (GSE18300)—the record gives full informa-

tion on the study and access to the raw data files,

which can be downloaded and used to try out the

methods presented. APT has a web forum for users

and there is extensive documentation as well as a

mailing list for R—these are very useful places to

search if encountering any problems using the

software.

Processing exon array data using APT
As with other Affymetrix arrays, raw signal intensity

data are provided in .CEL files, each containing

probe-level intensities from a single array (sample).

These files can be processed in APT (as well as other

software packages) to generate exon- and gene-level

intensity estimates. As described above, probesets on

the exon array consist of four individual probes and

usually target a particular exon of a particular gene.

Thus, exon-level intensity estimates correspond to

the probeset-level estimates. Probesets are further

grouped into transcript clusters enabling a gene-level

estimate to be computed by summarizing data from

all probes within the transcript cluster. These two

values—the exon- and gene-level signal intensity es-

timates—form the basis of splicing analysis (discussed

in more detail below). First, we present methods to
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process the CEL files to generate normalized expres-

sion data using APT and further processing in R.

The ‘apt-probeset-summarize’ command reads in

raw CEL files and generates normalized exon- or

gene-level signal intensities, depending on the spe-

cified arguments [6]. To run the command, a num-

ber of files providing information on array design,

known as library files, are required. Affymetrix pro-

vide up-to-date versions of supporting files (library

files, annotation files, etc.) for each type of array they

manufacture.

The relevant files can be obtained from the

Affymetrix website (www.affymetrix.com) after

free registration for a username and password. At

the time of writing, the library files for the Human

Exon 1.0 ST array could be downloaded as a zip file

by locating the array name in the list of products on

the support page and checking the ‘library files’ box.

However, note that the organization of the website

and/or exact filenames may change over time. Click

the ‘Human Exon 1.0 ST Array Analysis’ link to

download the zip file. Unzip and check that the

following files are among those available:

HuEx-1_0-st-v2.r2.pgf

HuEx-1_0-st-v2.r2.clf

HuEx-1_0-st-v2.r2.antigenomic.bgp

HuEx-1_0-st-v2.r2.genomic.bgp

HuEx-1_0-st-v2.r2.qcc

The probe group file (.pgf) and cel layout file (.clf)

specify which probes belong to a given probeset and

their location in the cel file respectively. These two

files are used in place of the chip description file

(CDF) provided for other Affymetrix arrays. The

.bgp files contain information on background control

probes and the .qcc file has details of all control

probes. The library file package also includes a file

named HuEx-1_0-st-v2.r2.all.ps, which, when spe-

cified in the analysis, produces summary estimates for

all experimental probesets on the array. However, to

perform a gene-level analysis, or to restrict the ana-

lysis to a certain annotation level (core, extended or

full), additional files are needed. These can also be

obtained from the library files page, under the

‘Human Exon 1.0 ST Array Probeset and Meta

Probeset Files’ link.

The following six files should now be available:

HuEx-1_0-st-v2.r2.core.ps; HuEx-1_0-st-v2.r2.extended

.ps; HuEx-1_0-st-v2.r2.full.ps

HuEx-1_0-st-v2.r2.core.mps; HuEx-1_0-st-v2.r2.ex-

tended.mps; HuEx-1_0-st-v2.r2.full.mps

Exon-level analysis
To process the data at the exon (or probeset) level,

one of the .ps files should be specified; these simply

list the probeset IDs annotated at the chosen level

and the output contains summary estimates for the

specified probesets only. Various summary methods

are available within APT, including the RMA

(Robust multi-array average) [7] and PLIER

(Probe logarithmic intensity error) [8] algorithms,

which are both widely accepted methods for pro-

cessing Affymetrix microarray data. The processing

steps include background correction, normalization

and probeset summarization. RMA and PLIER are

both model-based methods, which aim to generate

robust signal estimates by down-weighing poorly

performing probes. For a variety of reasons, poor

probes would usually have low signal relative to

others in the probeset. Although alternatively spliced

exons could also have low signal (and therefore be

indistinguishable from a poor probe) RMA and

PLIER should be robust to this, specifically when

splicing is limited to a small proportion of exons

within the gene.

The following APT command can be used to

generate exon-level intensity estimates for core pro-

besets using RMA:

> apt-probeset-summarize -a rma-sketch
–p HuEx-1_0-st-v2.r2.pgf -c HuEx-1_0-
st-v2.r2.clf -s HuEx-1_0-st-v2.r2
.core.ps –qc-probesets HuEx-1_0-st-v2
.r2.qcc -o OUT_EXON *.CEL

A detailed description of each argument and notes

can be found in Table 1.

