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Abstract
Density function is a fundamental concept in data analysis. Nonparametric methods including
kernel smoothing estimate are available if the data is completely observed. However, in studies
such as diagnostic studies following a two-stage design the membership of some of the subjects
may be missing. Simply ignoring those subjects with unknown membership is valid only in the
MCAR situation. In this paper, we consider kernel smoothing estimate of the density functions,
using the inverse probability approaches to address the missing values. We illustrate the
approaches with simulation studies and real study data in mental health.
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1 Introduction
As a fundamental concept in understanding univariate continuous outcomes, the probability
density function is frequently used in data analysis. Among the nonparametric methods
developed, the kernel smoothing estimate may be the most popular approach[7, 10, 13]. In
the standard setting where a simple random sample (i.i.d.) from the target population is
completely observed (complete data case), the problem of kernel smoothing has been
thoroughly studied. Recently, some studies have generalized the kernel estimate to non-
complete data situations. For example, estimates of density function were considered in the
context of missing values in the variable of interest [14]. In this paper we discuss estimates
of density function within the diagnostic test setting where some subjects have missing
disease status.

In modern clinical trials, it is quite common that the subjects are not sampled directly from
the target population. In studies of specific diseases, the case and control approach in which
subjects are directly sampled from cases and controls can not be applied if the disease status
is unknown for each subject. A common approach in such situations is to first recruit
subjects from a larger population, including both diseased and non-diseased subjects, and
then ascertain the disease status at a later time. Such a two-stage design [15] is common,
especially in diagnostic test studies. If the disease status or membership for the disease and
non-disease groups for each subject is confirmed, the problem of density estimate reduces to
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the standard setting with analysis based on the subsample consisting of those subjects
belonging to the target population. However, if not all subjects are known for their true
disease status, then we are facing the missing data problem.

There are many reasons for missing disease status and some of them may be related with the
missing values themselves. For example, if the membership is the onset of some disease, and
the gold standard test for diagnosis is too expensive or involves intensive procedure such as
surgeries, some of the subjects at lower risk of the disease may choose not to take the
standard test (in some cases, it is actually unethical to do so). For example, structural clinical
interview for DSM-IV diagnosis (SCID)[11], which is in general viewed as the gold-
standard for diagnosing depression, usually involves hours of interview of the doctor with
the patient, making it expensive and inconvenient for the patients. Thus, it may not be
practical to have each patient administered SCID.

This paper is motivated by problems from a real study. In a recent study of depression
among postpartum women, accuracies of several screening tests for depression are assessed
among postpartum mothers[3]. A total of 419 postpartum women initially agreed to
participate in the study, and their demographic information and screening test results were
collected. The depression status was not known in advance for these subjects. But only 198
subjects completed the subsequent SCID. Assessing test accuracy with the subject’s disease
status subject to missing is known as the verification bias problem in diagnostic test studies.
Ignoring those subjects with missing disease status in general produces biased estimates.
Although methods are available for correcting such bias, they focus on modeling the
operating receiver characteristic (ROC) curves and/or the area under the ROC curve[1, 4, 9].
Since ROC curves are determined by the distributions of test results and the disease status,
density estimates of the distributions of test outcomes for the diseased and non-diseased
provide a direct alternative to the problem.

Since the membership of disease and non-disease groups is missing for some subjects,
standard kernel smoothing methods do not apply. The naive approach that uses only those
subjects with known group membership in the analysis is valid only in the special situation
when the membership is missing completely at random (MCAR). As mentioned above, the
missing group membership usually occurs in a systematic way, creating a basis for biased
estimates when applying such a naive approach.

In the rest of the paper, we develop a kernel smoothing method for addressing the bias issue
under missing group membership within the current context. For comparison purposes as
well as a way to introduce notation, we first give a brief review of standard univariate kernel
smoothing under complete data in Section 2. We then propose a new approach to address the
limitations of traditional methods where the group membership is subject to missing in
section 3. Bandwidth selection for the proposed smoothing approach is discussed in Section
4. Simulation studies are carried out in Section 5 to examine the performance of the
approach, with a real study example given in Section 6. The paper concludes with a
discussion in Section 7.

