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Abstract
The target-decoy approach (TDA) has done the field of proteomics a great service by filling in the
need to estimate the false discovery rates (FDR) of peptide identifications. While TDA is often
viewed as a universal solution to the problem of FDR evaluation, we argue that the time has come
to critically re-examine TDA and to acknowledge not only its merits but also its demerits. We
demonstrate that some popular MS/MS search tools are not TDA-compliant and that it is easy to
develop a non-TDA compliant tool that outperforms all TDA-compliant tools. Since the
distinction between TDA-compliant and non-TDA compliant tools remains elusive, we are
concerned about a possible proliferation of non-TDA-compliant tools in the future (developed
with the best intentions). We are also concerned that estimation of the FDR by TDA awkwardly
depends on a virtual coin toss and argue that it is important to take the coin toss factor out of our
estimation of the FDR. Since computing FDR via TDA suffers from various restrictions, we argue
that TDA is not needed when accurate p-values of individual Peptide-Spectrum Matches are
available.
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Introduction
While tandem mass spectrometry (MS/MS) has emerged as a key technology in proteomics,
the issue of the statistical significance of peptide identifications remained controversial, and
the target-decoy approach (TDA) emerged as the standard for computing the false discovery
rates (FDR) [1].
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Elias and Gygi, 2007 concluded that TDA is “..accessible to any laboratory using any
instrument platform and any database-searching algorithm” [1]. Such wide applicability
makes TDA particularly attractive for comparing the performance of different search tools.
Indeed, it appears that we can treat any search tool as a black box: to evaluate its utility, we
need not look into how it works, but only check whether it finds more peptides compared to
other search tools at the desired false discovery rate (FDR). Balgley et al., 2007 [2]
compared the performances of four popular search tools using TDA, noting that “the target-
decoy search strategy permits an impartial initial assessment of search results.”

We argue that the assumption that TDA can be used with any MS/MS database search tool
is incorrect and that some (useful) MS/MS database search tools are non-TDA-compliant.

While Elias and Gygi, 2007 [1] themselves noted that TDA imposes some restrictions on the
MS/MS algorithms, the methods for checking whether a particular algorithm (treated as a
black box) is TDA compliant were never developed. We demonstrate that some popular MS/
MS search tools (e.g., a popular two-pass version of X!Tandem) are not TDA-compliant and
argue that further studies are needed to check if some other tools (e.g., Sequest and Mascot)
are TDA-compliant. Moreover, as we show, it is easy to develop a non-TDA compliant tool
that offers a much better (TDA-estimated) performance than all TDA-compliant tools. Since
the distinction between TDA-compliant and non-TDA compliant tools remains elusive, we
are concerned about a possible proliferation of non-TDA-compliant tools in the future
(developed with the best intentions).

TDA has done the field of proteomics a great service by filling in the need to estimate
FDRs, but it must protect itself against possible (even if unintentional) exploitation by non-
complying search tools. At the same time, the proteomics community must dispel the
prevalent notion about its universal applicability.

The first line of defense against exploitation of TDA is to ensure that the search tool used is
TDA-compliant (compliance test). However, since such tests are difficult to do in case of
commercial software (without access to the source code), multi-stage search tools, or
complex tools like InsPecT, should TDA be avoided in conjunction with such tools?

Methods
Can TDA be Exploited to Disguise Bogus Peptide Identifications as Good Ones?

We illustrate a flaw in the black box treatment of search tools in TDA using a reductio ad
absurdum argument. Starting from any MS/MS search tool T, we can use it to design a new
search tool T+ by modifying T that finds twice as many peptide identifications as reported by
T at the same FDR (Figure 1).

TDA assumes that the distribution of scores of incorrect identifications in the target database
is the same as the distribution of scores in the decoy database [3]. In other words, if a bogus
peptide is located in both the target or the decoy database, the expected score of a spectrum
matching this peptide must be the same in both databases. When using T+, such a bogus
peptide may get a higher score if it happens to be located near a peptide scored highly by T.
Since there are more high-scoring peptides in the target database, this bogus peptide is likely
to get a higher score in the target database, thus violating the TDA assumption. Because
TDA only looks at the scores (assigned by the search tool) but not at the false positive rate
(FPR) [3] of individual identifications,1 it becomes possible for such bogus identifications to
be included in the results as long as the overall FDR among all identifications is acceptable.
We are unaware of a test for checking whether a specific tool (treated as a black box,
without access to its source code) is TDA-compliant.
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Assigning a peptide from the same protein to an arbitrarily chosen unidentified spectrum, it
assigns a peptide to the best matching unidentified spectrum. If the black box in Figure 1 is
substituted by a black box with a two-pass X!Tandem inside, it will be difficult to detect that
it is not TDA-compliant.

