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Abstract
Detection of biologically interesting, low-abundance proteins in complex proteomes such as serum
typically requires extensive fractionation and high-performance mass spectrometers. Processing of
the resulting large datasets involves trade-offs between confidence of identification and depth of
protein coverage, that is, higher stringency filters preferentially reduce the number of low-
abundance proteins identified. In the current study, alternative database search and results filtering
strategies were evaluated using test samples ranging from purified proteins to ovarian tumor
secretomes and human serum in order to maximize peptide and protein coverage. Full and partial
tryptic searches were compared because substantial numbers of partial tryptic peptides were
observed in all samples, and the proportion of partial tryptic peptides was particularly high for
serum. When data filters that yielded similar false discovery rates (FDR) were used, full tryptic
searches detected far fewer peptides than partial tryptic searches. In contrast to the common
practice of using full tryptic specificity and a narrow precursor mass tolerance, more proteins and
peptides could be confidently identified using a partial tryptic database search with a 100 ppm
precursor mass tolerance followed by filtering of results using 10 ppm mass error and full tryptic
boundaries.
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Introduction
The publication of the first database search engine, SEQUEST,1 set the stage for the later,
rapid application of mass-spectrometer-based analyses of proteomes. Additional search
algorithms, such as Mascot,2 X!Tandem,3 and MyriMatch4 were developed, which have
similar capacities to automatically correlate thousands to millions of peptide fragmentation
spectra with protein sequence databases to identify the most likely peptide sequences.
However, in a typical proteomics study, only a modest percentage of the resulting peptide-
spectrum matches (PSMs) are correct, for multiple reasons that have been outlined in a
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recent review.5 To remove incorrect PSMs, different strategies can be used to filter the
search result, including: applying a cutoff filter on PSM matching scores such as Xcorr for
SEQUEST;6 using a statistical model to estimate distributions of correct and random PSMs
and then setting a desired cutoff filter (discriminant score in PeptideProphet™)7; combining
multiple match scores and setting separate thresholds for each sub population (IDPicker)8;
or employing machine learning to distinguish correct versus random matches based on
multiple PSM properties (Percolator)9. For all these approaches, a target-decoy search
strategy10–12 can be adapted to estimate a peptide false discovery rate (FDR). In this
strategy, either a reverse sequence of true proteins or computer-generated random sequences
(“decoy”) are used as surrogates to estimate the level of matches due to random chance.
That is, if the forward and decoy databases are the same size and share similar peptide
lengths and compositions, the assumption is that similar numbers of sequences will hit the
forward and reverse sequence databases by random chance. Therefore, the percentage of the
decoy matches in the final dataset after filtering out poor scoring hits is an objective
indicator of the overall quality and specificity of the search result. However, a tradeoff
between sensitivity and specificity exists here; i.e., stringent filters usually will yield low
FDR but will result in fewer peptide and protein identifications, while a relaxed filter yields
more peptide and protein identifications with higher uncertainty.

The major goal of most proteomics studies is to identify as many proteins as possible in
biological samples, especially those proteins or protein changes most critical to biological
functions. Identification of the most abundant proteins is rarely a challenge because peptides
from these proteins have strong signals and are selected more frequently for analysis in data-
dependent acquisition methods. Low-abundance proteins usually are the most biologically
interesting because they frequently include the proteins that drive or regulate biological
processes, but reliable detection of low-abundance proteins in complex samples is more
challenging because peptide signals are weaker and MS/MS spectra have more noise from
chemical background, interfering peptides, etc. To enhance detection of low-abundance
proteins, particularly in samples with a wide dynamic range of abundance such as serum or
plasma, extensive sample pre-fractionation and extended LC-MS/MS analyses usually are
required.6, 13 This results in large datasets that, in some cases, may contain millions of MS2
spectra. Since large datasets are more prone to false protein identifications,14 efficient
processing requires a strategy optimized both for analysis speed and confidence of the
identification.

Advances in mass spectrometer design and performance have contributed to the size and
complexity of MS/MS datasets. For example, hybrid instruments such as the LTQ-FT and
LTQ-Orbitrap feature both fast scan cycles and high mass accuracy, which can be improved
further through either internal calibration15 or post-acquisition recalibration,16 laying the
foundation for an era of “precision proteomics.”17 For data-dependent discovery studies,
these hybrid instruments provide the best sensitivity when performing survey scans in the
FT analyzer and MS2 scans in the ion trap,18 because the main contributor to depth of
analysis is the number of MS2 scans, which can be performed more rapidly in the ion trap.
At the same time, highly accurate precursor ion masses can generate more high-confidence
peptide identifications than low-mass-accuracy data, because the mass accuracy of the PSM
is an effective search result filter that can remove most erroneous random matches.18, 19 The
benefit of high mass accuracy is particularly dramatic for low-abundance, phosphopeptide
identifications.20

In addition to being used as a post-search data filter, high-mass-accuracy precursor ion data
enable the potential use of a narrow precursor mass tolerance during the database search,
thereby shortening the computational time. But recent studies using Mascot21 and
SEQUEST22 showed that use of tight precursor tolerances during the database search step
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resulted in fewer peptide identifications. Both studies suggested that a wide precursor
tolerance for the database search, combined with a narrow mass accuracy filtering of search
results, was more sensitive due to more effective filtering of false positive matches.
Interestingly when we scanned proteomics studies in the Journal of Proteome Research that
utilized high-mass-accuracy instruments, most database searches were performed using very
narrow precursor tolerances.