2 Kernel Smoothing Estimate for Complete Data
Let (xi, Ti, Di) be a simple random sample from a population of interest, where Di is a
membership indicator of groups of interest such as diseased and non-diseased groups in our
context, xi is a vector of covariates, and Ti is a univariate random variable such as a test
outcome in our study. We are interested in estimating the density function of Ti among the
different groups. Assume Di = 1 for the group of interest, and Di = 0 for the remaining
subjects. In the case of complete data where Di is observed for each subject, standard
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univariate kernel smoothing methods can be applied to the subsample of Di = 1. Note that in
this case, the covariates xi are not used in the estimate of density function of Ti.

Let f(t) denote the probability density function of Ti for the group Di = 1. Assume that the
second derivative of f is square integrable,

(1)

Let K(·) denote a symmetric density function with a finite second moment, i.e.,

(2)

Also, let  be the number of subjects with Di = 1 in the sample. The kernel density
estimate of f(t) at a point T = t using the kernel function K(·) is defined as

(3)

where the bandwidth h > 0 is a constant and . The kernel function K(·) generally
gives more weight to observations closer to t. The choice of the bandwidth is closely related
to the behavior of the kernel estimate. Larger bandwidths correspond to estimates that are
more biased but less unstable, while smaller bandwidths yield estimates that are less biased,
but more unstable. Bandwidth should be carefully selected to balance bias and variance.

Since the bias reduces to 0 as the bandwidth h approaches infinity, the bandwidth needs to
be small to reduce bias. However, it also needs to be large enough to include sufficient
subjects; otherwise, the variance may be very large and the estimates themselves may not
even exist. More precisely, we let the bandwidth h be a non-random sequence of positive
numbers such that

(4)

Under conditions (1),(2), and (4), the asymptotic bias and variance for the kernel density
estimates in (3)[7] are given by

(5)

where fh(t) = E [Kh(t − Ti)|Di = 1] and R(K) = ∫K(z)2dz. Taking both the bias and variance
into consideration, the behavior of the estimate at each point is assessed by the mean
squared error (MSE) of the estimate at the point. As a direct consequence of (5), the
asymptotic MSE of the kernel density estimate in (3) is
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(6)

It is often desirable to assess the estimate over the entire real line. By integrating the MSE
over the entire real line, the mean integrated squared error (MISE) provides such a measure
to assess the overall accuracy of the estimate. As a direct consequence of (6), the asymptotic
MISE of (3) is given by

(7)

where R(f″) = ∫f″(t)2dt. Optimal bandwidths should give rise small MISEs. Thus, by

minimizing (7), we obtain the asymptotic optimal bandwidth .

3 Univariate Kernel Smoothing for Incomplete Data
In this section we discuss estimation of density function of T for the group D = 1 under
missing group membership for some subjects. We assume that the covariates xi and the
variable of interest Ti are always observed. Let Vi be the indicator of whether Di is observed;
Vi = 1 if it is observed, and Vi = 0 if otherwise. Thus, (xi, Ti, Vi) is always observed, but Di is
only observed for those subject with Vi = 1. We will extend the kernel density estimate (3)
described in the last section to this situation.

The naive estimate would be simply applying the kernel smoothing estimate to the subgroup
of those subjects who are known to be in the group defined by Vi = 1 and Di = 1, i.e.,

(8)

This naive estimate is valid only under the very strong missing completely at random
(MCAR) condition. In particular, it does not apply when the missingness of the group
membership follows the missing at random (MAR) assumption.

Conditional on the observed outcomes T and covariates x, assume that the membership
observation indicator V is independent with the exact membership D, i.e.

