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Abstract
One of the major obstacles in computational modeling of a biological system is to determine a
large number of parameters in the mathematical equations representing biological properties of the
system. To tackle this problem, we have developed a global optimization method, called Discrete
Selection Levenberg-Marquardt (DSLM), for parameter estimation. For fast computational
convergence, DSLM suggests a new approach for the selection of optimal parameters in the
discrete spaces, while other global optimization methods such as genetic algorithm and simulated
annealing use heuristic approaches that do not guarantee the convergence. As a specific
application example, we have targeted understanding phagocyte transmigration which is involved
in the fibrosis process for biomedical device implantation. The goal of computational modeling is
to construct an analyzer to understand the nature of the system. Also, the simulation by
computational modeling for phagocyte transmigration provides critical clues to recognize current
knowledge of the system and to predict yet-to-be observed biological phenomenon.
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I. Introduction
Computational modeling and simulation have been highlighted in biomedical research for
decades due to biological systems’ complexity and intractability by human. The modeling
and quantitative simulation have played an important role in not only discovering biological
components’ nature but also providing quantitative prediction.

Phagocyte transmigration is one of the processes involved in fibrosis formed around an
implanted biomedical device. Deep understanding of this process will disclose the
contributing components and predict the evolution of foreign body responses, which will
eventually lead to reducing the failure rate of implantation. The goal of this paper is to
provide computational modeling for phagocyte transmigration and to suggest a new
optimization method, Discrete Selection Levenberg-Marquardt Algorithm (DSLM), to
estimate optimal parameters of the mathematical equations for the fittest model to the data.
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It is proved that the new method should be satisfied with a global non-linear optimization
solution and computational convergence in feasible time.

The paper is organized as follows. In Section II, the biological hypothesis based on current
existing knowledge is assimilated. The computational modeling using control theory and
biological insights is depicted in Section III. The DSLM method for system modeling
parameter estimation is illustrated in Section IV. Finally, in Section V, we show how the
computational models are used to simulate the phagocyte transmigration with and without
biological observation.

II. Hypothesis for Phagocyte Transmigration
Based on current biological experiments and reportings, we believe that diverse components
- mast cells, histamine, histamine receptors, and P/E selectins - are involved in the process
of phagocyte transmigration with mutual interactions, as shown in Fig. 1. As one of the
major factors comprising phagocyte transmigration, previous studies hypothesized that
histamine might play an important role in the recruitment of inflammatory cells to implants
[2]. Mast cells are known for the majority source of histamine, and there exists a large
amount of mast cells in the peritoneal space [1]. After injecting histamine receptors
antagonist, pyrilamine (an H1 receptor antagonist) and famotidine (an H2 receptor
antagonist) to implanted bio-materials in the mice, it is verified that histamine enhances
phagocyte transmigration via both H1 and H2 receptors. In addition, the hypothesis that
mast cells influence histamine releasing was clarified by the experiment using mast cell-
deficient mice [3]. It is also reported that histamine augments the expression of P and E
selectins [3], which eventually cause phagocytes’ rolling and adhesion on endothelial cells.
In the following section, we will introduce how to model different components involved in
the transmigration process.

III. Phagocyte Transmigration as a Dynamic System
A. Residual Histamine

According to our biological measurements as shown in Fig. 2, it is legitimate to assume that
the temporal residual histamine may have a regular pattern. In the biological sense, the
phenomenon that residual histamine decreases dramatically for the first two hours can be
described as residual histamine's degranulation from mast cells for histamine releasing. With
the decreasing of residual histamine, another reasonable assumption is that the number of
new mast cells is increased by an unknown external source after two hours. For this reason,
the external source is modeled by a damped harmonic oscillator,

(1)

where Uxrmc is the function of the external input source to release new mast cells, β is a non-
negative constant for resistance of friction and mass, and ω0 indicates the oscillator
frequency.

Considering biological half-life cycle, residual histamine can be modeled by the following
equation,

(2)
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where Crh(t) is the concentration function of residual histamine, krhch is the rate that residual
histamine decayed, and Uxrmc(t) is the input function defined above.