Gene-level analysis
To generate gene-level signal intensity estimates, one

of the *.mps files is specified in place of the *.ps file.

> apt-probeset-summarize –a rma-sketch
–p HuEx-1_0-st-v2.r2.pgf -c HuEx-1_0-
st-v2.r2.clf -m HuEx-1_0-st-v2.r2.core
.mps –qc-probesets HuEx-1_0-st-v2.r2
.qcc-o OUT_GENE *.CEL

Each *.mps file defines which probesets are asso-

ciated with each transcript cluster. Only probesets

classified as mapping uniquely to the genome are
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listed, to avoid including signal from potentially

cross-hybridizing probes in the computation of the

gene-level signal estimate. It is worth noting that, in

the gene level, output from apt-probeset-summarize,

the column containing transcript cluster IDs is still

named probeset_id, but is not to be confused with

the exon level probeset_id. One decision regarding

the analysis workflow is whether to use core, ex-

tended or full probesets for the calculation of

exon/gene intensities. The more speculative content

of the array tends to introduce a lot of low intensity

noise from probes designed to regions that may

not be transcribed. Restricting to core probesets

should generate more reliable signal for the well-

characterized content and is particularly recom-

mended for the gene-level estimate.

Quality control of exon array data
The qcc argument to apt-probeset-summarize results

in the generation of a file containing summary meas-

ures for each array, which can be assessed to check

the quality of the data prior to analysis. As with other

types of microarray data, deciding whether to ex-

clude a sample as an outlier is dependent on a

number of factors; however, any sample behaving

differently to others in the experiment should be

considered carefully, specifically if flagged by mul-

tiple quality control (QC) measures. Full details on

the various metrics and control probes available on

the exon array and their interpretation is given in the

Affymetrix white paper on quality assessment [9].

To give a couple of examples, the pm_mean value

is the mean raw intensity for all probes on the

array—unusually bright or dim samples (high or

low pm_mean values respectively) should be handled

by normalization but this should be checked with

probeset-level metrics as well. The mean absolute

deviation (MAD) of the residuals for each chip

(from the RMA or PLIER model fit) compared to

the median for all chips is an useful metric for most

studies. An unusually high value for this metric

can suggest a problem with the given chip. Other

useful functions for assessing chip quality, including

identification of spatial artefacts, are available in the

Table 1: Using Affymetrix power tools to process raw data from the exon array and generate exon or gene-level
signal estimates

Example argument to apt-probeset-
summarize command

Notes

-a rma-sketch Specifies the analysis to be performed. ‘rma-sketch’ (RMA using a subset of probes for
memory efficiency) is one of the standard options. Other options, such as plier-sketch
and plier-gcbg-sketch (incorporating a gc-based background correction) can be specified
instead. It is possible to perform multiple analyses simultaneously by including more
than one -a argument.

^p HuEx-1_0 -st-v2.r2.pgf -c HuEx-1_0 -st-v2.r2.clf Specify the library files, which give information on probeset groups and the array
layout. The ^p *.pgf and ^ c *.clf arguments can be replaced with -d *.cdf if the user
wishes to use a custom CDF with alternative probeset definitions [24].

-s HuEx-1_0 -st-v2.r2.core.ps If a .ps file is specified with the ^ s argument, an exon-level analysis will be performed.
To run a gene-level analysis, a .mps file is specified with the ^m argument instead.
In either case, analysis can be restricted to probes annotated as core, extended or full
by specifying the relevant file.

^ qc-probesets HuEx-1_0 -st-v2.r2.qcc Specify the .qcc file to process the control probesets on the array and check quality of
data.

-o output_exon Specify a directory to write the output files with the ^ o argument.This will be created
in the current working directory unless a path to another location is given. Output
files are named according to the analysis method (e.g. rma-sketch.summary.txt) and are
given the same name for both exon and gene-level analyses; they will be over-written
if another analysis is run with the same output folder specified. Therefore, it is useful
to write files to a new folder for each analysis. It is also helpful to re-name immediately
with an informative name to include the dataset, analysis method and whether it is an
exon or gene-level analysis to enable easy identification of the data in the file.

*.CEL Specify the .CEL files to be processed. If they are contained in the current working
directory, *.CEL will suffice, but a path to the files can be given if required. There will
be some differences between Windows and Linux systems regarding syntax for path
names and use of the wildcard (*) characterçWindows users will need to specify each
.CEL file to be analysed individually.
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‘affyPLM’ package [10] from BioConductor [11]

(note that the CEL files will need to be processed

directly in R to create the required objects).