Can Tools That Do Not Comply with TDA be Useful?
While it is easy to discard T+ as outrageous, judgment becomes difficult when the search
tool is well-intentioned and produces useful results, though benefits unduly by exploiting
TDA (see T* search tool in Supplement A). Even proteomics leaders can step into this trap
as illustrated by Percolator [4] that originally was published as a non-TDA-compliant tool
(shortly after publishing [4], the authors of Percolator realized that it was not TDA-
compliant and corrected it in [5], see Supplement J).

X!Tandem, a popular MS/MS search tool, uses a two-stage search approach [6]. When using
TDA with X!Tandem, one starts with the combined database containing target and decoy
sequences in equal proportions, but the filtering during the first-stage will often increase the
proportion of the target sequences in the remaining database. As a result, the number of
identifications in the decoy database in the second-stage will underestimate the number of
incorrect identifications in the target database, resulting in unduly low estimates of FDR.
Everett et al., 2010 [7], Tharakan et al., 2010 [8], Nesvizhskii, 2010 [9], Kim and Bandeira,
2010 [12], and Bern and Kil, 2011 [10] recently emphasized the concern that multi-stage
searches may violate the key assumption about the rates of false positive identifications
reported by TDA. These concerns are not limited to X!Tandem2 since users of OMSSA and
Mascot often use the second-pass search as a default option incorporated into these tools.
Similar issue was encountered in [11] with respect to the two-stage search with ByOnic and
discussed in [10].

Some peptide identification approaches proposed to use information about other peptides
identified in a protein to adjust the peptide-level scores. Such protein-level feedback will
lead to different score distributions for bogus peptides in the target and the decoy databases,
thus violating the fundamental TDA assumption. We do not condemn these search tools;
rather, only argue that using TDA to evaluate their FDR is illegitimate. Yet, X!Tandem
(originally designed to compute FPR or E-values, rather than FDR by TDA) was one of the
tools included in TDA-based benchmarking by Balgley et al, 2007 [2]3 and Kandasamy et
al., 2009 [13]. However, if the protein-level features of Percolator or two-pass searches are
useful (i.e., lead to new biological discoveries), should they be switched off? Does it mean
that TDA-compliance limits our ability to identify more peptides and thwarts new
discoveries? Should the new proteogenomics findings made with our non-TDA-compliant
tool T* (see Supplement A) be dismissed as artifacts?

What are the Disadvantages of TDA?
We argue that the time has come to critically re-examine TDA and to answer the following
questions:

1FPR is defined as the probability that a spectrum matches a random peptide with a score exceeding a threshold. FPR can be used to
compute the probability that a spectrum matches a random protein database with a score exceeding the threshold. See formal
definitions of FPR and FDR below.
2We and [7-10] are only claiming that the most commonly used multi-stage option in X!Tandem is incompatible with TDA. If one
runs X!Tandem with a single-pass option, it becomes TDA-compatible (but slow).
3The TDA tests of non-TDA-compliant X!Tandem in [2] revealed that X!Tandem (along with OMSSA) outperforms other tools with
respect to FDR.
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• Should X!Tandem (a useful tool that is not TDA-compliant) be excluded from
TDA studies? If yes, how can one evaluate its performance and compare it with
other tools?

• Should Mascot (a useful tool whose source code is not available for a test of TDA
compliance) be excluded from TDA studies?

• In a typical TDA search, there are often thousands of peptides in the target database
scoring higher than any peptide in the decoy database resulting in 0% FDR for
these high-scoring peptides. Since there is no such thing as 100% accurate peptide
identifications, something is wrong with TDA in this case, presumably the decoy
database size is too small to accurately measure FDR. Should TDA be run with
decoy databases that are much larger than target databases to accurately measure
FDRs of highly reliable peptide identifications? This argument is further
compounded in searches with highly accurate precursor masses since the number of
database peptides with a given precursor mass becomes very small essentially
reducing the search to Peptide Mass Fingerprinting.

