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Abstract

Background and Motivation: The Prokineticin receptor (PKR) 1 and 2 subtypes are novel members of family A GPCRs, which
exhibit an unusually high degree of sequence similarity. Prokineticins (PKs), their cognate ligands, are small secreted
proteins of ,80 amino acids; however, non-peptidic low-molecular weight antagonists have also been identified. PKs and
their receptors play important roles under various physiological conditions such as maintaining circadian rhythm and pain
perception, as well as regulating angiogenesis and modulating immunity. Identifying binding sites for known antagonists
and for additional potential binders will facilitate studying and regulating these novel receptors. Blocking PKRs may serve as
a therapeutic tool for various diseases, including acute pain, inflammation and cancer.

Methods and Results: Ligand-based pharmacophore models were derived from known antagonists, and virtual screening
performed on the DrugBank dataset identified potential human PKR (hPKR) ligands with novel scaffolds. Interestingly, these
included several HIV protease inhibitors for which endothelial cell dysfunction is a documented side effect. Our results
suggest that the side effects might be due to inhibition of the PKR signaling pathway. Docking of known binders to a 3D
homology model of hPKR1 is in agreement with the well-established canonical TM-bundle binding site of family A GPCRs.
Furthermore, the docking results highlight residues that may form specific contacts with the ligands. These contacts provide
structural explanation for the importance of several chemical features that were obtained from the structure-activity
analysis of known binders. With the exception of a single loop residue that might be perused in the future for obtaining
subtype-specific regulation, the results suggest an identical TM-bundle binding site for hPKR1 and hPKR2. In addition,
analysis of the intracellular regions highlights variable regions that may provide subtype specificity.
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Introduction

Prokineticins and their receptors
Mammalian prokineticins 1 and 2 (PK1 and PK2) are two

secreted proteins of about 80–90 residues in length, which belong

to the AVIT protein family [1,2,3]. Their structure includes 10

conserved cysteine residues that create five disulphide-bridged

motifs (colipase fold) and an identical (AVIT) motif in the N-

terminus.

PKs are expressed in a wide range of peripheral tissues,

including the nervous, immune, and cardiovascular systems, as

well as in the steroidogenic glands, gastrointestinal tract, and bone

marrow [3,4,5,6].

PKs serve as the cognate ligands for two highly similar G-

protein-coupled receptors (GPCRs) termed PKs receptor subtypes

1 and 2 (hPKR1 and hPKR2 in humans) [5,7,8]. These receptors

are characterized by seven membrane-spanning a-helical segments

separated by alternating intracellular and extracellular loop

regions. The two subtypes are unique members of family A

GPCRs in terms of subtype similarity, sharing 85% sequence

identity – a particularly high value among known GPCRs. For

example, the sequence identity between the b1 and b2-adrenergic

receptor subtypes, which are well established drug targets, is 57%.

Most sequence variation between the hPKR subtypes is concen-

trated in the extracellular N terminal region, which contains a

nine-residue insert in hPKR1 compared with hPKR2, as well as in

the second intracellular loop (ICL2) and in the C terminal tail

(Figure 1).

PKR1 is mainly expressed in peripheral tissues, such as the

endocrine organs and reproductive system, the gastrointestinal

tract, lungs, and the circulatory system [8,9], whereas PKR2,

which is also expressed in peripheral endocrine organs [8], is the

main subtype in the central nervous system. Interestingly, PKR1 is

expressed in endothelial cells of large vessels while PKR2 is

strongly expressed in fenestrated endothelial cells of the heart and

corpus luteum [10,11]. Expression analysis of PKRs in heteroge-
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neous systems revealed that they bind and are activated by

nanomolar concentrations of both recombinant PKs, though PK2

was shown to have a slightly higher affinity for both receptors than

was PK1 [12]. Hence, in different tissues, specific signaling

outcomes following receptor activation may be mediated by

different ligand-receptor combinations, in accordance with the

expression profile of both ligands and receptors in that tissue [13].

Activation of PKRs leads to diverse signaling outcomes, including

mobilization of calcium, stimulation of phosphoinositide turnover,

and activation of the p44/p42 MAPK cascade in overexpressed

cells, as well as in endothelial cells naturally expressing PKRs

[5,7,8,14,15] leading to the divergent functions of PKs. Differen-

tial signaling capabilities of the PKRs is achieved by coupling to

several different G proteins, as previously demonstrated [11].