(9)

This MAR assumption is common in the literature of missing values. In the aforementioned
diagnostic study examples, MAR is plausible if the decision of the administration of gold
standard test depends on the observed test results and covariates. The inverse probability
weighting (IPW) technique is commonly used to address missing values under MAR[5, 8].
Below, we apply this approach to address missing group membership in our setting.

Let πi = Pr(Vi = 1|Ti, xi) be the probability that the group membership is observed for the ith
subject. If πi is known by design as in some two-stage studies, then those subjects with
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known group status in the group (Vi = 1 and Di = 1) can be used for the density estimate
with proper weighting. The idea of IPW is that each subject with known group membership
is selected for verification (Vi = 1) with a probability πi among similar subjects and thus
should be weighted by the inverse of this probability in its contribution to the estimation. By
applying this idea to the kernel density estimate in our setting, the density estimate with the
inverse probability weight based on the known probabilities (IPWK) at a point T = t is given
by

(10)

Since Vi = 0 for those with unknown Di, the estimate above is computable only if πi is
known. Further, the estimate is only based on those with known group membership (Di = 1
and Vi = 1).

Assume that the selection probability is continuous in Ti and xi. Furthermore, we assume
that πi is bounded below away from 0, i.e.,

(11)

where c is a constant. This condition is necessary for the estimates to have good behaviors,
since otherwise we may have some very large weights, yielding unstable estimates. Under
the conditions (1),(2), and (4), and (11), we have the following

Theorem 1
The asymptotic bias and variance of f̃ are

(12)

where p = Pr(Di = 1) is the proportion of the group with Di = 1 in the whole population and

.

It is clear that we obtain the same bias as the complete case, but with a larger variance.
Under MCAR, πi is a constant and hence . The asymptotic variance in this special case
is , which is consistent with the complete data case, since the actual sample size
in this case is npπ. In other words, the results in the theorem reduce to the complete case
when there is no missing values in the group membership, i.e., πi = 1.

In most studies other than those based on two-stage designs, the probabilities πi are not
known. For example, although physicians in our setting may make the decision for SCID
assessment based on the subject’s demographic, history of mental health and screening test
results, it is quite rare that they make their decisions by modeling πi and generating a
random Vi based on the model. In such cases, the missing mechanism satisfies the MAR
assumption, but with known &pi;i. Although in observational studies, MAR may not be a

Tang et al. Page 5

J Stat Plan Inference. Author manuscript; available in PMC 2013 March 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



correct model, it will hold approximately true, if sufficient information is included when
modeling the weight function πi. In either situations, we need to model and estimate πi.

Since the indicator of observed group membership is binary, we can model πi using logistic
regression:

(13)

To simplify the notation, we have subsumed the constant term of the logistic regression as
well as T into the vector of covariates x. Given the above model, we can readily estimate β.

In particular, the MLE of β can be obtained by solving the following score equations:

(14)

Note that unlike the density estimate, all subjects (whether Di is observed or not) are used
for estimating β in the above equations.

Denote the estimated probabilities of being selected for verification by . By
substituting the estimates into (10), we obtain the following IPW estimate with weight based
on modeling of the missing mechanism (IPW):

(15)

Under the conditions (1),(2), and (4), and (11) and (14), we have the following

Theorem 2
The asymptotic bias and variance of f̂ are

(16)

where .

Comparing Theorems 1 and 2, we see that f̃ and f̂ have the same asymptotic bias and
variance. These are the direct consequences of the following lemma which gives the
asymptotic distributions of the respective estimates f̃ and f̂. A proof of the lemma is provided
in the appendix.

Lemma 3
Under the conditions (1),(2), and (4), and (11) and (14). For fixed h, we have (a)
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(17)

where , and (b)

(18)

where , c1 = E [(1 − πi) xi|Di = 1]
and c2 = E [(1 − πi) Kh(t − Ti)xi|Di = 1].