Furthermore, most published database search methods only considered sequences with dual-
tryptic termini (full tryptic). This typical usage of full tryptic boundaries for searches also is
of interest because substantial numbers of partial tryptic peptides can be detected in MS2
scans, even though these peptides typically are present in much lower concentrations than
their full-tryptic counterparts.23 The impact on conventional data analyses strategies of
partial tryptic peptide spectra has not been fully addressed and is of particular interest for
specimens where substantial biological proteolytic activity is likely to occur, such as in cell
secretomes and serum. In this study, we analyzed samples ranging from purified proteins to
complex samples, including human serum and tumor secretomes using 1D-SDS gel
fractionation followed by LC–MS/MS analysis (GeLC–MS/MS). The proportion of MS/MS
spectra that were due to partial tryptic sequences was substantial for all samples types and
was particularly high for human serum. The effects of full and partial tryptic database
searches for serum proteomes were evaluated, together with alternative post-search filtering
strategies. These results indicated that the relatively large number of partial tryptic spectra in
these datasets had a substantial negative impact on the accuracy of peptide identifications
when full tryptic specificity was used for the database search. In addition, partial tryptic
searches identified more peptides and proteins for a fixed peptide FDR. An optimized
combination of precursor mass tolerance and subsequent mass accuracy filter was
determined for partial tryptic database search results.

Materials and Methods
Materials

Human albumin (A8763) was purchased from Sigma-Aldrich (St. Louis, MO). Sequencing
grade modified trypsin was from Promega Corporation (Madison, WI). Recombinant human
Peroxiredoxin 6 (Prdx6) protein was purified in the laboratory. Amicon® Ultra centrifugal
filters (10,000 Da cut off) were from Millipore (Billerica, MA). Ultra-pure urea and
dithiothreitol (DTT) were from GE Healthcare, Ltd. (Giles, U.K.). All other reagents were
from Sigma-Aldrich.

In-solution digestion of purified proteins
Five micrograms of lyophilized protein were solubilized in 10 μL of denature solution (100
mM ammonium bicarbonate, 10 M urea). Proteins were reduced at 37 °C for 30 min with 7
mM DTT. Free cysteine residues were alkylated with 20 mM iodoacetamide at 37 °C for 60
min. The reaction was stopped by quenching iodoacetamide with additional DTT at 37 °C
for 15 min. Ammonium bicarbonate (25 mM) was added to the solution to dilute urea to 2
M. Proteolytic digestion was carried out overnight with a trypsin-to-protein ratio of 1:100.
The reaction was stopped by adjusting the sample to pH 2–3 with formic acid. The sample
was diluted to 20 fmole/μL with 0.1% formic acid in H2O and typically 1 μL was analyzed
by LC-MS/MS.

Secretome sample preparation
Residual fresh human ovarian tumor tissue was used with informed consent under
institutional review board approved protocols. Fresh tumor was cut into small pieces about 1
mm3 and the tissue was washed three times with 1 mL serum-free medium for 1 min each
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followed by incubation in 1 mL serum-free medium for 4 hr in 5% CO2, 95% air at 37 °C.
After centrifugation, the supernatant was stored frozen at −80°C until needed. For proteome
analysis, 500 μL aliquots were thawed, filtered through a 0.1 μm membrane, and
concentrated to 25 μL by ultra-filtration. A 20 μL aliquot of the concentrated sample was
separated for 2 cm by SDS-PAGE. The gel lane was sliced into 20 × 1-mm slices. Each gel
slice was reduced using 20 mM Tris(2-carboxyethyl)phosphine (TCEP) for 30 min at 37 °C
and alkylated using 40 mM iodoacetamide for 60 min at 37 °C. After lyophilization, gel
pieces were digested overnight with 0.4 μg trypsin at 37 °C.

Serum sample preparation
Human serum was collected from a healthy donor with informed consent under an
institutional review board approved protocol. Major proteins were depleted using a
ProteoPrep® 20 Plasma Immunodepletion LC Column (Sigma-Aldrich). The depleted serum
was separated 4 cm by SDS-PAGE, gel lanes were cut into uniform 1-mm pieces and were
alkyated and digested with trypsin, as described above.

In-gel digestion of individual proteins
One μg aliquots of the proteins of interest were separated by SDS-PAGE by running the
tracking dye to within 0.5 cm of the gel bottom, followed by staining with colloidal
Coomassie. The majority of the stained band of interest was excised (4 mm × 1mm × 1mm),
alkylated and digested by trypsin, as described above. The digestion was diluted to 20
fmole/μL with 0.1% formic acid in H2O, and 1 μL was typically analyzed by LC–MS/MS.

NanoLC–MS/MS
A nanoACQUITY HPLC (Waters, Milford, MA), interfaced with an LTQ-Orbitrap mass
spectrometer (Thermo Fisher Scientific, Waltham, MA), was used. Trypsin digestions were
separated using a 75 μm i.d. × 25 cm PicoFrit (New Objective, Inc., Woburn, MA) column
packed with 3 μm MAGIC C18-AQ resin. Peptides were eluted using a gradient formed by
solvent A (0.1 % formic acid in H2O) and solvent B (0.1 % formic acid in acetonitrile) as
follows: 3–28% B over 42 min, 28–50% B over 25.5 min, 50–80% B over 5 min, and
constant 80% B over 5 min. A 25-min blank gradient was run between sample injections to
minimize carryover. Full scans were performed at 60,000 R in the Orbitrap with
simultaneous data-dependant MS2 in the LTQ on the six most intense ions. Monoisotopic
peak selection (MIPS) was enabled, singly charged ions were rejected for MS2 and the Lock
Mass function was not used. Dynamic exclusion was enabled and analyzed precursors were
excluded for 45 sec. The LTQ Orbitrap XL mass spectrometer control software was version
2.4 SP1.