If the number of samples is small, the data in the

QC output file can be inspected by eye or otherwise

easily plotted for visualization in R:

> qc <- read.table("./OUT_EXON/rma-
sketch_core_exon.report.txt",
sep¼"\t", header¼T)

> plot(1:10, qc$pm_mean, ylim¼c
(0,1000), xlab¼"Array", ylab¼"Signal
Intensity", main¼"Average Raw Intensity
Signal")

> plot(1:10, qc$all_probeset_mad_
residual_mean, ylim¼c(0,0.3),
xlab¼"Array", ylab¼"Mean absolute
deviation", main¼"Deviation of
Residuals from Median")

Chip 8 has the highest MAD value (Figure 1) but as

it does not seem excessively high we would not

exclude this array unless further checks gave more

cause for concern. It is usually preferable to keep

arrays unless there is very good reason to exclude

them, as it reduces sample size, which is typically

small in the first place.

Visualizing the normalized data using hierarchical

clustering or density plots, e.g., can also be helpful to

check for outlier samples.

> d.exon <- read.table("./OUT_EXON/rma-
sketch_core_exon.summary.txt",
sep¼"\t", header¼T, row.names¼1)

> d.t <- dist(t(d.exon))

> plot(hclust(d.t), main¼"Hierarchical
clustering", labels¼c(rep("Low", 5),
rep("High", 5)))

Figure 1: Example quality control plots for the 10 arrays in the example data set (GSE18300) showing (a) average
raw signal intensity; (b) mean residual deviation; (c) hierarchical clustering and (d) distribution of normalized
intensities.
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> plot(density(d.exon[,1]), main¼
"Distribution of RMA-normalised
intensities", xlab¼"RMA normalised
intensity")

> for(i in 2:ncol(d.exon)) {lines
(density(d.exon[,i]))}

The output from these plots is shown in

Figure 1 and suggests high-quality data from all

arrays. Furthermore, the low and high hypoxia

samples cluster into two groups, suggesting substan-

tial differential expression at the gene and/or exon

level.

At this point, it is useful to run another APT com-

mand to generate detection of P-values for each

probeset. ‘Detected above background’ or DABG

can be run as an analysis option to apt-probeset-

summarize:

> apt-probeset-summarize -a dabg -p
HuEx-1_0-st-v2.r2.pgf -c HuEx-1_0-st-
v2.r2.clf -b HuEx-1_0-st-v2.r2
.antigenomic.bgp-o ./OUT_DABG *.CEL

The signal intensity estimate obtained for each pro-

beset is compared to the signal distribution from the

set of anti-genomic probes (negative controls). The

degree of overlap is used to compute a detection

P-value, with P < 0.05, the usual threshold to con-

sider a probeset detected. The matrix of detection

P-values is written to a file called ‘dabg.summary.txt’

by default. This will be used later to filter for

detected exons and genes.

Once the data have been processed to generate

exon- and gene-level intensity estimates, it is useful

to import the data into the R statistical package for

further processing (in particular, filtering) before any

assessment of splicing. The exon-level data have

already been read into R for the quality checks, so,

now the gene-level data is needed:

> d.gene <- read.table("./OUT_GENE/
rma-sketch.summary_core_gene.txt",
sep¼"\t", header¼T, row.names¼1)

Signal intensity values from microarray experi-

ments are usually log-transformed to make the data

more appropriate for statistical analysis. The signal

intensity estimates will already be on log2 scale if

RMA was used to process the data but on the natural

scale if PLIER was used. Since PLIER estimates can

be close to zero, it is usual to add a small constant

(e.g. 16) to all values to stabilize the variance, prior to

log2 transforming the data.

## if processed with PLIER

> d.exon <- log2(d.exonþ16)

> d.gene <- log2(d.geneþ16)

The next step is to filter the data, which is critical in

the case of exon array data to reduce the

false-positive rate in the identification of potential

splicing events [12]. The two major types of filter

aim to remove probes with unusually low or high

signal, which could be artefacts mistaken for splicing

events. However, it is possible that stringent filtering

will also remove some true splicing events (e.g. low

signal intensity due to a poorly performing probeset

is indistinguishable from the low signal due to a

skipped exon). Thus, there is a balance between

reducing the false-positive rate, while keeping the

false-negative rate low as well. In practical terms, it

is better to focus on reducing the false-positive rate

to increase confidence in the splicing events that are

identified. This maximizes the chance of successful

validation (often required to confirm findings

suggested by microarray data), which can be expen-

sive and time-consuming.