• Larger decoy databases better sample the space of random peptides. Therefore,
TDA should work even better if one uses a decoy database that is twice larger than
the target database (in this case FDR should be normalized since the number of
decoy hits is expected to double). The same is true if the size of the decoy database
increases by a factor of 10 or 100. This experiment with Sequest reveals that the
number of identified peptides changes significantly with varying the size of the
decoy database (for the same FDR!), an artifact of using δ-scores. Does it mean that
(i) Sequest is not TDA compliant, (ii) TDA only works correctly for a 50–50 split
between the sizes of the target and decoy databases, or (iii) TDA does not provide a
reliable estimate of FDR in the case of 50–50 split and should be practiced with
decoy databases that are larger than the target database?

• TDA awkwardly depends on a virtual coin toss and clearly gives an inaccurate
estimate of FDR in the case of small databases (e.g., decoy database consisting of a
single protein like in studies of monoclonal antibodies). What are the limits of TDA
applicability when it comes to lowering the size of the database? 1000 amino acids
or 100,000 amino acids? Also, TDA approach gives an inaccurate estimate of FDR
in the case of small spectral datasets. What are the limits of TDA applicability
when it comes to lowering the size of the spectral dataset? 1000 spectra or 100,000
spectra?

• Imagine a sample containing exactly 1000 human peptides each producing a nearly
perfect Peptide-Spectrum Match (PSM) with a low FPR. All other spectra in the
sample match the database with very low scores corresponding to a high FPR
(random hits). If one sets an FDR threshold of 3%, the TDA approach will return ≈
1030 matches in the target database and ≈ 30 matches in the decoy database.
Would it be better to setup an FPR (rather than FDR) threshold for individual
PSMs (that would clearly separate reliable and unreliable identifications) and avoid
contaminating the output of the TDA approach with ≈ 30 bogus peptide
identifications?

• The choice of a specific FDR cutoff in proteomics is somewhat arbitrary: it is hard
to find a study with a biological conclusion that critically depends on a specific
FDR cutoff (e.g., that holds at 0.5% FDR but does not hold at 5% FDR). Thus, a
conclusion like “we found 1000 peptides at 1% FDR” can often be substituted by
“we found 1347 peptides at 5% FDR.” What a researcher really wants is to rank
identified peptides in the order of their statistical significance and to evaluate FDR
for top n peptides in the ranked list. It is important to realize that TDA does not
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offer such a ranked list, i.e., the top 1000 peptides output by Sequest or Mascot
typically do not represent the 1000 most statistically significant peptides.

• There exists significant disagreement among leading proteomics researchers on
how to apply TDA, e.g., using separate [1] or combined [15 ] TDA approaches.
These approaches produce different FDRs and thus at most one of them is correct.

Can Computing FDR via FPR Substitute Approximating FDR via TDA?
TDA is not a universal tool: it does not allow one to evaluate FDR of some useful tools like
a two-pass X!Tandem or Percolator with protein-level features. While computing rigorous
FPRs of individual peptide identifications is an alternative way to compute FDR without
TDA, efficient (polynomial-time) algorithms for computing FPRs are available for some but
not all MS/MS tools. The authors of X!Tandem were the first to describe an algorithm for
approximating (rather than computing) FPRs via a continuous approximation of a discrete
random variable but such approaches are notoriously inaccurate when one attempts to
approximate the extreme tail of the distribution, the most important region for FDR
estimates in mass spectrometry.4

FPRs do not suffer from the shortcoming of TDA-based estimation of FDR and the concerns
described above disappear if one switches to FPR-based estimation of FDR. For example,
FDR for arbitrarily small spectral datasets and protein databases cannot be reliably
approximated via TDA but can be computed precisely via FPRs. We therefore view the
proliferation of TDA approaches in proteomics as a historical accident that only happened
because the popular database search tools (Sequest and Mascot) failed to compute reliable
FPRs of their individual identifications. Elias and Gygi, 2007 [1] wrote: “For any analytical
tool to be truly useful there must be a convenient way to assess the validity of its results.”
By failing to rigorously assess the statistical significance of individual peptide identification,
Sequest and Mascot failed to satisfy this test and triggered the proliferation of TDA
approaches for assessing validity of peptide identifications at bulk (rather than validity of
individual peptide identifications). TDA is not designed for evaluating the reliability of
individual peptide identifications, a critical requirement for many applications like analyzing
one-hit-wonders or in proteogenomics where a single spectrum may provide evidence for a
new splicing variant.