Data Processing
MS2 data were extracted and searched using the SEQUEST algorithm (Ver. 28, rev. 13,
University of Washington, Seattle, WA) in BioWorks (Ver. 3.3.1, Thermo Fisher Scientific).
The FASTA database (human UniRef 100, Ver. May, 2009) was downloaded from Protein
Information Resource (PIR), Georgetown University, Washington, D.C. A decoy database
was generated by reversing the amino acid sequence of each protein in UniRef 100, and it
was then appended to the forward database. The combined database was indexed using
either full or partial tryptic specificity with up to two missed cleavages. SEQUEST search
parameters were set to the same trypsin specificity (full or partial tryptic, up to two missed
cleavages) used to index the database. Other search parameters included either a 1.1 Da or
100 ppm precursor mass tolerance, a 1 Da fragment ion mass tolerance, variable methionine
oxidization (+15.9949), and static cysteine carboxamidomethylation of cysteine (+57.0215
Da). Search results were stored in SRF files and transferred into SQT files by mspire (mass
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spectrometry proteomics in Ruby). 24 Consensus protein lists were built by DTASelect (Ver
2.0, licensed from Scripps Research Institute, La Jolla, CA) after applying filters within
DTASelect for mass accuracy, Xcorr score, ΔCN score, minimum peptide per protein, and
tryptic status (y =1 for partial tryptic or 2 for full tryptic peptides). For each data filter, the
FDR was estimated from the ratio of decoy database peptide or protein counts divided by
forward database peptide or protein counts, expressed as a percentage. Redundant or non-
redundant peptide counts described in results were taken directly from DTASelect, which
counted different charge states and variable modifications such as methionine oxidation as
separate peptides. Unique peptide counts were obtained using an in-house script that
collapsed different charge states and variable modifications of a unique sequence into a
single count. To determine actual mass accuracy of each dataset, forward PSM were used
that passed the following stringent filter: Xcorr [+1] ≥ 1.9, Xcorr [+2] ≥ 2.5, or Xcorr [+3] ≥
4, and ΔCN ≥ 0.12, and at least three peptides per protein. Proteins and PSMs that were
common to both the 1.1 Da search and 100 ppm searches and unique peptide sequences
were determined using in-house Ruby scripts.

Result and Discussion
Partial tryptic peptides are detected with high frequency in trypsin-digested samples

Trypsin is the most widely used protease in proteomics studies due to its high specificity,
robustness, and optimal average size of tryptic peptides. Because the enzyme is considered
to be highly specific, database searches typically are conducted using full tryptic boundaries.
The most common rule for full tryptic peptides is “cleavage after arginine or lysine, but not
before proline.” However, a recent bioinformatics study observed substantial trypsin
cleavages before proline and suggested that the proline restriction should be removed.25

This is consistent with our experimental observations and, in this study, the proline
restriction was not used for either the full or partial tryptic searches. When using full tryptic
boundaries, any spectra that result from partial tryptic peptides will yield incorrect
identifications. To determine the extent of partial tryptic peptides in representative
specimens, we performed in-gel and in-solution trypsin digestion of purified human albumin
and Prdx6. Digestion products from 20 fmole of protein digests were analyzed by LC–MS/
MS, and raw data were searched with a partial tryptic setting and a mass tolerance of 1.1 Da.
PSMs were filtered using mass accuracy ≤ 10 ppm and ΔCN ≥0.05 in DTASelect. Under
this default filter, the redundant peptide FDR was approximately 1% for albumin and 2–3%
for Prdx6. Corresponding full tryptic and partial tryptic peptides for each condition are listed
in Supplemental Table 1. Peptides with different charge states and modifications were
consolidated into unique, unmodified peptides. Substantial numbers of partial tryptic
peptides were identified in all four samples (Figure 1A). The in-solution digested samples
contained more incompletely cleaved peptides (internal Arg and/or Lys residuals) than the
in-gel samples, which resulted in more observed unique peptides in the in-solution digestion
and indicated that the in-solution digestion was somewhat less efficient than the in-gel
method, presumably due to the much lower enzyme-to-substrate ratio commonly used for in-
solution digests. In contrast, the portion of unique observed peptides that had partial tryptic
boundaries was lower for the in-gel digests. This is probably because the SDS gel separates
the intact protein from fragments caused by prior non-tryptic proteolysis events.

We performed similar GeLC-MS/MS analyses on human serum (40 fractions) and human
tumor secretomes (20 fractions) as representatives of complex biological samples. Unique
peptides that passed the mass accuracy ≤ 10 ppm and ΔCN ≥0.05 filter were sorted into full
or partial tryptic peptides (Figure 1B). A total of 8,943 unique peptides with a redundant
peptide FDR of 0.3% were identified in the serum sample, and 27,855 unique peptides with
a redundant peptide FDR of 0.2% were identified in the tumor secretome. This large
difference in identified peptides was due primarily to the well-known, much greater dynamic
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range of protein concentrations in serum compared with tissue secretomes. The percentages
of all detected unique peptides that were due to partial trypsin cleavage peptides are shown
in Figure 1C for albumin, serum, and the tumor secretome. Interestingly, more than 50% of
all identified peptides in the serum sample had partial tryptic boundaries.

To evaluate the cleavage mechanisms responsible for the observed partial tryptic peptides,
we inspected all 16 partial tryptic peptides from Prdx6 (Table 1). For all partial tryptic
peptides, the corresponding full tryptic peptides also were detected in the sample. Fifteen
partial tryptic peptides were due to N-terminal truncation. Four of these partial tryptic
peptides were detected at the same retention time as the corresponding full tryptic peptides
in both the in-gel digestion sample and the in-solution digestion sample, indicating these
observed partial tryptic peptides were most likely due to in-source fragmentation in the mass
spectrometer. This in-source decay could be reduced by decreasing the tube-lens voltage on
the ion source, but some peptides still maintained fragility even with low tube-lens voltage,
and lower tube-lens voltages typically reduced the total number of identified full tryptic
peptides. Five partial tryptic peptides eluted at different retention times than the
corresponding full tryptic peptides and were observed in both in-solution and in-gel digests.
Cleavage in these cases occurred on the C-terminal side of W, F, L, and M, indicating
cleavage due to a chymotryptic activity. Chymotrypsin is a common contaminant in trypsin
preparations from pancreatic extracts. In addition, trypsin undergoes autolysis, and the
autolysis product, pseudotrypsin, has a chymotrypsin-like activity.26 Although methylation
of trypsin helps to reduce autolysis, pseudotrypsin activity may not be eliminated. 27, 28 The
last group of partial tryptic peptides were observed only in the in-solution digest and
extracted ion chromatograms of these precursor ions did not show any peaks at the expected
retention times in the in-gel digests. This indicates that these partial tryptic sequences were
derived from proteomic fragments present in the original protein sample, which were
separated from the intact protein on the SDS gel. The presence of these large non-tryptic
fragments, presumably from partial proteolysis during protein purification, appears to be the
major reason that the in-gel digestions generated slightly less partial tryptic peptides for the
individual proteins (Figure 1A, 1C). Of course, when the entire gel lane is analyzed, as in
the case of the serum and secretome samples, partial tryptic fragments from pre-analytical
proteolysis will not be removed.