B. Histamine
The concentration of histamine is increased as much as residual histamine's decreasing.

(3)

where Ch(t) is the concentration function of histamine, krhch is the rate that histamine
released from residual histamine given from residual histamine (2), khs is the rate that
histamine regulates itself, and Imc(t) is an input parameter indicating block/non-block mast
cells. The first term on the right hand side of (3) represents the increasing of histamine
released from mast cells. The second term on the right hand side of (3) represents the decay
of histamine itself.

C. Histamine Receptor and Selectins
Histamine receptors enhance the permeability of the endothelial cell barrier of capillaries for
phagocyte to transmigrate into the peritoneal space. It is modeled as,

(4)

where Chr(t) is the concentration function of histamine receptors, khchrt and khchrb are the
rate bounds that histamine receptors are combined by histamine, khrs is the rate that
histamine receptors regulate themselves.

In a similar way, selectins are modeled as,

(5)

where Cs(t) is the concentration function of selectins, khcsb and khcst are the rate bounds for
hyperbolic form, kss is the rate that selectins regulate themselves.

D. Phagocytes
For modeling of polymorphonuclear neutrophils (PMN) and monocytesy/macrophages
(MΦ), we consider capillary permeabilities for both of them, which are related to the
transmigration rate of phagocytes,

(6)

where Cpmnp(t) is the capillary permeability function for PMN to move into peritonea,
kpmnipb and kpmnipt are the rate bounds for histamine receptors and selectins to increase
permeability for PMN, Chr(t) is the concentration function of histamine receptors, Cs(t) is
the concentration function of selectins, kpmnps is the contraction rate of capillary
permeability, Ipmnhr(t) is the input indicating block/un-block histamine receptors, and
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Ipmns(t) is the input indicating block/un-block selectins. Similarly, the permeability function
for MΦ can be modeled as,

(7)

where Cmpp(t) is the capillary permeability function for MΦ to move into peritonea, kmpipb
and kmpipt are the rates for histamine receptors and selectins to increase permeability for
MΦ, and kmpps is the contraction rate of capillary permeability. Now we can model the
recruited PMN as,

(8)

where Cpmn(t) is the concentration function of PMN, Cpmnp is the permeability for PMN,
kpmns is the rate of self degradation. Now we can model the recruited MΦ as,

(9)

where Cmp(t) is the concentration function of MΦ, Cmpp is the permeability for MΦ, kmps is
the rate of self degradation.

IV. Parameter Estimation
The aforementioned phagocyte transmigration contains numerous parameters whose values
indicate characteristics of the system. The estimation of parameter is essential to
understanding individual component's behavior and a successful computational modeling.
Our proposed DSLM method is motivated by the following observations. The classical
Levenberg-Marquardt method converges quickly to the optimum solution [5]. However, it
tends to fall into the local optimum. Hence, if it is possible to discretize each dimension of
the space with number N to cover possibly every local curves, the Levenberg-Marquardt
algorithm can then be extended to a global algorithm searching all local curves in the
discrete space. DSLM seeks to search the global optima for each dimension of the input
variables iteratively instead of comprehensive dimensions which may lead unforeseeable
computational cost. In the following paragraphs, we will show how the searching space is
reduced to be linear.

1) Selection
Instead of seeking to converge to the local optima, DSLM attempts to vary the initial
guesses within the dimension of each parameter fixing other parameters. Denote Pi as a
finite vector to represent the ith parameter spaces. While the global optimizations search the
comprehensive spaces whose complexity is P1×P2×···Pp, the complexity of searching space
in DSLM becomes P1+P2 +···+Pp because it iteratively searches each parameter space.
Then, it checks the scores of the function calculated with an updated x by conducting the
Levenberg-Marquardt method. In Fig. 3, the arrows show that it checks the scores of the
function varying vertical dimension variables under the condition that the horizontal
dimension variable is fixed for the 2-dimension space. The score of the function is
calculated by the result that the Levenberg-Marquardt algorithm converges to. Once it
selects the optimal parameter that has the best function score in the dimension, the parameter
is updated to the new parameter that the Levenberg-Marquardt method converges. Then, it
seeks the next optimal parameters with fixed parameters previously chosen as the optimum.
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This process iterates until all parameters’ change falls into a certain range or the number of
iteration is greater than a predefined value.