However, it is not a good reason to make the entire field of proteomics hostage of TDA and
it is unfair to marginalize some good tools (e.g., X!Tandem) because some other good tools
(e.g., Sequest and Mascot) are unable to compute FPRs in polynomial time and thus have to
settle for computing FDR via TDA. Moreover, it remains to be seen whether Mascot and
Sequest are TDA-compliant (see below). Without rigorous statistical foundations, there is
little trust in the score-based ranking of Sequest and Mascot identifications (i.e., their higher
scoring PSMs may have higher FPRs than lower scoring PSMs) thus limiting their ability to
analyze the reliability of individual peptide identifications. However, any PSM (identified
by Sequest, Mascot, or any other tool) can be evaluated using other tools. For example, one
can design a chimeric tool Sequest ⊕ Mascot that uses Sequest to generate a list of PSMs
and uses Mascot to score them. Thus, one can generate Sequest or Mascot PSMs (or even
combine them), rescore them with another statistically solid tool, and compute rigorous
FPRs of their identifications (albeit, with a different scoring that allows computing FPR in
polynomial time). If such rescoring leads to an increase in the number of peptide
identifications, there is nothing wrong in using it to evaluate FPRs of tools that lack

4Indeed, many correct PSMs attain scores that are very close to the maximum possible score for a given spectrum, the region where
continuous approximations are particularly unreliable.
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polynomial algorithms for computing FPRs (see Supplement B on benefits of turning
scoring functions into FPRs).

Results
Estimating the False Discovery Rate using TDA

Below we use a probabilistic rather than a statistical hypothesis testing framework. While
these two frameworks peacefully coexist and complement each other in genomics,5
proteomics was dominated by the statistical hypothesis testing.

The common view is that the stochastic nature of spectra makes them more difficult to
analyze than sequences (in a rigorous probabilistic framework). However, as soon as one
defines a scoring function, matching a spectrum against a database becomes equivalent to
exact matching of sets of peptides (spectral dictionary [17]) against a database. While this
problem is well studied in probabilistic combinatorics [18], we are not aware of any studies
of this problem in the statistical hypothesis testing framework.6

While in mass spectrometry literature, FPR and FDR are often mistakenly equated (and even
interchanged) they represent very different notions. Below we precisely define these notions
in the context of mass spectrometry and describe relationships between them.

Given a spectrum σ and a peptide π, a scoring function is a black box that outputs7

Given a spectrum σ and a database DB, an MS/MS database search algorithm outputs a
peptide Peptide(σ, DB) from DB with maximum Score(σ, π) among all peptides π ∈ DB:

If there are multiple peptides with the same maximal score the algorithm randomly selects
one of them using a fair coin flip. We define

We assume the algorithm is given a threshold t and it declares the PSM(σ, Peptide(σ, DB))
as significant, or as a “discovery”, if Score(σ, Peptide(σ, DB)) > t.8 This PSM discovery can
be either “true” or “false”. It is customary in such a setup to define the FDR as the rate of
false discoveries: what is the proportion of false discoveries among all discoveries.

Given a target database T, a decoy database R is a random database of the same size as T. A
combined target-decoy database T ⊕ R is a concatenation of T and R.

Consider first the event: the spectrum σ generates a decoy discovery (necessarily a false
one), or:

5E.g., BLAST analysis was fully developed in a probabilistic framework [16] and was cast as statistical hypothesis testing much later.
6We are not discarding the statistical hypothesis testing framework in proteomics but rather argue that it is not the only approach to
analyzing spectra.
7See Supplement C for a discussion about Δ-scores.
8The analysis below is streamlined if we use a strict inequality > with respect to the threshold t above (though a weak inequality ≥
works just as well).
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Recall that if Score(σ, Peptide(σ, T)) = Score(σ, Peptide (σ, R)), the ties in selecting
Peptide(σ, T ⊕ R) are broken by a fair coin flip. Therefore, for the sake of simplifying the
following analysis, we assume that there are no ties to begin with : Score(σ, Peptide(σ, T)) ≠
Score(σ, Peptide(σ, R)). Under this assumption

Given the input set of spectra Σ, the databases R and T, and the threshold t, the total number
of decoy discoveries, DD(Σ, T ⊕ R, t), is an observable RV (random variable) which is
defined on the set of all random databases (the target T is a parameter here). We can
calculate it as follows

where the indicator RV 1A is equal to 1 iff the event A occurred. Another observable RV is
the total number of discoveries

Elias and Gygi, 2007 [1] estimate the FDR as

(1)

It is important to note that being a ratio of two RVs, this estimate is itself an RV which
varies with the draw of the random decoy set R. That is, this estimation of the FDR
awkwardly depends on a virtual coin toss. Acknowledging this issue, many studies
attempted to analyze the variability of TDA estimates [19].