The above analyses show that in-source decay, chymotryptic activity during trypsin
digestion, and pre-existing proteolytic fragments in the original sample contribute to the
total group of observed partial tryptic sequences. As it would be very difficult to eliminate
the contribution from any of these mechanisms for most proteomics studies, the effects of
these sequences should be addressed during data analysis. The extent of detected partial
tryptic peptides in LC–MS/MS experiments will be dependent on multiple factors such as
depth of analysis, sample characteristics and whether entire proteomes or single gel bands
are analyzed. It is not surprising that in complex samples such as serum where substantial
proteolysis can occur both in vivo and during sample processing, the number of observed
partial tryptic peptides can exceed the number of complete tryptic peptides. Another reason
why we detected a larger proportion of peptides as partial tryptic peptides in serum
compared with the tumor secretome is the larger dynamic range of serum and the fact that
more fractions were analyzed. In serum, low-yield, partial tryptic peptides from high- and
medium-abundance proteins often be more abundant than high-yield, complete tryptic
peptides from lower-abundance proteins. In contrast, the tumor secretome had far fewer
partial tryptic peptides detected because: 1) it contained a large number of proteins present
at similar levels and the capacity of the mass spectrometer was primarily devoted to
acquiring data from the higher-abundant full tryptic peptides for these proteins; 2) only half
as many fractions were analyzed compared to serum due to this reduced dynamic range, and
3) there is probably less physiological proteolysis during a four-hour acquisition of the
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tumor secretome compared with in vivo proteolysis in the blood and proteolysis during
blood clotting. As the mechanisms of partial tryptic peptide production suggest, we routinely
observe that the abundance levels of partial tryptic peptides are one to three orders-of-
magnitude less abundant than the corresponding full tryptic peptides. These observations are
consistent with those of a previous report.23 Considering the big differences in the relative
abundances of partial tryptic peptides and corresponding full tryptic peptides, it is not
surprising that experiments with limited depth of analysis, such as a single LC–MS analysis
on a bacterial proteome, may only detect full tryptic peptides.29

Spectra from partial tryptic peptides result in random mismatches with good scores when
using full tryptic searches

Since most datasets from in-depth analyses will have a proportion of spectra from partial
tryptic sequences, the common practice of using full trypsin specificity will result in
misidentifications for these spectra. In large datasets, some of these mismatches are likely to
yield good apparent matches by random chance. To further explore this possibility, we
searched the serum dataset described above with SEQUEST using either full or partial
tryptic settings with all other search conditions held constant. The results from the partial
tryptic search were subsequently filtered using DTASelect with mass accuracy ≤ 10 ppm,
ΔCN ≥0.05, and full tryptic peptide boundaries (our default filter). The full tryptic search
result was filtered with three different filters: 1) a filter equivalent to our default partial
tryptic search filter (mass accuracy ≤ 10 ppm, ΔCN ≥0.05); 2) a SEQUEST parameters filter
commonly used in prior publications 30, 31 (Xcorr [+1] ≥ 1.8, Xcorr [+2] ≥ 2.5, Xcorr [+3] ≥
3.5, ΔCN ≥ 0.08); and 3) a more stringent filter including mass accuracy (mass accuracy ≤
10 ppm, Xcorr (+1) ≥ 2, Xcorr (+2) ≥ 2.8, Xcorr (+3) ≥ 3.7, ΔCN ≥ 0.12). Figure 2A shows
the redundant peptide counts and FDR for the four conditions. The partial tryptic search
combined with our default partial tryptic filter produced the second-highest number of
peptide IDs with the lowest FDR (0.3%). A full tryptic search with the same post-search
filter generated a slightly higher number of peptide IDs but with a much higher FDR (4.1%).
The stringent filter achieved a similar peptide FDR to our default filter but with ~17,000 less
peptide identifications. Similar trends are observed when non-redundant peptide counts and
FDRs are considered (Figure 2B). That is, when a highly stringent filter is applied to the full
tryptic search results, a FDR similar to the partial tryptic dataset is obtained but with 1,682
less non-redundant peptides identified. Furthermore, the FDR at the non-redundant peptide
level is unacceptably high for the full tryptic searches with the less stringent filters.
Comparisons of the redundant and non-redundant peptide data (Figure 2A, 2B) show that
identified peptides were repetitively sampled an average of about 10 times, which means
that the most abundant peptides were sampled far more than 10 times. This is a problem that
is more severe when working with serum or plasma than in cell lysates32 due to the very
wide dynamic range that persists even after depletion of the 20 most abundant proteins and
subsequent separation into 40 fractions. Highly repetitive sampling of the most abundant
peptides results in dramatically lower FDRs estimated for redundant peptide matches
because the many repetitive matches from abundant peptides are usually accurately
identified, while single copy, low-intensity PSMs are less likely to be correctly identified
due to a lower signal to noise ratio.

In published reports using decoy databases to estimate FDR, it often is unclear whether FDR
was calculated using redundant or non-redundant peptide counts. But this is a critical
parameter that should be reported, especially for serum and plasma, because using redundant
PSM counts to calculate peptide FDR is likely to result in over-confidence in the quality of
results, as indicated by the 3.9% (redundant) vs. 24.1% (non-redundant) FDRs for the full
tryptic search/commonly used filter or the 0.3% (redundant) vs. 1.8% (non-redundant) FDR
for the partial tryptic search/default filter (Figure 2A, 2B). Using non-redundant PSM counts
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is more appropriate, particularly for serum or plasma proteomes, as it largely removes the
bias caused by repetitive sampling of abundant peptides. This bias results in an
approximately six-fold-higher FDR with the non-redundant peptide calculation method
compared to the redundant calculation method for all data analysis strategies summarized in
Figure 2.