It is straightforward to prove Theorem 1 based on the fact that  and

(17). Theorem 2 is based on (18) and the fact that . It should be
pointed out that although the expression for the variance has extra terms, IPW with
estimated missing probabilities in general has slightly better behavior than IPWK, even
when the selection probabilities πi are known (see the simulation study in Section 5 for
details). Note that a similar phenomenon in regression analysis is well known.

4 Bandwidth Selection
It is clear from Theorems 1 and 2 that the behaviors of the estimates are closely related to
the bandwidth h used. If h is too small, then the estimates are not stable. On the other hand,
if h is too big, the bias can be large. We must trade o3 between bias and variance in selection
of the bandwidths. As in the complete data cases, we can assess the qualities of the estimates
by their mean squared errors. Based on Theorems 1 and 2, we immediately have the
following

Theorem 4
The MSE of f̃ and f̂ at point t both equal to

(19)

Since MSE = Bias2 +Variance, the proof is straightforward.

The MSE assesses the behavior of the estimate at a single point t, with a smaller MSE
indicating better fit. Asymptotically optimal bandwidth at a point t can be obtained by
minimizing the corresponding MSE. To assess the behavior of the estimate with a common
bandwidth over the entire range, we need to assess the integrated MSE (MISE), which is the
integration of MSE over the whole range. Following from Theorem 2, we have:

Corollary 5
The MISE for f̃ and f̂ are given by
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(20)

where .

As in the case of MSE, the smaller the MISE the better the fit. Optimal bandwidths can be
selected by minimizing the MISE (20). It is easy to see that the minimum can be achieved,

asymptotically, when . Thus, the asymptotic optimal bandwidth is
given by:

(21)

In the formula for the optimal bandwidth (21), R(K) and μ2(K) can be easily computed. For
the Epanechnikov kernel function

we have μ2 (K) = 1 and . The term c0 is related to the missing rate, and it can be
estimated roughly by the sample missing rate. The computation of R(f″) is a bit involved
since it involves the estimate of f″. One approach is to use the normal distribution as a basis
for bandwidth selection. If f follows a normal distribution with variance σ2, the
corresponding R(f″) ≈ 0.212 σ4. Under this approach, we estimate first the variance of the
variable to obtain an estimate of σ and then substitute 0.212 σ4 in the place of R(f″) in (21) to
obtain an estimate of the optimal bandwidth. We may further estimate f″ using the
bandwidth we obtained based on the normal distribution approach, and then substitute the
estimate of R(f″) in (21) to obtain an estimate of the optimal bandwidth.

5 Simulation Studies
Simulation studies were performed in a couple of different scenarios to assess the behaviors
of the estimates. We considered the situation where T is a binormal, i.e., T is normally
distributed in both groups. However, to focus on a finite range, we used a normal
distribution truncated on [−1, 1]. More precisely, T|D = 1 (T|D = 0) follows standard normal
N(0, 1) (N(1, 1)) truncated on [−1, 1]. In addition, the missingness of group membership D
depends only on T, i.e., no other covariates xi were involved.

We assumed a missing probability model based on logistic regression, i.e.,
. Following this model, β0 can used to control the missing

rate, while β1 indicates the degree of deviation from MCAR. In the simulation study, the
proportion of the first group in the whole population was fixed at .5, i.e., p = .5. The
Epanechnikov kernel function was used for density estimates.

As pointed out in [1], sample sizes as large as 1000 are common in diagnostic test studies,
and asymptotic theory can be applied. In the simulation study, to assess the behaviors of the
estimates, especially how they would change with bandwidth, under small to moderate small
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sample sizes, we set the sample size at 200. Note also that under our setting, there are
roughly 100 in each group, however, memberships of only part of them are confirmed.