Alternatively, we can account for the inherent variability by drawing many random decoy
sets R and average over all the estimated FDRs using (1). Ignoring the computational costs,
as we average over many such draws of R our average will converge to

(2)

where the expectation is with respect to the random decoy R. Thus, if we know how to
compute the above expectation we can save ourselves the costs of going through the
averaging process. In doing so we would of course take the coin toss factor out of our
estimation of the FDR.
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While exactly computing the RHS (right hand side) of equation 2 can be challenging, if the
size of the spectra set Σ is rather large we can rely on the common approximation of the
mean of ratio as the ratio of means (e.g., Storey and Tibshirani 2003 [20]):

(3)

We next describe how we can often compute the numerator and denominator on the RHS of
(3).

False Positive Rate and eTDA:Is TDA Needed if Accurate FPRs are Available?
We denote by FPR(σ, t) the probability that a spectrum σ matches a random peptide9 with a
score equal to or exceeding t. For an arbitrary scoring function, the exact value of FPR can
always be computed in exponential time by simply generating and scoring all peptides with
a given precursor mass. Starting from [6], many authors attempted to approximate FPRs of
some scoring functions but there are concerns whether these approximations are accurate
[14, 21].10 Alves and Yu [21] and Kim et al., 2008 [14] described a polynomial algorithm
for computing FPR for any scoring function that can be represented as a dot-product of
vectors (see Supplement D).

We denote by FPR (σ, N, t) the probability that a spectrum σ matches a peptide from a
random database of size N with a score equal to or exceeding t.11 As discussed in [23].

If we can efficiently compute FPR(σ, N, t) then we can use those to compute the
expectations in (3). Indeed,

(4)

Similarly, with TD(Σ, T ⊕ R, t) denoting the total number of target discoveries (which is
also a RV that depends on the choice of R):

we have

9See Supplement E for the definition of a random peptide.
10Continuous approximations of discrete random variables are notoriously inaccurate when one attempts to approximate the extreme
tail of the distribution [22].
11While we consider random iid database, the results below can be easily generalized to databases generated by arbitrary Markov
chains.
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(5)

where we have again used the assumption that P[Score (σ, T) = Score(σ, R)] = 0.

Clearly,

allowing us to summarize our eTDA estimator:

(6)

where E[DD(Σ, T ⊕, R, t)] and E[TD(Σ, T ⊕ R, t)] are computed using equations 4 and 5.

The expectations of DD(Σ, T ⊕ R, t), TD(Σ, T ⊕ R, t), and D(Σ, T ⊕ R, t) give us more
robust estimation than using these RVs directly. For example, for a spectral dataset
consisting of a single spectrum, DD(Σ, T ⊕ R, t) is either 0 or 1 telling little about the
statistical significance of matches between the spectrum and the database.E(DD(Σ, T ⊕ R,
t)), on the other hand, is an important characteristic of the statistical significance of these
matches. In particular, it eliminates the dependency of the reported results on the choice of
the random databases.12

Elias and Gygi’s [1] TDA estimator of the FDR (1) has an advantage over our eTDA
estimator (6) in that it does not require us to compute FPRs. On the other hand, the fact that
eTDA is robust against the variability associated with the draw of the decoy set R makes it
more reliable especially when the spectra set Σ or the target T are small.

Use of TDA in many mass spectrometry papers amounts to constructing the curves showing
how TD(Σ, T ⊕ R, t) depends on DD(Σ, T ⊕ R, t) for various values of t. Afterwards, a
(somewhat arbitrary) parameter t is chosen and all spectra contributing to TD(Σ, T ⊕ R, t)
are reported as peptide identifications with an acknowledgment that some of them
(represented by the value DD(Σ,T ⊕ R, t)) may be incorrect. For example, in many cases,
the ratio of DD(Σ, T ⊕ R, t) and D(Σ, T ⊕ R, t) is computed and an informal statement like
“we identified 1000 spectra with 1% error rate” is made. It is important to realize that such
conclusions also depend on the choice of the database R and not only on the inherent
properties of the spectral dataset. We therefore argue that a better approach would be to
construct curves showing how E[TD(Σ, T ⊕ R, t)] depends on E[DD(Σ, T ⊕ R, t)] thus
eliminating the random effects on the reported results.

See Supplement F on how eTDA can also be used in lieu of TDA applied to the separate
databases rather than the combined.