As the data in Figure 2 illustrate, it is not appropriate to use the same filter on full and partial
tryptic search data, in part because Xcorr and ΔCN values are affected by the larger search
space in the partial tryptic search. There are certainly many database search programs and
post-search filtering strategies that could be used. In this study, we used data filtering
strategies within DTASelect that achieved similar FDRs to compensate for the differing
search spaces of full and partial tryptic database searches. FDRs generated from the target-
decoy search were still valid even with the enlarged search space of partial tryptic searches
because decoy and target sequences were equal regardless of changes in search space. Thus,
FDR-orientated filtering enabled us to perform a fair comparison between two conditions:
the “default” filter with the partial tryptic search and the “stringent” filter with the full
tryptic search. In addition to the two filters, we also used the “default” filter on the full
tryptic search as a control for the filtering step. The “common” filter was used as an example
of a commonly used full tryptic search/filtering strategy.

Interestingly, at the protein level, the two less stringent filters each identify more than 2,000
proteins (sum of values in Figures 2C and 2D), but most of these proteins are single hit
proteins and nearly all of these single hit proteins are expected to be incorrect identifications
(Figure 2C). The two stringent filters have far less single hit proteins and slightly less than
half of these single hit proteins are likely to be incorrect identifications. Furthermore, less
than 1% of the protein identifications based on two or more peptides are incorrect for the
two stringent filters, while 27% and 24% of the proteins are incorrect for the less stringent
filters (Figure 2D). Hence, while the two less stringent conditions produced the greatest
numbers of target protein identifications, this advantage were negated by the impractically
large number of apparent false forward database protein identifications.

Most importantly, the partial tryptic search/default filter analysis identified 438 proteins
based on two or more peptides, compared with only 368 proteins for the full tryptic search/
stringent filter analysis (Figure 2D), resulting in the best compromise between highly
accurate protein identifications and comprehensiveness of proteome coverage. Database
searches using partial trypsin specificity ensure that most high-quality spectra arising from
partial tryptic sequences will be matched to the correct sequence. At the same time,
subsequent elimination of partial sequences from the final dataset by restricting the final
results to full tryptic boundaries is not detrimental to proteome coverage because most
partial tryptic sequences are present at much lower yield than the corresponding full tryptic
sequence. Therefore, most identified partial tryptic sequences will be from abundant proteins
that are unambiguously identified by multiple full tryptic peptides. Filtering out the partial
tryptic peptides has a negligible cost on protein coverage while greatly reducing FDR. A
summary of the serum proteins identified by two or more peptides in the partial tryptic
search using the default filter is shown in Supplemental Table 2A.

Evaluation of spectra that match partial tryptic sequences when they are forced to match
full tryptic sequences

We extracted the 23,824 spectra that matched to partial tryptic peptides in the partial tryptic
search result with mass accuracy ≤ 10 ppm and ΔCN ≥0.05, which is the same as our default
filter with the exception of the normal requirement for full tryptic peptide boundaries. When
the fate of these spectra in the full tryptic search was evaluated, the majority of spectra did
not match any full tryptic sequences with high scores, as expected. However, 1,404 spectra
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matched full tryptic sequences with ≤10 ppm mass error and ΔCN ≥0.05, with 694 matched
to decoy sequences and 710 matched to target full tryptic sequences. These 710 false
matches typically match partial tryptic peptides from abundant serum proteins with higher
scores (Table 2). Minimizing false positive hits in full tryptic database searches would
require the elimination of most of these 1,404 spectra, as the partial tryptic search shows that
these full tryptic identifications are incorrect. When a very stringent filter (mass accuracy ≤
10 ppm, Xcorr [+1] ≥ 2, Xcorr [+2] ≥ 2.8, Xcorr [+3] ≥ 3.7, ΔCN ≥ 0.12) was used, only 13
PSMs passed the filter, nine hit decoy sequences, and four hit target sequences. But this very
stringent filter severely suppressed depth of analysis compared to the partial tryptic search/
default filter, as shown in Figures 2C and 2D. For an independent approach, the full tryptic
data were processed using the Percolator algorithm, which has shown great power in
distinguishing between correct and random matches based on multiple PSM properties. A
redundant peptide FDR of 0.28% was selected to match the FDR obtained for the two more
stringent filters shown in Figure 2A. The Percolator algorithm identified 66,093 redundant
and 6,301 non-redundant peptides, which is much better than the 50,375 redundant and
4,975 non-redundant peptides obtained for the full tryptic search/stringent filter, but
somewhat less than the 67,465 redundant and 6,657 non-redundant peptides obtained for the
partial tryptic search/default filter results (Figure 2).

The vast majority of the 710 spectra that incorrectly match target sequences in the forward
full tryptic search show better matches to partial tryptic sequences than to the full tryptic
sequences based upon Xcorr, ΔCN, and mass accuracy (Figure 3A). Furthermore, the
distributions of Xcorr (+2), Xcorr (+3), and ΔCN scores are shifted toward higher values for
partial tryptic matches compared with full tryptic matches (Figures 3B–D). These score
distributions are consistent with the thresholds we used for the stringent filter that was
applied to full tryptic search results; that is, Xcorr (+2) ≥ 2.8 and Xcorr (+3) ≥ 3.7 will
exclude most of these incorrect, high-scoring matches to full tryptic sequences.

The similar good fit of some spectra to both full tryptic and partial tryptic peptides is further
illustrated by annotation of one of these 710 spectra using the results from the full tryptic
and partial tryptic searches (Figure 4). Although both sequence assignments fit the data
reasonably well with most major peaks assigned, the partial tryptic sequence is clearly a
better fit, consistent with the higher Xcorr and ΔCN scores. Taken together, these data show
that the most efficient strategy for preventing misidentifications of these 710 spectra is to
use a partial tryptic rather than full tryptic specificity during the database search.