Specific filtering steps recommended include:

(i) Restrict analysis to core probesets

(ii) Remove undetected probesets

(iii) Remove potentially cross-hybridizing probesets

(iv) Remove genes undetected in both groups of

samples

Each of these scenarios is discussed below, together

with sample R code to perform the suggested filter-

ing. The dimensions of various objects are given to

illustrate the inclusion of some commands; the reader

may find that their own data gives differing numbers

and possibly that minor modifications to the code

are needed if using the mouse/rat exon array or

there are changes to the Affymetrix file formats in

the future.

Filter for core probesets
As described earlier, core probesets are supported by

RefSeq annotations and are expected to give the

most reliable signal data. The analysis can easily be

restricted to core probesets by specifying the core.ps

and core.mps files in the exon- and gene-level pro-

cessing in APT as described above.
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Filter for undetected probesets
Following the filter outlined in the Affymetrix tech-

nical note ‘identifying and validating alternative spli-

cing events’ [13], a probeset could be considered

detected when the DABG P < 0.05 in �50% of

the samples of at least one group. The rationale for

‘at least one group’ is that a skipped exon could be

entirely unexpressed in one group but present in

another.

> dabg <- read.table("./OUT_DABG/
dabg.summary.txt", sep¼"\t", header¼T,
row.names¼1)

> dim(dabg) # 1411399 10

> dabg.core <- dabg[match(row.names
(d.exon), row.names(dabg)),]

> dim(dabg.core) # 287329 10

## define a function to count how many samples

have a detection P < 0.05 and apply to each group

separately

> count.det <- function(x){length
(which(x<0.05))}

> group1.det <- apply(dabg.core[,1:5],
1, count.det)

> group2.det <- apply(dabg.core
[,6:10], 1, count.det)

## retain probesets with P < 0.05 in three or more

samples in at least one group

> x <- sort(union(which(group1.det>

¼3), which(group2.det>¼3)))

> d.exon.fil <- d.exon[x,]

> dim(d.exon.fil) # 224600 10

Filter for cross-hybridizing probesets
Cross-hybridizing probesets may have artificially

high signals due to more than one RNA product

hybridizing to them. They are not included in the

*.mps files to ensure that gene-level estimates are as

reliable as possible, but are in the exon level *.ps files.

Thus, exon-level signals from these probesets may

suggest an increased rate of inclusion of that exon,

but would be false positives if the additional signal

comes from another RNA product. Such probesets

can easily be filtered out using information in the

exon array annotation file (current release is HuEx-

1_0-st-v2.na30.hg19.probeset.csv).

The latest annotation file for the Human Exon 1.0

ST array can be obtained from the Affymetrix web-

site by locating the product in the drop-down menu

on the support page and checking the box for anno-

tation files. Scroll down to find the files under the

heading ‘Current NetAffx Annotation Files’ and

choose the ‘HuEx-1_0-st-v2_Probeset_Annotations,

CSV Format’ link.

Download and unzip the file, then read into R:

> annot <- read.table("HuEx-1_0-st-v2
.na30.hg19.probeset.csv", sep¼",",
header¼T)

> dim(annot) # 1422046 39

## reduce annotation table to core probesets passing

the detection filter:

> annot.core <- annot[match(row.names
(d.exon.fil), annot[,1]),]

> dim(annot.core) # 224600 39

> colnames(annot.core)

## keep only probesets with a value of 1 in the

crosshyb_type column (map uniquely)

> keep <- which(annot.core$crosshyb_
type¼¼1) # rows containing non-cross-
hybridizing probesets

> ids <- annot.core[keep,1] # extract
corresponding probeset IDs

> d.exon.fil2 <- d.exon.fil[match(ids,
row.names(d.exon.fil)),]

> dim(d.exon.fil2) # 179445 10

> write.table(d.exon.fil2, "./
OUT_EXON/rma-sketch.summary_core_
exon_filtered.txt", sep¼"\t", quote¼F,
row.names¼T)

Filter for genes undetected in both
groups
If a gene is not expressed overall in either of the

groups being investigated, the concept of differential

splicing becomes meaningless and it is therefore

useful to remove any genes, as well as probesets,

considered undetected. The DABG value is only ap-

propriate at the probeset (exon) level, but simple

criteria can be defined to decide if the gene should

be considered expressed overall. For example, it

might be reasonable to call a gene expressed in a

particular sample if more than one-half its
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component exons were assigned a detection P <