12It also frees the researchers from the need to estimate the variance of the random variable DD(Σ, T ⊕ R, t) as is often done to
demonstrate that a single observation of a random variable in TDA does not result in large deviations from the expected value of this
variable.
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Can the Decoy and Target Databases Contain Shared Peptides?
In our definition of eTDA (6), we glossed over a certain practical issue that needs to be
addressed. Specifically, eTDA hinges on our ability to efficiently compute the FPRs.
However, the polynomial algorithm from [14] is not compatible with the TDA procedure in
[1]. The latter requires that the decoy database should not contain any “sufficiently long”
peptides from the target database—a requirement that cannot be satisfied by the probabilistic
model in [14]. Should we therefore declare eTDA as impractical? Or, as we next argue, is
the non-intersection restriction statistically flawed and should be removed from the TDA
procedure?

Elias and Gygi [1] claim that the non-intersection is required to ensure that any decoy
discovery is indeed a false one. Otherwise, they argue, we would overestimate the number of
false discoveries, that is we would err on the conservative side. However, Elias and Gygi [1]
themselves argue that in most practical cases the relevant intersection between a random
decoy database and the target database is negligible with very high probability.

While we agree with Elias AND Gygi, 2007 [1] that a non-empty intersection between the
target and decoy databases might overestimate the number of false discoveries, we argue
that the empty intersection condition does not yield an unbiased estimator. Indeed, the
identical peptides are not the only source of FDR “inflation” in a random database, the
homeometric peptides [24] may lead to an even larger inflation of FDR. Roughly speaking,
peptides π and π′ are homeometric if their theoretical spectra are nearly identical (see [24]
for precise definition). Homeometric peptides inflate FDRs in exactly the same way as the
peptides with identical sequences and, thus, according to Elias and Gygi, 2007 [1] logic,
should be excluded. However, the number of pairs of homeometric peptides is orders of
magnitude larger than the number of identical peptides making the problem of constructing
the random database very difficult, if not intractable. Supplement G describes how to shuffle
a target database to generate a transposed database that does not share long peptides with a
target database (as suggested in [1]) yet contains many homeometric peptides resulting in a
highly inflated estimate of FDR. According to [1], the transposed database is as legal as the
commonly used reversed database.

So far we argued that allowing the intersection should not have a significant detrimental
impact. But beyond that it would allow us to considerably simplify our random decoy model
so, for example, it could include the iid model. Conversely, we are not aware of any method
to rigorously generate random decoy databases that duly respects the non-intersection
restriction from [1].

For all these reasons we recommend that TDA be carried out irrespective of the intersection
of the random and decoy databases. Finally, in Supplement H we show that one can readily
estimate the effect the intersection between the target and the decoy databases could
possibly have on the estimated number of false discoveries.

FPR-Compliant Versus FPR-Noncompliant Scoring Functions
While FDR is a useful parameter, computing FDR via TDA suffers from restrictions on the
minimal sizes of the spectral datasets and protein databases and requires an estimate of the
variance of FDR that is often unavailable. In addition, all previously proposed methods for
computing FPRs are faster than TDA [14]. We therefore argue that TDA is not needed when
accurate FPRs are available. We are not claiming that FDR is not needed when FPRs are
available, rather that it is better estimated using FPRs. We remark that decoy databases were
also used in the early days of pre-BLAST genomics [25-27].
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In particular, the FASTA tool (a predecessor of BLAST) included a program that generated
a decoy database and computed z-values [28]. This approach was abandoned in favor of
BLAST, mainly because BLAST enabled p-value (i.e., FPR) computations. We remark that
BLAST employs a simple scoring function (that can be represented as a dot product of
vectors encoding the amino acid sequences).

There exist two (often conflicting) criteria to scoring functions that are equally important in
practice: an ability to accurately assess a match and the ability to efficiently compute its p-
values. One can invent a more complex (and arguably better) scoring function than the one
used in BLAST, e.g., by accounting for hydrophobicity of the amino acid sequences. While
such changes may be potentially useful, the genomics community resisted them since they
jeopardize the ability to compute p-values. We therefore raise the question whether some
complex scoring functions in mass spectrometry provide a reasonable trade-off between the
assessment of PSMs and the ability to efficiently compute p-value of PSMs.