One argument against relaxing the tryptic termini restriction is that partial tryptic sequences
dramatically increase the search space. The indexed database for the full tryptic search had
5,145,680 unique sequences, while the partial tryptic search database had 69,330,268 unique
sequences. This 14-fold increase of search space was expected to shift the global distribution
of PSM’s Xcorr scores to higher values, as previously reported33. Thus more random
matches should pass the filter if the same thresholds would be used for both full and partial
tryptic searches. However, such effects can be controlled by adjusting post-search data
filters to achieve similar FDR as previously discussed. For example, in our serum partial
tryptic search data, the non-redundant peptide FDR for spectra that matched full tryptic
peptides was only 1.8% (Figure 2B), while the peptide FDR for spectra in the full tryptic
search using the same filter was 22.6%, indicating a partial tryptic search coupled with
filtering for full tryptic boundaries dramatically decreased random matches in the partial
tryptic search data. Within the results from the partial tryptic search, the FDR was higher for
the partial tryptic peptide matches than for the full tryptic peptide matches. One solution to
this problem is to have a more stringent threshold for the partial matches separately as used
in IDPicker.8 Another solution is to integrate tryptic status into a single “final score,” such
as in Percolator9 and Peptide Prophet.7 But under these programs, the tryptic status of PSM
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is not readily apparent in filtered results and the relative weight of tryptic status may vary
depends on the algorithm and data. A simple alternative strategy is to exclude all partial
tryptic peptides from the final dataset. The validity of this approach is supported by the fact
that the longer, full tryptic peptides were almost invariably detected for observed partial
tryptic peptides (Table 1 and data not shown). Importantly, this indicates that including
partial tryptic peptide matches in the final data will minimally contribute to detection of
more proteins or higher sequence coverage.

A related potential concern is that random partial tryptic sequence matches could replace
some true positive full tryptic matches due to the far larger number of partial tryptic
candidates compared with full tryptic candidates. To evaluate this possibility, we took all
spectra corresponding to the 50,375 sequences from the full tryptic search/stringent filtering
result (Figure 2A) and mapped them back to the partial tryptic search result. Greater than
99% of these spectra had the same full tryptic sequence hit in the partial tryptic search result,
indicating that the approximately 14-fold increased search space of a partial tryptic search
had only a very minor negative effect on matching spectra from full tryptic peptides to the
correct full tryptic sequence. This minor effect is greatly outweighed by the other factors
discussed above.

Optimization of precursor mass tolerance in partial tryptic searches
Another potential drawback of partial tryptic searches is the greatly increased computational
time required for the search due to the increased search space. To test the effects of search
time, a human ovarian tumor secretome consisting of 20 gel slices from a GeLC-MS/MS
experiment was used. An approximate five-fold increase in search time was required for a
partial tryptic search compared with a full tryptic search when the same sequence database,
computer and SEQUEST version were used with a 1.1 Da precursor mass tolerance (Figure
5A). But the total search time of the partial tryptic search could be dramatically reduced by
reducing the mass tolerance to 100 ppm. Surprisingly, there were only minor further
improvements on search time as the mass tolerance was further tightened. Of course, search
time will be influenced by the specific search algorithm, codes that execute the algorithm,
hardware factors, and specific databases and datasets that are used. While performance of
other search algorithms may vary from that observed here for SEQUEST, it is expected that
partial tryptic searches and wider precursor mass tolerances will usually increase
computational time. Nonetheless, the improved depth of analysis of the partial tryptic search
using intermediate mass tolerances such as 100 ppm, followed by filtering on full tryptic
peptides and tighter mass tolerance, should be worth the increased computational time for
datasets where maximizing depth of analysis is important. To further assess the effects of
using narrow precursor tolerances, we compared the search result from the 1.1 Da precursor
mass tolerance with that of the 100 ppm precursor tolerance at both the PSM and protein
levels using a partial tryptic specificity and our default data filter (Figure 5B). Filtered non-
redundant spectra, 27,705 from a 1.1 Da search and 28,939 from a 100 ppm search, were
compared to each other. A total of 27,091 spectra were common to both data sets and 27,085
were matched to the same peptide sequence, while six spectra matched different peptides in
the two searches. There also was extensive overlap at the protein level for the two data sets
with greater than 97% of the protein identifications common to both datasets. Most of the
minor observed variation at the protein level appeared to be due to database redundancy as
has been previously observed.32 These data suggest that, for SEQUEST, switching to a
moderately narrow precursor tolerance of 100 ppm can reduce partial tryptic search times to
near minimal levels without significantly changing search results. A summary of the
proteins identified in the tumor secretome using the 100 ppm partial tryptic search and the
default filter is shown in Supplemental Table 2B.
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An optimal combination of precursor mass tolerance and post-search mass accuracy filter
yields high-quality protein identifications with reduced search times

Mass accuracy has been shown to be an effective filter for rejecting random matches and
thus enhancing detection sensitivity for low-abundance peptides.18–20 Of course the
appropriate final mass tolerance used to filter the data should be matched to a statistically
valid actual mass accuracy for the instrument used to acquire the data.34 The data used in
this study were generated on an LTQ-Orbitrap with monoisotopic peak selection enabled,
where the final precursor mass value for creation of the DTA file is extracted from the full
scan at 60,000 R by Bioworks. To estimate the actual mass accuracy of a given instrument, a
pool of representative true peptides with good diversity should be used. For this purpose, we
filtered partial tryptic search data with a special filter (Xcorr [+1] ≥ 1.9, Xcorr [+2] ≥ 2.5,
Xcorr [+3] ≥ 4, ΔCN ≥ 0.12) and required that at least three peptides match each protein,
which resulted in a non-redundant peptide FDR of 0.1% without any mass filter. The mass
accuracy histogram of these PSMs exhibited an approximately normal distribution centered
near zero (mean = 0.18 ppm, σ=2.5) (Figure 6A). This mass accuracy was similar to that
recently reported using Lock Mass on the same type of instrument.35 These data justified the
use of ±10 ppm as the mass accuracy filter as this is approximately ±4σ, which ensures that
>99.99% of true hits will not be rejected on the basis of mass error, whereas a tighter filter,
such as ±5 ppm, would result in the loss of about 5% of correct matches, which is substantial
when dealing with large datasets. Furthermore, the peptide data used for calculating these
mass error statistics is expected to preferentially represent more abundant peptides with
good signal-to-noise due to the stringent criteria used to select these PSMs. But it is likely
that the low-abundance peptides will exhibit somewhat larger variations in mass error.34