The PKR system is involved in different pathological conditions

such as heart failure, abdominal aortic aneurysm, colorectal

cancer, neuroblastoma, polycystic ovary syndrome, and Kallman

syndrome [16]. While Kallman syndrome is clearly linked to

mutations in the PKR2 gene, it is not currently established

whether the other diverse biological functions and pathological

conditions are the result of a delicate balance of both PKR

subtypes or depend solely on one of them.

Recently, small-molecule, non-peptidic PKR antagonists have

been identified through a high-throughput screening procedure

[17,18,19,20]. These guanidine triazinedione-based compounds

competitively inhibit calcium mobilization following PKR activa-

tion by PKs in transfected cells, in the nanomolar range [17].

However, no selectivity for one of the subtypes has been observed

[17].

A better understanding of the PK system can generate

pharmacological tools that will affect diverse areas such as

development, immune response, and endocrine function. There-

fore, the molecular details underlying PK receptor interactions,

both with their cognate ligands and small-molecule modulators,

and with downstream signaling partners, as well as the molecular

basis of differential signaling, are of great fundamental and applied

interest.

Structural information has been instrumental in delineating

interactions and the rational development of specific inhibitors

[21]. However, for many years only the X-ray structure of bovine

Rhodopsin has been available [22] as the sole representative

structure of the large superfamily of seven-transmembrane (7TM)

domain GPCRs.

In recent years crystallographic data on GPCRs has significantly

grown and now includes, for example, structures of the b1 and b2-

adrenergic receptors, in both active and inactive states, the

agonist- and antagonist-bound A2A adenosine receptor, and the

CXCR4 chemokine receptor bound to small-molecule and

peptide antagonists. The new structures were reviewed in

[23,24] and ligand-receptor interactions were summarized in

[25]. Nevertheless, the vast number of GPCR family members still

requires using computational 3D models of GPCRs for studying

these receptors and for drug discovery. Different strategies for

GPCR homology modeling have been developed in recent years

(reviewed in [26]), and these models have been successfully used

for virtual ligand screening (VLS) procedures, to identify novel

GPCR binders [21].

Successful in-silico screening approaches, applied to GPCR drug

discovery, include both structure-based and ligand-based tech-

niques and their combinations. Molecular ligand docking is the

most widely used computational structure-based approach,

employed to predict whether small-molecule ligands from a

Figure 1. Snake plot of hPKR1. The secondary structure is according to hPKR1 protein annotation in the UniProtKB database (entry Q8TCW9).
Positions in the hPKR1 sequence differing from hPKR2 (entry Q8NFJ6) are shaded black. Conserved positions between the two subtypes are shaded
white. A nine-residue hPKR1-unique insert in the N terminus is shaded gray with dashed lines. The seven transmembrane domains are denoted by
roman numerals. Extracellular and intracellular sides of the membrane are labeled, as well as the N terminus (NH2) and C terminus (COOH) ends of the
protein.
doi:10.1371/journal.pone.0027990.g001
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compound library will bind to the target’s binding site. When a

ligand-receptor complex is available, either from an X-ray

structure or an experimentally verified model, a structure-based

pharmacophore model describing the possible interaction points

between the ligand and the receptor can be generated using

different algorithms and later used for screening compound

libraries [27]. In ligand-based VLS procedures, the pharmaco-

phore is generated via superposition of 3D structures of several

known active ligands, followed by extracting the common

chemical features responsible for their biological activity. This

approach is often used when no reliable structure of the target is

available [28].

In this study, we analyzed known active small-molecule

antagonists of hPKRs vs. inactive compounds to derive ligand-

based pharmacophore models. The resulting highly selective

pharmacophore model was used in a VLS procedure to identify

potential hPKR binders from the DrugBank database. The

interactions of both known and predicted binders with the

modeled 3D structure of the receptor were analyzed and

compared with available data on other GPCR-ligand complexes.

This supports the feasibility of binding in the TM-bundle and

provides testable hypotheses regarding interacting residues. The

potential cross-reactivity of the predicted binders with the hPKRs

was discussed in light of prospective ’off-target’ effects. The

challenges and possible venues for identifying subtype-specific

binders are addressed in the discussion section.

Materials and Methods

Homology Modeling and Refinement
All-atom homology models of human PKR1 and PKR2 were

generated using the I-TASSER server [29], which employs a

fragment-based method. Here a hierarchical approach to protein

structure modeling is used in which fragments are excised from

multiple template structures and reassembled, based on threading

alignments. Sequence alignment of modeled receptor subtypes and

the structural templates were generated by the TCoffee server

[30]; this information is available in the Supporting Information as

figure S1. A total of 5 models per receptor subtype were obtained.