Setting β0 = 0 and β1 = 0.5, we computed the integrated squared bias, integrated variance, as
well as the MISE for bandwidths that varied from 0.01 to 1 based on a Monte Carlo size of
1000. Shown in Figure 1 are the MISEs as a function of bandwidth for the four estimates.
When the bandwidth increased, the bias increased, while the variance decreased. Both IPW
estimates, whether based on the known or estimated selection probabilities, behaved better
as compared to the naive methods. The IPW approaches had a comparable amount of bias as
compared to the estimate based on the complete data. But the naive method had a much
larger bias. The variances of the IPW methods and those of the naive methods were
comparable, although as expected the estimate based on the complete data had a smaller
variance. Similar to the regression setting, density estimates obtained based on estimated
probabilities behaved slightly better than those based on the true (known in simulation)
probabilities, although the difference was small. Since μ2(K) = 1, R(K) = .6, the variance of
the standard normal truncated by [−1,] is , where φ and Φ are the density
and cumulative distribution functions of the standard normal. It follows that the bandwidth

suggested by (20) would be . Based on the simulation results, the
minimum of the MISE was achieved around h = 0.335 for the IPW estimates, confirming
that the formula (20) is reliable for computing the optimal bandwidth.

From Figure 1, we see that the naive method produces larger biases as compared to the IPW
estimates, as the former did not address MAR. To assess the effect of missing data
mechanism, we considered different values of β1. By fixing β0 = 0, but varying β1 from 0 to
1, the missing mechanism changed from MCAR (β1 = 0) to MAR with larger β1 indicating
more deviations from MCAR. Since the missing rate was roughly 50%, we obtained from
(21) a rough estimate 0.3 as the asymptotic optimal bandwidth by substituting 2 for c0 in
(21) and computing R(f″) under the known distribution with the sample size 200.

The following plot contains the mean of the smoothed curves with a Monte Carlo size of
1000. The mean curves for the IPW approaches are almost identical to that of the estimate
based on the complete data. It is clear from the plot that as the missingness deviates from
MCAR, the amount of bias from the naive methods increased. However, the IPW methods
still provided good estimates.

6 Study of Depression in Elderly Primary-care Patients
We now illustrate our proposed methodology using the baseline data from a real longitudinal
study on depression in elderly patients (age 65 and over) recruited from primary-care
practices in Monroe County, New York. In addition to depression status determined by
SCID, other information collected include demographic variables, the Hamilton Depression
Rating Scale (HAM-D) for depression, a 24-item observer-rated scale designed to measure
the severity of depressive symptoms [16], and the total score on the Cumulative Illness
Rating Scale (CIRS), a reliable and valid measure of medical burden that quantifies the
amount of pathology in each organ system [6]. Among the 708 patients enrolled, 249
patients were classified as having depression and the remaining 459 patients were declared
as depression-free. Although the total score of HAM-D is inherently discrete, it was often
treated as a continuous outcome because of its large range. In this example, we will estimate
its density function among depressed patients.

Data for both the SCID and the HAM-D were collected from all participating patients in this
study; therefore, similar to [4] we used a subset that resembled data that would be obtained
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from a two-phase design. Hence, we can assess the behaviors of the estimates by comparing
them to the estimates based on the complete data. In this subset, the HAM-D results were
available for all patients, but the SCID diagnoses were available only for certain patients
selected according to the following mechanism:

(22)

Thus, the verification mechanism preferentially selected the patients who were under the age
of 75, with a relatively high cumulative illness burden. Using this mechanism, 394 of the
708 patients (55.6%) were selected for SCID verification of the depression diagnosis. A
logistic regression model with age and CIRS as the predictors was used to model the missing
data mechanism.

The true density function is not known in this real data example; however, since there is no
missing values in HAM-D and SCID in the data set, we used the estimate based on the
complete data set as a reference in assessing the quality of the estimate under missing data.
To model the missing data mechanism, we assumed that the missingness was related to
CIRS and age, and applied the following generalized linear model with a logistic link to
estimate the relationship:

Thus, the model used for the missing mechanism is not exactly the one we used to generate
the missing values (the predictors are not dichotomized in the regression).