The effects of using different mass tolerances with partial tryptic specificity were further
evaluated by searching our ovarian tumor secretome with precursor tolerances ranging from
1.1 Da to 10 ppm. After applying the default filter, we found that tighter precursor
tolerances led to higher peptide FDR (Figure 6B). These data show that using a precursor
tolerance at 10 ppm results in a much higher FDR compared with 100 ppm while providing
only a very minor saving in computational time (Figure 5A). Interestingly, the FDR
determined using redundant peptides was only two to three times higher than for non-
redundant peptide at all precursor mass tolerances in the ovarian tumor secretome dataset
(Figure 6B). In contrast, for serum, the difference in FDR calculated using non-redundant
peptides compared with redundant peptides was about six-fold higher for all database search
and data filtering strategies (Figures 2A and 2B). This is apparently due to the lower
redundancy of peptide identifications in the ovarian tumor secretome because it has a
narrower range of protein abundances compared with serum.

To further evaluate effects of full and partial tryptic search parameters we searched our
secretome data using three different conditions: a full tryptic search at 10 ppm, a partial
tryptic search at 10 ppm, and a partial tryptic search at 100 ppm precursor tolerance. These
results were subsequently processed using different filters and non-redundant peptide FDRs
were calculated (Figure 6C). Of course for the full tryptic/10 ppm mass tolerance search,
neither the mass accuracy nor the full tryptic post-search filters could reduce FDR because
they were already incorporated into the search parameters. The observed nearly 50% FDR
showed that this unfiltered data was not much better than random matches. Of the filters
used here, only ΔCN moderately decreased the FDR. For the data generated by a 10 ppm/
partial tryptic search, the mass filter alone could not be effective, and a FDR of 43.7% was
observed. In contrast, the full tryptic filter alone dramatically decreased the FDR to 7.8%
and it further improved with the addition of the ΔCN cutoff. For the result from the 100
ppm/partial tryptic search, using the mass accuracy filter at 10 ppm and the full tryptic filter
in combination reduced the FDR below 2%, and when ΔCN was included the FDR was less
than 1%. In contrast, conventional SEQUEST Xcorr filters were less effective, analogous to
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the observations described above for the serum proteome. For example, use of Xcorr [+1] ≥
2, Xcorr [+2] ≥ 2.8, Xcorr [+3] ≥ 3.7, ΔCN ≥ 0.12) yielded a FDR of 5.05% on the full
tryptic search at 10 ppm tolerance.

These analyses show database searches with 100 ppm mass tolerance and partial tryptic
specificity are still superior to full tryptic searches with tight mass tolerance for samples
such as the tumor secretome, which contain far smaller percentages of partial tryptic
peptides compared with serum. A major advantage is that the search results subsequently
can be filtered using a tighter mass tolerance and full tryptic boundaries, thereby greatly
reducing the FDR with minimal loss of true positive identifications (Figure 2). Interestingly,
filters based on mass accuracy, tryptic boundary status, and SEQUEST scores are relatively
independent of each other and can be combined to achieve the very low non-redundant
peptide FDRs demanded by large-scale, in-depth analysis of complex proteomes. Many
newer algorithms for processing database search results allow automatic setting of desired
FDR, but due to the large proportion of partial tryptic peptide spectra in most datasets, the
use of partial tryptic searches is still advisable. In addition, one limitation of some programs
is the lack of a convenient option for removing all partial tryptic peptides prior to setting the
FDR since, as shown above, including the partial tryptic peptides in the final results has
minimal value on proteome coverage.

Effects of including asparagine deamidation and other low frequency modifications in
database searches