The model with the highest C-score (a confidence score calculated

by I-Tasser) for each receptor subtype, was exported to Discovery

Studio 2.5 (DS2.5; Accelrys, Inc.) for further refinement. In DS2.5,

the model quality was assessed using the protein report tool, and

the models were further refined by energy minimization using the

CHARMM force field [31]. The models were then subjected to

side-chain refinement using the SCWRL4 program [32], and to an

additional round of energy minimization using the Smart

Minimizer algorithm, as implemented in DS2.5. The resulting

models were visually inspected to ensure that the side chains of the

most conserved residues in each helix are aligned to the templates.

An example of these structural alignments appears in figure S2.

For validation purposes, we also generated homology models of

the turkey b1 adrenergic receptor (b1adr) and the human b2

adrenergic receptor (b2adr). The b1adr homology model is based

on 4 different b2adr crystal structures (PDB codes – 3SN6, 2RH1,

3NY8, and 3d4S); the b2adr model is based on the crystal

structures of b1adr (2VT4, 2YCW), the Dopamine D3 receptor

(3PBL), and the histamine H1 receptor (3RZE). The models were

subjected to the same refinement procedure as previously

described, namely, deletion of loops, energy minimization, and

side chain refinement, followed by an additional step of energy

minimization. Sometimes the side chain rotamers were manually

adjusted, following the aforementioned refinement procedure.

Throughout this article, receptor residues are referred to by

their one-letter code, followed by their full sequence number in

hPKR1. TM residues also have a superscript numbering system

according to Ballesteros-Weinstein numbering [33]; the most

conserved residue in a given TM is assigned the index X.50, where

X is the TM number, and the remaining residues are numbered

relative to this position.

Identification of a 7TM-bundle binding site
The location of a potential small-molecule-TM binding cavity

was identified based on (1) identification of receptor cavities using

the "eraser" and "flood-filling" algorithms [34], as implemented in

DS2.5 and (2) use of two energy-based methods that locate

energetically favorable binding sites – Q-SiteFinder [35], an

algorithm that uses the interaction energy between the protein and

a simple Van der Waals probe to locate energetically favorable

binding sites, and SiteHound [36], which uses a carbon probe to

similarly identify regions of the protein characterized by favorable

interactions. A common site that encompasses the results from the

latter two methods was determined as the TM-bundle binding site

for small molecules.

SAR Analysis
A dataset of 107 small-molecule hPKR antagonists was

assembled from the literature [18,19]. All ligands were built using

DS2.5. pKa values were calculated for each ionazable moiety on

each ligand, to determine whether the ligand would be charged

and which atom would be protonated at a biological pH of 7.5. All

ligands were then subjected to the "Prepare Ligands" protocol, to

generate tautomers and enantiomers, and to set standard formal

charges.

For the SAR study, the dataset was divided into two parts: (1)

active molecules, with IC50 values below 0.05 mM, and (2) inactive

molecules, with IC50 values above 1 mM. IC50 values were

measured in the calcium mobilization assay [18,19]. When

possible, the molecules were divided into pairs of active and

inactive molecules that differ in only one chemical group, and all

possible pharmacophore features were computed using the

"Feature mapping" protocol (DS 2.5). These pairs were then

compared to determine those pharmacophore features’ impor-

tance for biological activity.

Ligand-Based Pharmacophore Models
The HipHop algorithm [37], implemented in DS2.5, was used

for constructing ligand-based pharmacophore models. This

algorithm derives common features of pharmacophore models

using information from a set of active compounds. The two most

active hPKR antagonists (the lowest IC50 values in the Janssen

patent [19,20]) were selected as ‘reference compounds’ from the

data set described above, and an additional antagonist molecule

with a different scaffold was added from a dataset recently

published [38], and were used to generate the models (figure S3).