0.05. To be considered expressed in a group overall,

we might require that it is detected in more than

one-half the samples of that group. This filter has a

few more steps than the probeset detection filter but

follows the same principles. First, use the annotation

table to add transcript cluster ID as an extra column

in the dabg.core detection matrix:

> dim(dabg.core) # 287329 11

> length(intersect(row.names(dabg
.core), annot[,1]))# 286876 – 453 probe-
set IDs are missing from annotation file
(likely to be control probes). Remove
these to avoid NAs later on

> keep <- intersect(row.names(dabg
.core), annot[,1])

> dabg.core2 <- dabg.core[match(keep,
row.names(dabg.core)),]

> dim(dabg.core2) # 286876 10

> dabg.core2[,11] <- annot[match(row
.names(dabg.core2), annot$probeset
_id), 7] # look up transcript cluster IDs

> gene.ids <- unique(dabg.core2[,11])

> length(gene.ids) # 18705

Now, define a function to calculate the proportion

of probesets with P < 0.05—this will be applied to

each sample for each gene:

count.exon.det <- function(x){length
(which(x<0.05))/length(x)}

Create an empty matrix to store results from apply-

ing the above function:

> gene.detection <- matrix(nrow¼length
(unique(dabg.core2[,11])), ncol¼10)

> row.names (gene.detection) <- gene
.ids

> colnames(gene.detection) <- colnames
(d.gene)

Apply the function to each sample in turn:

> for(i in 1:10)

{

gene.detection[,i] <- tapply(dabg
.core2[,i], dabg.core2[,11],
count.exon.det)

}

Now, another function is needed to count how

many samples in each group the gene was detected

in (i.e. more than half the probesets were detected):

> count.gene.det <- function(x){length
(which(x>¼0.5))}

> genes.det.group1 <- apply(gene.
detection[,1:5], 1, count.gene.det)

> genes.det.group2 <- apply(gene.
detection[,6:10], 1, count.gene.det)

Keep genes where both counts are �3 (i.e. more

than one-half the samples in the group):

> keep.genes <- which((genes.det.
group1>¼3)&(genes.det.group2>¼3)) #
row numbers

> length(keep.genes) # 13211

> keep.gene.ids <- row.names (gene.
detection)[keep.genes]

## look up these gene ids in the gene summary

matrix

> length(intersect(keep.gene.ids,
row.names(d.gene))) # 12642 – this tells
us that 569 genes are not in the gene
summary output — they are missing because
these genes have no core probesets that
map uniquely —

> y <- match(keep.gene.ids, row.names
(d.gene))

## remove the NAs

> y <- y[-which(is.na(y)¼¼"TRUE")]

> d.gene.fil <- d.gene[y,]

> dim(d.gene.fil) # 12642 10

> write.table(d.gene.fil, "./OUT_GENE
/rma-sketch.summary_core_gene_
filtered.txt", sep¼"\t", quote¼F,
row.names¼T)

Splicing analysis
To identify exons of a gene that are alternatively

spliced, the concept of the splicing index has been

introduced [14]. In the absence of alternative spli-

cing, the expression level of each exon is expected to

be similar and to the expression level of the gene

overall (i.e. each and every exon is included in the

gene product. The exon to gene ratio is therefore

expected to be close to one. The splicing index is

defined as the log2 ratio of exon to gene intensity.
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Under the condition of no splicing, this index would

equal zero, while a skipped exon would generate a

negative value and an exon included at a higher rate

than others would generate a positive value. Usually,

it is of interest to identify differential exon usage

between two samples or groups of samples, as this

could indicate preferential expression of one isoform

over another with potential biological consequences.

Several tools can be used to identify differential spli-

cing, including the APT program MiDAS [15], the

‘limma’ package from BioConductor [16, 17], a spe-

cialised R package called ExonMap [18] and com-

mercial software such as Partek Genomics Suite [19].

This is an active area of research but the basis of these

tools is to use an ANOVA approach to identify

exons behaving differently to others at the same

gene locus. Another R package ‘aroma.affymetrix’

[20] has comprehensive methods for both processing

exon array data and detection of alternative splicing

(FIRMA: Finding isoforms using robust multichip

analysis) [21].

To continue the demonstration of APT for exon

array data analysis, I will briefly outline an example

splicing analysis using the MiDAS tool. MiDAS can

be run directly on the exon and gene-level summa-

ries generated by the apt-probeset-summarize com-

mand; however, as noted above, it is important to

filter the files to remove potential artefacts before

running any splicing analysis. The filtered files are

then provided as input to MiDAS.