As shown above, it is advantageous to consider partial tryptic peptides in database searches
primarily because a substantial proportion of the total spectra arise from such peptides.
Similarly, methionine oxidation is routinely used in nearly all database search strategies
because the majority of methionine containing peptides are typically detected in both the
unoxidized and oxidized forms. To determine the impact of including lower frequency
modifications in database searches, we conducted a series of parallel database searches of a
serum proteome dataset where one variable modification at a time was considered in
addition to methionine oxidation to methionine sulfoxide. The modifications considered
included: asparagines deamidation, glutamine deamidation, tryptophan oxidation (+1 or +2
oxygen), methionine sulfone, pyroglutamate, carbamylation of lysine, and N-terminal
carboxyaminomethylation. Among these modifications, asparagine deamidation was most
commonly observed, with a frequency that was more than twice the next most common
modification. This is not surprising as Asn deamidation has been reported to be among the
most frequent chemical modifications of amino acids36, and occurs spontaneously when
proteins or peptides are in aqueous solution.37 To evaluate the effects of considering Asn
deamidation, we searched both the ovarian tumor secretome and human serum datasets with
a 100 ppm precursor mass tolerance, both with and without variable Asn deamidation. The
search time was nearly doubled with variable Asn deamidation enabled, but it was still much
shorter than performing the search with a 1.1 Da precursor mass tolerance. Our default
filters resulted in an increased number of non-redundant peptide identifications when
enabling Asn deamidation in both samples, with a larger percent increase for serum (Figure
7). This higher deamidation level is presumably due to the long half-life of many abundant
plasma proteins in the blood. However, considering deamidation did not increase the
number of proteins identified and most deamidated peptides also were identified in the
unmodified form. The non-redundant peptide FDR for the secretome data was 0.70% in the
normal search result and 0.64% in the Asn deamidation search. In the serum sample, the Asn
deamidation search generated a slightly higher FDR (2.4%) than that without the
modification (1.8%). Overall, these results suggest that in contrast to considering the high
frequency partial tryptic sequences, considering low frequency modifications such as Asn
deamidation does not positively affect depth of analysis for large in-depth datasets.
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Conclusions
Use of extensive proteome fractionation with modern mass spectrometers can produce very
large datasets of MS/MS spectra in which a substantial proportion are from partial tryptic
peptides. These partial tryptic peptides arise from multiple sources including prior
proteolysis in biological samples, non-tryptic cleavages during trypsin digestion and
fragmentation in the mass spectrometer ion source. The proportion of spectra from partial
tryptic peptides is particularly high for serum, and probably other biological fluids,
apparently due to the very wide dynamic range of protein abundance coupled with
substantial levels of intrinsic proteolytic activity. The common practice of using full tryptic
specificity and narrow mass tolerances for database searches is detrimental to maximizing
proteome coverage with a low FDR as some spectra from partial tryptic peptides will match
full tryptic sequences by random chance. Use of very stringent filters to reduce the FDR of
full tryptic search identifications will result in decreased depth of analysis because many low
abundance true positive identifications will be simultaneously removed. In contrast, partial
tryptic specificity and moderate mass tolerances such as 100 ppm for SEQUEST, allow the
subsequent filtering of database search results using full tryptic boundaries and a tighter
mass error filter that is matched to instrument performance. This strategy results in a
superior depth of analysis with FDRs at the non-redundant peptide level that are typically
less than 1%. Although use of partial tryptic database search specificity is highly
advantageous, considering lower frequency events, such as asparagine deamidation in the
database search, does not further improve depth of analysis.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Partial tryptic peptides are observed at substantial levels for diverse types of samples
(A) Unique full and partial tryptic peptides for individual purified proteins digested with
trypsin either in-solution or in-gel. Peptides that passed a ΔCN ≥=0.05 and mass error ≤ 10
ppm filter were consolidated into a minimum list of unique peptides by collapsing different
charge states and variable modifications (Met oxidation) into single entries. (B) Unique full
and partial tryptic peptides identified in human serum and an ovarian tumor secretome using
the same data filter as in panel A are shown. (C) Percentage of all observed unique peptides
that have partial tryptic boundaries.
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Figure 2. Comparisons of database search and data filtering strategies
A 40-fraction serum proteome dataset was searched using SEQUEST with either full or
partial tryptic boundaries. The resulting identifications were filtered using three alternative
conditions (see text). (A) Redundant peptide counts and peptide FDRs. (B) Non-redundant
peptide counts and FDRs. (C) Target database and decoy hits for single peptide proteins
only. (D) Target database and decoy hits for proteins identified by more than one peptide.
These data show that partial tryptic database searches combined with subsequent full tryptic
filtering provide both good depth of analysis and high-confidence identifications.
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Figure 3. Comparisons of scores for partial and full tryptic searches
Scores for the 710 spectra in a human serum data set that generated high-quality peptide
matches in both the full or partial tryptic searches were compared. (A) The highest-scoring
search method is indicated for each of the individual parameters analyzed (Xcorr, ΔCN, and
mass accuracy). (B) Xcorr scores for doubly charged spectra. (C) Xcorr scores for triply
charged spectra. (D) Distribution of ΔCN scores.
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Figure 4. Comparison of peptide matches from a full tryptic search (A) and a partial tryptic
search (B) to a representative MS2 spectrum
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Figure 5. Comparisons of precursor mass tolerance effects on search time and protein
identifications
An ovarian tumor secretome dataset was searched using SEQUEST as described in
“Materials and Methods.” (A) Search time using different precursor mass tolerances. (B)
Overlap of PSM and protein identifications between the 1.1 Da and 100 ppm precursor mass
tolerance searches. Numbers of PSMs and proteins unique to each search condition are listed
below the precursor mass tolerance. Filtered non-redundant peptide identifications were
used.
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Figure 6. Determining optimal precursor mass tolerance and post-search mass accuracy filter
An ovarian tumor secretome dataset was used to test different precursor mass tolerances and
mass accuracy filter combinations. (A) Distribution of PSM mass accuracy for very high
confident matches (solid line) with a superimposed normal distribution (dashed line). (B)
Relationship between precursor mass tolerance and peptide FDR using a constant post-
search filter. (C) Comparison of peptide FDR using different post-search filters with full
tryptic/10 ppm, or partial tryptic/10 ppm, or partial tryptic/100 ppm searches.
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Figure 7. Effects of considering Asn deamidation in database searches
The ovarian tumor secretome and the human serum datasets were searched both with and
without variable Asn deamidation. Non-redundant peptides and proteins with at least two
peptide identifications are shown.
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Table 1

List of 16 partial tryptic peptides and their full tryptic counterparts from purified recombinant human Prdx6

Full/partial tryptic peptidesa Cleavage mechanismb RT match Only found in in-solution digestion

VVFVFGPDKK in-source yes

LPFPIIDDR in-source yes

DFTPVCTTELGR in-source yes

LIALSIDSVEDHLAWSK in-source yes

LIALSIDSVEDHLAWSK chymotrypsin

DFTPVCTTELGR chymotrypsin

LSILYPATTGR chymotrypsin

DGDSVMVLPTIPEEEAK chymotrypsin

VATPVDWKDGDSVMVLPTIPEEEAK chymotrypsin

PGGLLLGDVAPNFEANTTVGR sample degradation yes

DINAYNCEEPTEKLPFPIIDDR sample degradation yes

DINAYNCEEPTEKLPFPIIDDR sample degradation yes

DINAYNCEEPTEKLPFPIIDDR sample degradation yes

DINAYNCEEPTEKLPFPIIDDR sample degradation yes

VATPVDWKDGDSVMVLPTIPEEEAK sample degradation yes

VATPVDWKDGDSVMVLPTIPEEEAK sample degradation yes

a
The expected full tryptic sequence is shown with the observed partial tryptic sequence in bold and underlined

b
Likely cleavage mechanisms responsible for the observed partial tryptic peptides are based on retention time (RT) match to the full tryptic

peptide, cleavage site, and sample specificity.
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