Ten models in total were generated, presenting different

combinations of chemical features. These models were first

evaluated by their ability to successfully recapture all known

active hPKR antagonists. An enrichment study was performed to

evaluate the pharmacophore models. The dataset contains 56

active PKR antagonists seeded in a random library of 5909 decoys

retrieved from the ZINC database [39]. The decoys were selected

so that they will have general and chemical properties similar to

the known hPKR antagonists (by filtering the ZINC database

according to the average molecular properties of known hPKR

antagonists 6 4 Standard Deviation range). In this way,

enrichment is not simply achieved by separating trivial features

Small-Molecule Binders of Prokineticin Receptors
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(such as mass, overall charge, etc.). These properties included AlogP

(a log of the calculated octanol-water partition coefficient, which

measures the extent of a substance hydrophilicity or hydrophobic-

ity), molecular weight, formal charge, the number of hydrogen bond

donors and acceptors, and the number of rotatable bonds. All

molecules were prepared as previously described, and a conforma-

tional set of 50 "best-quality" low-energy conformations was

generated for each molecule. All conformers within 20 kcal/mol

from the global energy minimum were included in the set. The

dataset was screened using the "ligand pharmacophore mapping"

protocol (DS2.5), with the minimum interference distance set to 1Å

and the maximum omitted features set to 0. All other protocol

parameters were maintained at the default settings.

To analyze enrichment results and select the best pharmaco-

phore model for subsequent virtual screening, ROC curves were

constructed for each model, where the fraction of identified known

binders (true positives, representing sensitivity) was plotted against

the fraction of identified library molecules (false positives; 1-

specificity). Based on this analysis, the best pharmacophore model

was selected for virtual screening purposes.

Generation of the DrugBank data set and virtual
screening

The DrugBank database [40] (release 2.0), which contains

,4900 drug entries, including 1382 FDA-approved small-

molecule drugs, 123 FDA-approved biotech (protein/peptide)

drugs, 71 nutraceuticals, and over 3240 experimental drugs, was

used for Virtual Screening. The database was filtered, based on

the average molecular properties of known hPKR antagonists 6

4SD (standard deviation). These properties included AlogP,

molecular weight, the number of hydrogen bond donors and

acceptors, the formal charge, and the number of rotatable bonds.

The liberal 64SD interval was chosen because the calculated

range of molecular properties of the known antagonists was very

narrow. Molecules were retained only if their formal charge was

neutral or positive, since the known compounds were positively

charged. This resulted in a test set containing 432 molecules. All

molecules were prepared as previously described, and a set of 50

"best-quality" low-energy conformations was generated for each

molecule; all conformations were within 20 kcal/mol from the

global energy minimum.

The data set was screened against the pharmacophore model

(chosen from the ROC analysis) using the "ligand pharmacophore

mapping" protocol in DS2.5. All protocol settings were maintained

at default settings except for minimum interference distance,

which was set to 1Å and the maximum omitted features was set to

0. To prioritize the virtual hits, fit values were extracted, to reflect

the quality of molecule mapping onto the pharmacophore. Only

molecules with fit values above the enrichment ROC curve cutoff

that identifies 100% of the known PKR antagonists (FitVa-

lue>2.85746) were retained as virtual hits for further analysis.

The similarity between the virtual hits and known small-

molecule PKR antagonists was evaluated by calculating the

Tanimoto coefficient distance measure using the ’Find similar

molecules by fingerprints’ module in DS2.5, which calculates the

number of AND bits normalized by the number of OR bits,

according to SA/(SA+SB+SC), where SA is the number of AND bits

(bits present in both the target and the reference), SB is the number

of bits in the target but not the reference, and SC is the number of

bits in the reference but not the target.

Small-Molecule Docking
Molecular docking of the small-molecule hPKR antagonists

dataset (active and inactive molecules), as well as of virtual hits, to

the hPKR1 homology model, was performed using LigandFit [34]

as implemented in DS2.5. LigandFit is a shape complementary-

based algorithm that performs flexible ligand-rigid protein

docking. In our experiments, the binding site was defined as a

284.8 Å3 TM cavity area, surrounded by binding site residues

identified using the energy-based methods described above.

Default algorithm settings were used for docking. The final ligand

poses were selected based on their empirical LigScore docking

score [41]. Here we used the (default) Dreiding force field to

calculate the VdW interactions.

All docking experiments were conducted on a model without

extracellular and intracellular loops. Loop configurations are

highly variable among the GPCR crystal structures [42].

Therefore, deleting the loops in order to reduce the uncertainty

stemming from inaccurately predicted loops is a common practice

in the field [43,44,45].