2) Discretization
Discretization of each parameter dimension is the key part for DSLM algorithm which will
affect its performance and computational cost. Given N numbers of discrete spaces of a

parameter, the discrete dimension can be denoted as a vector, . It is worth
mentioning that it is not necessary to calculate the function score from all discrete spaces.
This is because the Levenberg-Marquardt method updates the initial parameter xi to the new
parameter  which is subject to converging toward its local optimum. DSLM algorithm
marks between the discrete spaces where xi and  belong to, respectively. Then, DSLM
continues to check unmarked discrete spaces to find the global minimum. Unlike other
discretization algorithms, DSLM's discretization does not affect accuracy of the solution but
only for preventing re-checking the space.

DSLM function constantly checks the function scores of discrete spaces while updating
parameter estimation. The discretization number is a pre-defined constant which may cover
local curves of the function. By constantly checking current calculated mean squared error
and historical minimum one, it will ensure the current parameter selection as a better
candidate which avoids falling to the local minima. After selection of all parameters, LM
method is conducted to get the global optimum.

V. EXPERIMENTS AND RESULTS
In the study of phagocyte transmigration, accumulation of PMN and MΦ on the surfaces of
Fg-coated PET implants following 16 hours in vivo was measured (number/cm2). Implants
were placed in up to six Swiss Webster mice. Estimated numbers of PMN were calculated
from myeloperoxidase activities and MΦ were from nonspecific esterase activities. Different
biological knock out experiments were carried out by blocking out various components in
Fig. 1. Due to the sparseness of the data, we developed data interpolation using an iterative
weighted mean algorithm which calculates the arithmetic mean using an adaptive weight.
Linear interpolation was carried out for every discrete time period.

A. Parameter Estimation
Totally seven unknown parameters - β, t1, ke0, kk1, kw0, kk2, krhch - are estimated, given a
100 synthetic data set. Figures 4(a) to (c) illustrate the processes that DSLM converges to
the optimum for each iteration. In the figure, observation data set is depicted by its mean and
standard deviation for convenient comparison between estimation and observation. In
conclusion, DSLM estimation converged quickly in the beginning of the iterations. Then, it
stopped after meeting the convergence criteria. Figure 4(d) shows the final result of the
experiment after 103 iterations.

For phagocyte simulation, 15 parameters - khs, khchrb, khchrt, khrs, khcsb, khcst, kss, kpmnipb,
kpmnipt, kpmnps, kmpipb, kmpipt, kmpps, kpmns, and kmps - are estimated by DSLM. The result
of optimal estimation for parameters for phagocyte transmigration modeling is listed in
Table I. According to the result, we can verify the half life of histamine, khs, is relatively
short as reported in current biological literature [2].

B. Simulation
From the modeling equations and estimated parameters, we can use simulation for the
prediction of yet-to-be-observed biological experiments. Figures. 5(a) and 5(b)
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VI. Conclusion
In this study, phagocyte transmigration has been studied to tackle the problem of fibrotic
tissue formation surrounding biomaterial implants, which causes implantation failure.
System biology concepts and control theory were incorporated in the computational
modeling of the transmigration process. For a better estimation of the modeling parameters,
we proposed a global heuristic optimization technique, DSLM, which is designed to
overcome the limitations of existing algorithms. The computational simulation can be used
to predict the future evolution of long term phagocyte transmigration after implantation
which eventually can be applied for successful implant surgical procedures.
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Fig 1.
System Organization for Phagocyte Transmigration.
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Fig. 2.
Experiment Data for Residual Histamine.
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Fig. 3.
Illustration for the flow of DSLM Algorithm
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Fig. 4.
Computation Results for Residual Histamine.(a)-(d) show the results from the first to the
third, and the final iteration of DSLM.
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Fig. 5.
Simulation Results. (a) Prediction of Residual Histamine up to 36 hours; (b) Prediction of
PMN up to 36 hours; (c) PMN prediction when blocking mast cells and histamine receptors;
and (d) MΦ prediction when blocking selectins. show the prediction of recruited residual
histamine and PMN in temporal space up to 36 hours, respectively. For deficiency
simulation, Fig. 5(c) illustrates the prediction of dynamic evolution of PMN when mast cells
are blocked up to 25 hours and histamine receptors are blocked after 25 hours. Figure 5(d)
shows the simulation result of MΦ when selectins are blocked up to 20 hours.
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