We call a scoring function Score (σ, π) FPR-compliant if there exist a polynomial algorithm
for computing FPR(σ, π) and we say that it is FPR-noncompliant if no polynomial
algorithms for computing FPR are known.13 For example, if one transforms a spectrum σ
and a peptide π into vectors  and  and defines  as a dot-product, then
p-values can be easily computed [14] (thus all such scoring functions are FPR-compliant).
These p-values represent a new (and better) scoring function −p-value(σ, π) that greatly
increases the number of identified PSMs as compared to the original scoring function
Score(σ, π) (for a fixed FDR). There is no convincing evidence yet that FPR-non-compliant
scoring functions used in tools like Sequest, Mascot, and InsPecT result in better assessment
of PSMs than p-values of a simple dot product (e.g., the MS-GF scoring from [14]). On the
contrary, Kim et al., 2010 [29] recently demonstrated that MS-GF outperforms Sequest,
Mascot, OMSSA, X!Tandem, and InsPecT for all CID, ETD, and CID+ETD spectral
datasets they analyzed. Moreover, these scoring function have an inferior performance when
applied to very large databases [14] or to spectra generated using new MS technologies.14 It
raises the question whether introducing complex components into the scoring functions
employed in MS/MS searches is fully justified.

Are Individual FPRs Useful in the Context of High-Throughput Mass Spectrometry?
There is a common opinion that practicing mass-spectrometrists do not need FPRs since
FDRs are sufficient to summarize the results of a high-throughput proteomics experiment.
Indeed, if the goal of an experiment is to output a list of confidently identified PSMs (e.g.,
with 1% FDR), it appears that FDR is sufficient. However, generating a list of identified
peptides is hardly ever the final goal of proteomics studies: biologists are usually interested
in expressed proteins. Since TDA does not provide information on which PSMs are more
statistically significant than others (as discussed, PSM scores are not very well correlated
with their FPRs), biologists are left in the dark deciding which proteins are reliably
expressed. It leads to awkward (statistically unsubstantiated) heuristics like the “two peptide
rule” [23] that discard expressed proteins that are supported by only a single, even if
reliable, PSM with low FPR.

As another example, in a proteogenomics study, a single PSM often provides evidence for a
new translation start site or a new splicing variant. Knowing FPRs in such cases is

13We emphasize that computing precise FPR (as in [14]) is not a requirement for an FPR-compliant scoring function. Any tool that
accurately approximates FPR (e.g., through the extreme value distribution approximation) should be viewed as FPR-compliant.
14E.g., these scoring functions are inferior to the scoring functions employed in de novo peptide sequencing when searching the
database of all possible peptides. We remark that most scoring functions used in de novo peptide sequencing can be represented as dot
products.
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paramount for verifying new biological discoveries and ranking them for further
experimental verification. FPRs of individual PSMs may vary by 10 orders of magnitude in
typical MS/MS searches and a PSM with FPR of 10-20 provides a much more reliable
evidence for a new start site than an (otherwise respectable) PSM with FPR of 10-10. For
example, one can find evidence for a new gene supported by a single PSM with FPR 10-20

and yet another piece of evidence for a new gene supported by two PSMs with FPRs 10-10.
Knowing FPRs of individual PSMs is important since there may be hundreds of new PSM-
supported genes [30] that have to be ranked for further experimental validation. TDA does
not provide a way to generate such ranking while FPR does allow one to differentiate
between reliable and unreliable proteogenomics evidence.

Another application that requires FPRs is identification of rare modifications, e.g., N-
myristoylation in eukaryotes or N-acetylation in prokaryotes. While these modifications are
crucially important for the cell, very few N-myristoylated proteins in eukaryotes or N-
acetylated proteins in prokaryotes have been identified so far. Since each newly found N-
myristoylated or N-acetylated peptide has to be individually evaluated (and possibly
experimentally verified), FPR rather than FDR is needed in such studies. For example,
currently only five N-acetylated proteins are documented in E. coli, an undoubtedly
incomplete list [31]. If one analyzed a million spectra and identified a 6th N-acetylated
protein in E. coli with 1% FDR, would it be a good reason to write a paper about a new N-
acetylated protein and discuss its biological function? We are afraid that if the answer to this
question is “yes” (as is often presumed in proteomics studies) we may have too many
statistically unsubstantiated “discoveries.” Indeed, 1% FDR tells us little about the statistical
significance of a single PSM that led to this conclusion!

We emphasize that FPR represents the statistical significance of a single PSM and should
not be used for assessing the statistical significance of observing a PSM with a given score
in the context of comparing an entire spectral dataset against a protein database. Above we
described how to correct FPR of a single PSM for the size of the protein database. However,
an FPR that may appear significant while analyzing a dataset of 1 million spectra may
become statistically insignificant in the context of a dataset with 100 million spectra [32,
33]. See Kall et al., 2008 [15] for a q-value based correction for both size of the protein
database and the size/structure of the spectral dataset.