To further validate our protocol, we also performed molecular

redocking of the small-molecule partial inverse agonist carazolol

and the antagonist cyanopindolol to their original X-ray structures

from which loops were deleted, and to loopless homology models

of b1adr and b2adr using LigandFit, as previously described. As in

the case of docking to the hPKR1 model, this procedure was

performed on loopless X-ray structures and models. The binding

site was identified from receptor cavities using the "eraser" and

"flood-filling" algorithms, as implemented in DS2.5. The highest

scoring LigScore poses were selected as the representative

solutions. The ligand-receptor poses were compared to the

corresponding X-ray complexes by (1) calculating the root mean

square deviation (RMSD) of heavy ligand atoms from their

respective counterparts in the crystallized ligand after superposi-

tion of the docked ligand-receptor complex onto the X-ray

structure; (2) calculating the number of correct atomic contacts in

the docked ligand-receptor complex compared with the X-ray

complex, where an atomic contact is defined as a pair of heavy

ligand and protein atoms located at a distance of less than 4Å; and

by (3) comparing the overall number of correctly predicted

interacting residues in the docked complex to the X-ray complex

(where interacting residues are also defined as residues located less

than 4Å from the ligand).

Small-molecule docking analysis
The resulting ligand poses of the known hPKR antagonists were

analyzed to identify all ligand-receptor hydrogen bonds, charged

interactions, and hydrophobic interactions.

The specific interactions formed between the ligand and

binding site residues were quantified to determine the best scoring

pose of each ligand (active and inactive). For each ligand pose, a

vector indicating whether this pose forms a specific hydrogen bond

and/or hydrophobic p interaction with each of the binding site

residues was generated. The data were hierarchically clustered

using the clustergram function of the bioinformatics toolbox in

Matlab version 7.10.0.499 (R2010a). The pairwise distance

between these vectors was computed using the Hamming distance

method, which calculates the percentage of coordinates that differ.

For a m-by-n data matrix X, which is treated as m (1-by-n) row

vectors x1, x2, …, xm, the distance between the vector xs and xt is

defined as follows:

dst~ # xsj=xtj

� �
=n

� �

where # is the number of vectors that differ.

The poses of the virtual hits ligands were further filtered using

structure-based constraints derived from analyzing the interactions

between known PKR antagonists and the receptor, obtained in the
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known binders docking section of this work. The constraints

included (1) an electrostatic interaction between the ligand and

Glu1192.61, (2) at least one hydrogen bond between the ligand and

Arg1443.32, and/or Arg3076.58, and (3) at least two hydrophobic

interactions (p-p or p-cation) between the ligand and Arg1443.32

and/or Arg3076.58.

Evolutionary selection analysis
Evolutionary selection analysis of the PKR subtypes’ coding

DNA sequences was carried out using the Selecton server (version

2.4) [46,47]. The Selecton server is an on-line resource which

automatically calculates the ratio (v) between non-synonymous

(Ka) and synonymous (Ks) substitutions, to identify the selection

forces acting at each site of the protein. Sites with v.1 are

indicative of positive Darwinian selection, and sites with v,1

suggest purifying selection. As input, we used the homologous

coding DNA sequences of 13 mammalian species for each subtype,

namely, human, rat, mouse, bovine, rabbit, panda, chimpanzee,

orangutan, dog, gorilla, guinea pig, macaque and marmoset. We

used the default algorithm options and the obtained results were

tested for statistical significance using the likelihood ratio test, as

implemented in the server.

Results

SAR analysis highlights molecular features essential for
small-molecule antagonistic activity

A review of the literature revealed a group of non-peptidic

compounds that act as small-molecule hPKR antagonists, with no

apparent selectivity toward one of the subtypes [17,18,19,20,38].

The reported compounds have either a guanidine triazinedione or

a morpholine carboxamide scaffold. We decided to perform

structure-activity relationship (SAR) analysis of the triazine-based

compounds, owing to the more detailed pharmacological data

available for these compounds [17,18,19,20].

SAR analysis of the reported molecules with and without

antagonistic activity toward hPKR provides hints about the

geometrical arrangement of chemical features essential for the

biological activity. By comparing pairs of active and inactive

compounds that differ in only one functional group, one can

determine the activity-inducing chemical groups at each position.

To this end, we constructed a dataset of 107 molecules

identified by high-throughput screening. This included 51

molecules that we defined as inactive (Ca2+ mobilization IC50

higher than 1 mM), and 56 molecules defined as active (IC50 below

0.05 mM). All compounds share the guanidine triazinedione

scaffold (see figure 2), which includes (a) a heterocyclic ring baring

three nitrogen atoms and two oxygen atoms, and (b) a guanidine

group, which is attached to the main ring by a linker (position Q in

figure 2).

Where possible, the dataset was divided into pairs of active and

inactive molecules that differ in only one functional group. This

resulted in 13 representative pairs of molecules that were used to

determine which specific chemical features in these molecules are

important for antagonistic activity, in addition to the main triazine

ring and guanidine group. As shown in figure 2, the four variable

positions in the scaffold - A1, D, L2, and Q, were compared

among the 13 pairs, and the activity-facilitating chemical groups at

each position were determined. These include the following

features:

(1) Positions A1 and D require an aromatic ring with a hydrogen

bond acceptor in position 4 of the ring.