Shown in the plot below are the estimates of the density using the complete data set of all
subjects who were depressed (complete), naive estimate (naive), and IPW estimates (IPW
for IPW with estimated missing probabilities and IPWK for IPW with known missing
probabilities). The IPW estimates are in general closer to, as compared with the naive
estimate, the estimate based on the complete data. Note that although the estimated weight
function was not based on the exact model for generating the missing values, bias was
greatly reduced under the proposed approach (comparing to the naive method). It is also
interesting to note that the IPW estimate using the known missing data probabilities (IPWK)
is not as good as the one based on the estimated weight (IPW). Such a difference is also
observed in various other settings involving IPW estimates, including parametric
regressions[12] and U-statistic estimates[4].

7 Discussion
In this paper we generalized the kernel smoothing density estimates for diagnostic test
outcomes when the true disease status is subject to missing. Through the study, it is clear
that the naive approach that ignores the missing values of disease status and uses only those
with known disease membership is not valid. When the missing mechanism is well
understood and characterized by the MAR mechanism, the proposed methodology works
well in reducing the bias. Note that the information in Xi are only used in the modeling of
the missing mechanism (πi). If the relationship between the disease status Di and (Ti, Xi) is
well understood, then by including this additional model on the disease mechanism we may
obtain more efficient estimates.

There are some problems left unanswered for our methods. Most notable is the study of
boundary effects. It is well known that many smoothing methods do not behave well without
adjustment near the boundaries. Our approach is no exception, as indicated by the relatively
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poor behaviors of the estimates near the boundaries. Further investigation is necessary to
address such biases.

Another aspect that needs future study is the effect of MAR on the estimates. Although
MAR is commonly assumed in the literature and satisfied by many studies in practice,
missing not at random (MNAR) may arise in some studies. When enough information is
collected (via covariates) and included in modeling the missingness of disease status, the
MAR model may be approximately true. But, will the MAR assumption affect the behavior
of the estimates, and if so, to what extent? More generally, how do we deal with MNAR?
All these need future studies.
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Appendix
In this appendix we give a proof of Lemma 3 using estimating equation techniques. Note
that under MAR, we have

(23)

and

(24)

When the parameters of the missing mechanism, β, is known and the true value is used, we
can obtain the estimate f̃(t) by solving the following estimating equations

(25)

If β is estimated from the data using the logistic model (14), the estimate f̂(t) can be obtained
by solving the system of estimating equations consisting of (25) and (14), and we can use
the technique of stacking estimating equations. Since these estimating equations are
unbiased, the estimates f̃(t) and f̂(t) are consistent estimates of fh(t). See appendix A.3 of [2]
for details about estimating equations.

Proof of Lemma 3 (a)

Let , and , then  where the
asymptotic variance σ2 equals to the (1, 1) term of the matrix A−1BA−T, where

 and

Let , and , then by simple matrix computation, σ2 = p
(ef2 − 2gf + s). It is straightforward to verify that

.
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Proof of Lemma 3 (b)
Let Ψ3 = (Vi − πi (β))xi. Using the technique of stacking estimating equation, it follows that

 where the asymptotic variance σ2 is the (1, 1) term of the matrix

A−1BA−T, where  and

.

Let c1 = E [(1 − πi) xi|Di = 1] and c2 = E [(1 − πi) Kh(t − Ti)xi|Di = 1], then

Through tedious algebraic computation it can be proved that
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Figure 1.
MISE (Complete: solid, Naive: dashed, IPW: dotted, IPWK: dotdash)
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Figure 2.
Means for β1 = 0, .2, .4, .6, .8, and 1. (True: solid, Complete: dashed, Naive: dotted, IPW:
dotdash, IPWK: twodash)
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Figure 3.
Density estimate of Ham-D taotal score among depressed patients: complete (solid), naive
(dashed), IPW (dotted), IPWK(dotdash)
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