A Pandora Box of Database-Dependent Scoring Functions
We previously defined a scoring function as a black box that, given a spectrum σ and a
peptide π, outputs

which depends only on σ and π. However, the scoring function of many MS/MS tools (e.g.,
Sequest, Mascot, InsPecT, Percolator, etc.) are affected not only by σ and π but also by the
database DB that is being searched and, in some cases, even by the spectral dataset Σ. For
example, Sequest computes a δ-score which depends on the protein database that is being
searched. Given σ, π, and DB, such tools compute database-dependent scoring function:

An MS/MS database search algorithm in this case is a black box that, given σ and DB,
outputs a peptide π(σ, DB) from the database DB with maximum Score(σ, π(σ, DB), DB)
among all peptides in the database. We define

Gupta et al. Page 12

J Am Soc Mass Spectrom. Author manuscript; available in PMC 2012 July 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Although we illustrated that applying TDA to tools T+ or to the original version of
Percolator is ill-advised, the notion of non-TDA-compliant tool has not been defined yet.
Moreover, we are not aware of a formal test that reveals whether or not a particular tool is
TDA-compliant. In the absence of such a test, the only tools one can safely claim are TDA-
compliant might be the single-stage tools with scoring functions Score(σ, π) depending only
on σ and π.

In Supplement I, we design a database-dependent scoring function that outputs unreliable
identifications with excellent FDRs (evaluated by TDA). This result underscores the danger
of using database-dependent scoring functions and raises the concern of whether some MS/
MS tools feature respectable FDRs while generating some low-quality PSMs (see
Supplement C). This question is far from being theoretical since the original version of
Percolator and some other tools indeed fell into this trap [4, 5].

Presumably, there exists a division between TDA-compliant scoring functions and non-
TDA-compliant ones but the question of how to decide whether a particular database-
dependent scoring function is TDA-compliant remains open. We emphasize that the test for
TDA-compliance has to be rigorous: i.e., one should be able to subject the original version
of Percolator or the existing version of Sequest to a test that analyzes these tools as black
boxes and automatically decides whether they are TDA-compliant.15

Some non-TDA-compliant tools (see Supplements A and J) were shown to produce peptide
identifications leading to biologically important conclusions verified by other approaches
(e.g., comparative genomics). We are not discarding these tools as useless but simply stating
that they are not TDA-compliant and thus there is currently no way to evaluate their
performance and compare to other tools. Similarly, it remains unclear whether database-
dependent scoring functions employed in Sequest and other popular tools are TDA-
compliant, yet these tools are useful. We therefore argue that the popular MS/MS tools with
database-dependent scoring functions should be analyzed for TDA compliance before they
are widely used in conjunction with TDA.

Conclusions
One of the reason TDA became so popular in proteomics (as opposed to genomics) is
because many popular MS/MS database search tools use FPR-noncompliant scoring
functions making it difficult to compute accurate p-values. For such scoring functions, TDA
should still be considered; however, these scoring functions were designed at the time when
the issue of statistical significance of peptide identifications was often ignored and the
notion of PSM p-values was not even defined. We feel that the time has come to critically
evaluate the drawbacks of FPR-noncompliant scoring functions and TDA and to ensure that
mass spectrometrists have access to accurate p-values for all peptides they identify. We also
stress that there are alternative methods for estimating the FDR, notably the q-value
approach of Kall et al. 2008 [32], which are not discussed here.

15An “expert opinion” based on analyzing the source code (let alone an algorithmic description) of a particular tool does not qualify
as a rigorous approach to deciding whether a particular tool is TDA-compliant.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Black box representation of an MS/MS search tool in target-decoy approach (TDA). (a) The
search tool T takes as input the set of all spectra and the database of amino acid sequences
(combination of the target and the decoy databases, but T cannot distinguish between them).
T reports the list of peptides along with scores. The peptides that come from the target and
the decoy databases are marked in green and red, respectively. (b) For each peptide
identified by T (with score x), T+ simply adds an extra spurious peptide from the same
protein (e.g., an overlapping peptide), assigning it to an arbitrarily chosen unidentified
spectrum with the same parent mass and the same (fake) score x. Thus, T+ will double the
number of peptide identifications in both target and decoy databases, for any score
threshold. T+ is clearly a gimmick that we used for exposing vulnerability of TDA. We do
not recommend using it in practice
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