(2) Position L2 may only accept the structure -NH(CH2)-.

(3) Position Q may include up to four hydrogen bond donors, a

positive ionizable feature, and an aromatic ring bearing a

hydrogen bond acceptor.

In conclusion, the SAR analysis revealed 2D chemical features

in the molecules, which may be important for receptor binding

and activation. Next, these features will be used to generate ligand-

based pharmacophore models for virtual screening (next section)

and in docking experiments to determine the plausible ligand-

receptor contacts (see below).

Ligand-based virtual screening for novel PKR binders
To identify novel potential hPKR binders, we utilized a ligand-

based procedure in which molecules are evaluated by their

similarity to a characteristic 3D fingerprint of known ligands, the

pharmacophore model. This model is a 3D ensemble of the

essential chemical features necessary to exert optimal interactions

with a specific biological target and to trigger its biological

response. The purpose of the pharmacophore modeling procedure

is to extract these chemical features from a set of known ligands

with the highest biological activity. The two most potent

(IC50,0.02 mM for intracellular Ca2+ mobilization) hPKR

antagonists were selected from the dataset described in the

previous section, to form the training set (compounds 1 and 2,

figure S3). In addition, we also incorporated data from a third

compound published recently (compound 3 in figure S3), to ensure

good coverage of the available chemical space [38].

The HipHop algorithm [37] was used to generate common

features of pharmacophore models. This algorithm generated 10

different models, which were first tested for their ability to identify

all known active hPKR triazine-based antagonists (data not

shown). During the pharmacophore generation and analysis

procedure, we also projected the knowledge generated during

our 2D SAR analysis onto the 3D pharmacophore models, and

chose those that best fit the activity-facilitating chemical features

identified in the 2D SAR analysis previously described. The two

best models, which recaptured the highest number of known active

hPKR binders and included all required 2D features deduced

from the SAR analysis, were chosen for further analysis. The 3D

spatial relationship and geometric parameters of the models are

presented in figure 3A. Both models share a positive ionizable

feature and a hydrogen bond acceptor, corresponding to the N3

atom and O1 atoms on the main ring, respectively (figure 2).

However, the models vary in the degree of hydrophobicity

tolerated: model 2 is more restrictive, presenting one aromatic ring

feature and one hydrophobic feature, whereas model 1 is more

promiscuous, presenting two general hydrophobic features. The

aromatic/hydrophobic features correspond to positions A1 and D

of the scaffold (figure 2). Figure 3A also shows the mapping of one

of the training set molecules onto the pharmacophore model. All

four features of both models are mapped well, giving a fitness value

(FitValue) of 3.602 and 3.378 for hypotheses 1 and 2, respectively.

The fitness value measures how well the ligand fits the

pharmacophore. For a four-feature pharmacophore the maximal

FitValue is 4.

Next, we performed an enrichment study to ultimately evaluate

the pharmacophore model’s performance. Our aim was to verify

that the pharmacophores are not only able to identify the known

antagonists, but do so specifically with minimal false positives. To

this end, a dataset of 56 known active hPKR small-molecule

antagonists was seeded in a library of 5909 random molecules

retrieved from the ZINC database [39]. The random molecules

had chemical properties (such as molecular weight and formal

charge), similar to the known PKR antagonists, to ensure that the

Small-Molecule Binders of Prokineticin Receptors
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Figure 2. SAR analysis of small-molecule PKR antagonists identifies activity-determining chemical groups. The four variable positions
in the scaffold – A1, D, L2, and Q, were compared in a dataset composed of 56 active compounds (IC50,0.05 mM) and 51 inactive compounds
(IC50.1 mM) to determine the required chemical features at each position that elicit activity (a representative set is shown). These features are
indicated in dashed boxes for each position. HB - hydrogen bond.
doi:10.1371/journal.pone.0027990.g002

Figure 3. Ligand-based pharmacophore models recapture the known binders. (A) ligand-based four-feature pharmacophores used for
virtual screening, with mapping of a known active small-molecule antagonist used for constructing the pharmacophores. The pharmacophores are
represented as tolerance spheres with directional vectors where applicable. Green spheres represent hydrogen bond acceptors, red - positive
ionizable, light blue – hydrophobic, and orange - aromatic ring. (B) ROC curve demonstrating the enrichment achieved following ligand-based
pharmacophore mapping of 56 known active PKR antagonists and 5909 random molecules obtained from the ZINC database. Known actives are
significantly enriched by both pharmacophore hypotheses.
doi:10.1371/journal.pone.0027990.g003
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enrichment is not simply achieved by separating trivial chemical

features.