First, a text file describing the samples in your

experiment containing two columns is required:

the first column should have the header ‘cel_files’

and list the names of the .CEL files corresponding

to the samples to be analysed (note that the filenames

have to be exactly correct to be recognized—they

will also be the column headers in the exon/gene

summary files); the second column should have the

header ‘group_id’—this can contain arbitrary names

that describe the group each sample belongs to (sam-

ples assigned the same name will be considered as

one group). MiDAS is an ANOVA-based test, so

two or more groups can be analysed simultaneously

and at least three samples per group are required to

estimate the variance. Run MiDAS with the follow-

ing command:

> apt-midas –cel-files cels.txt –g ./
OUT_GENE/rma-sketch_core_gene.sum-
mary_filtered.txt –e ./OUT_EXON/rma-
sketch_core_exon.summary_filtered.txt

–m HuEx-1_0-st-v2.r2.core.mps –o ./
OUT_MIDAS –nol

By default, the apt-midas command log transforms

the data—this is only applicable to PLIER estimates

and needs to be switched off if using RMA data (or if

you have already log2 transformed PLIER estimates)

with the –nol argument.

The results file generated by MiDAS contains a list

of the probesets that have passed filtering and an asso-

ciated raw P-value for differential splicing of the exon

targeted by that probeset. It can be read into R and

sorted on P-value to find the exons most likely to be

interesting in terms of alternative splicing:

> midas <- read.table("midas.pvalues
.txt", sep¼"\t", header¼T)

> head(midas)

> o <- order(midas$pvalue)

> midas.ordered <- midas[o,]

Further filtering based on P-value and/or magnitude

of the splicing index (analogous to fold change

filter in standard gene expression analyses) can be

applied to generate a shortlist. Currently, MiDAS

doesn’t output the SI value, but it can be computed

in R as the difference between the log scale exon and

gene intensities. Manual inspection of the data can

be very useful at this point to decide which genes to

follow-up.

Interpreting the results from a splicing analysis

can be the most challenging aspect of exon array

analysis. In some situations, differential splicing can

be dramatic; e.g. a large number of brain-specific

isoforms have been found in tissue comparisons

[22]. However, in many common analysis scenarios,

there may only be a subtle change in the relative

proportions of different isoforms between samples/

groups, which can be difficult both to detect and

interpret.

The first step in trying to understand the biology

underlying an exon identified as differentially spliced

is to place the data in the context of known isoforms

of that gene. APT does not have any visualization

capabilities but again, other tools are available for this

purpose. In particular, the R package ExonMap

[18] and commercial software Partek Genomics

Suite [19] both perform analysis of splicing and pro-

vide excellent visualization functions. Another pos-

sibility is looking at the gene of interest in the UCSC

Genome Browser [23], giving access to full details of
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known and predicted genes/mRNAs from a wide

variety of sources. This can be very useful to pinpoint

splicing that affects an exon that has been predicted

but is not part of the RefSeq transcripts for example.

Another useful feature of the UCSC Genome

Browser is that a track showing the location of

exon array probesets can also be displayed, allowing

cross-referencing between the splicing results and

gene structure information. Finally, with some R

code, it is relatively straightforward to generate a

graph of the data for a particular gene, which can

be coloured for each group.

In summary, data generated with the exon array

has the potential to give deeper biological insights

into gene expression and regulation, particularly

with regard to splice isoforms, than standard gene

expression arrays. A range of tools are available to

analyse these data, drawing on previous algorithms

for microarray expression data or novel approaches

specific for exon arrays. Similar analyses can now be

performed with next-generation sequencing tech-

nology and this will undoubtedly become more rou-

tine with reducing costs, increased read counts and

development of appropriate tools. However, analysis

of alternative splicing and isoform representation is

arguably one of the most challenging aspects of

RNA-Seq data and the exon array will remain an

extremely useful platform in this transition period.

Key Points

� The exon array has the potential to give deeper biological
insights into gene expression and regulation, particularly, alter-
native splicing, than standard gene expression arrays.

� It presents new challenges in terms of data analysis and can
produce a high rate of false positive differential splicing events
without careful filtering of the data first.

� Anumberof toolshavebeendeveloped for analysis of exon array
dataçthis review focuses on the suite of tools developed
by Affymetrix and the statistical software package R.

� The tutorial steps presentedhererepresent justone of themany
possible approaches to exon array data analysis.
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