Both models successfully identified all known compounds

embedded in the library. The quality of mapping was assessed

by generating receiver operating characteristic (ROC) curves for

each model (figure 3B), taking into consideration the ranking of

fitness values of each virtual hit. The plots provide an objective,

quantitative measure of whether a test discriminates between two

populations. As can be seen from figure 3B, both models perform

extremely well, generating almost a perfect curve. The difference

in the curves highlights the difference in pharmacophore

stringency. The stricter pharmacophore model 2 (which has an

aromatic ring feature instead of a hydrophobic feature) performs

best in identifying a large number of true positives while

maintaining a low false positive rate. Thus, we used model 2 in

the subsequent virtual screening experiments. Note that it is

possible that some of the random molecules that were identified by

the pharmacophore models, and received fitness values similar to

known antagonists, may be potential hPKR binders. A list of these

ZINC molecules is available in table S1. These compounds differ

structurally from the known small-molecule hPKR antagonists

because the maximal similarity score calculated using the

Tanimoto coefficient, between them and the known antagonists,

is 0.2626 (compounds that have Tanimoto coefficient values

.0.85 are generally considered similar to each other).

This analysis revealed that the ligand-based pharmacophore

models can be used successfully in a VLS study and that they can

identify completely different and novel scaffolds, which neverthe-

less possess the required chemical features.

hPKR1 as a potential off-target of known drugs
Recent work by Keiser and colleagues [48] utilized a chemical

similarity approach to predict new targets for established drugs.

Interestingly, they showed that although drugs are intended to be

selective, some of them do bind to several different targets, which

can explain drug side effects and efficacy, and may suggest new

indications for many drugs. Inspired by this work, we decided to

explore the possibility that hPKRs can bind established drugs.

Thus, we applied the virtual screening procedure to a dataset of

molecules retrieved from the DrugBank database (release 2.0) [40].

The DrugBank database [40] combines detailed drug (chemical,

pharmacological, and pharmaceutical) data with comprehensive

drug target (sequence, structure, and pathway) information. It

contains 4886 molecules, which include FDA-approved small-

molecule drugs, experimental drugs, FDA-approved large-mole-

cule (biotech) drugs and nutraceuticals. As a first step in the VLS

procedure, the initial dataset was pre-filtered, prior to screening,

according to the average molecular properties of known active

compounds 6 4SD. The pre-filtered set consisted of 432 molecules

that met these criteria. This set was then queried with the

pharmacophore, using the ’ligand pharmacophore mapping’

module in DS2.5 (Accelrys, Inc.). A total of 124 hits were

retrieved from the screening. Only those hits that had FitValues

above a cutoff defined according to the pharmacophores’

enrichment curve, which identifies 100% of the known antago-

nists, were further analyzed, to ensure that compatibility with the

pharmacophore of the molecules selected is as good as for the

known antagonists. This resulted in 10 hits with FitValues above

the cutoff (see figure 4). These include 3 FDA-approved drugs and

7 experimental drugs. All these compounds target enzymes,

identified by their EC numbers (corresponding to the chemical

reactions they catalyze): most of the targets are peptidases (EC

3.4.11, 3.4.21 and 3.4.23), including aminopeptidases, serine

proteases, and aspartic endopeptidases, and an additional single

compound targets a receptor protein-tyrosine kinase (EC 2.7.10).

The fact that only two classes of enzymes were identified is quite

striking, in particular, when taking into account that these two

groups combined represent only 2.6% of the targets in the

screened set. This may indicate the intrinsic ability of hPKRs to

bind compounds originally intended for this set of targets. The

calculated similarity between the known hPKR antagonists and

the hits identified using the Tanimoto coefficients is shown in

figure 4: the highest similarity score was 0.165563, indicating that

the identified hits are dissimilar from the known hPKR

antagonists, as was also observed for the ZINC hits (see Table

S1). Interestingly, when calculating the structural similarity within

the EC3.4 and 2.7.10 hits, the highest value is 0.679, indicating

consistency in the ability to recognize structurally diverse

compounds (see figure S4).

To predict which residues in the receptor may interact with the

key pharmacophores identified in the SAR analysis previously

mentioned, and to assess whether the novel ligands harboring the

essential pharmacophors fit into the binding site in the receptor,

we carried out homology modeling and docking studies of the

known and predicted ligands.

Molecular Modeling of hPKR1 predicts the small-
molecule binding site in the typical TM-bundle site of
Family A GPCRs

As a first step in analyzing small-molecule binding to hPKRs,

we generated homology models of the two subtypes, hPKR1 and

hPKR2. The models were built using the I-Tasser server [29].

These multiple-template models are based on X-ray structures of

bovine Rhodopsin (PDB codes: 1L9H) [49], the human b2-

adrenergic receptor (2RH1) [50], and the human A2A-adenosine

receptor (3EML) [51]. The overall sequence identity shared

between the PKR subtypes and each of the three templates is

approximately 20%. Although this value is quite low, it is similar

to cases in which modeling has been applied, and it satisfactorily

recaptured the binding site and binding modes [52]. Furthermore,

the sequence alignment of hPKRs and the three template

receptors are in good agreement with known structural features

of GPCRs (figure S1). Namely, all TM residues known to be highly

conserved in family A GPCRs [33] (N1.50, D2.50, R3.50, W4.50,

P5.50, P6.50) are properly aligned. The only exception is the

NP7.50xxY motif in TM7, which aligns to NT7.50LCF in hPKR1.

The initial crude homology model of hPKR1, obtained from I-

TASSER, was further refined by energy minimization and side

chain optimization. Figure 5 shows the general topology of the

refined hPKR1 model. This model exhibits the major character-

istics of family A GPCRs, including conservation of all key

residues, and a palmitoylated cysteine in the C terminal tail, which

forms a putative fourth intracellular loop. Also, similarly to family

A GPCR X-ray structures, a conserved disulfide bridge connects

the second extracellular loop (ECL2) with the extracellular end of

TM3, formed between Cys217 and Cys137, respectively. Howev-

er, both extracellular and intracellular loops are not very likely to

be modeled correctly, due to their low sequence similarity with the

template structures, and the fact that loop configurations are

highly variable among GPCR crystal structures [42]. The

emerging consensus in the field is that these models perform

better in docking and virtual screening with no modeled loops at

all than with badly modeled loops [43,44,45]. We therefore did

not include the extracellular and intracellular loops in the

subsequent analysis.

Overall, our hPKR1 model has good conservation of key

features shared among family A GPCR members. Conservation of

this fold led us to hypothesize that hPKRs possess a 7TM-bundle
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Figure 4. Final hits retrieved from virtual screening.
doi:10.1371/journal.pone.0027990.g004

Small-Molecule Binders of Prokineticin Receptors

PLoS ONE | www.plosone.org 8 November 2011 | Volume 6 | Issue 11 | e27990



binding site capable of binding drug-like compounds, similar to the

well-established TM bundle binding site typical of many family A

GPCRs [25]. This is in addition to a putative extracellular surface

binding site, which most likely binds the endogenous hPKR

ligands, which are small proteins. Several synthetic small-molecule

hPKR antagonists have been recently reported [17,18,19,20,38].

We hypothesized that these small molecules will occupy a pocket

within the 7TM bundle [23,53].

To identify the potential locations of a small-molecule-TM

binding site, we first mapped all receptor cavities. We then utilized

two energy-based methods, namely, Q-SiteFinder [35] and

SiteHound [36], to locate the most energetically favorable binding

sites by scanning the protein structure for the best interaction

energy with different sets of probes. The most energetically

favorable site identified by the two methods overlaps; it is located

in the upper part of the TM bundle, among TMs 3,4,5,6, and 7.

The position of the identified pocket is shown in the insert in

Figure 5.

According to the structural superposition of the hPKR1 model

on its three template structures, the predicted site is similar in

position to the well-established TM-bundle binding site of the

solved X-ray structures [54,55]. Furthermore, specific residues

lining these pockets, which are important for both agonist and

antagonist binding by GPCRs [25], are well aligned with our

model (figure S2).

Comparing the identified TM-bundle binding site between the

two subtypes revealed that they are completely conserved, except

for one residue in ECL2 - Val207 in hPKR1, which is Phe198 in

hPKR2. Figure S5 presents a superposition of the two models,

focusing on the binding site. This apparent lack of subtype

specificity in the TM-bundle binding site is in agreement with the

lack of specificity observed in activity assays of the small-molecule

triazine-based antagonists [17], which could suppress calcium

mobilization following Bv8 (a PK2 orthologue) stimulation to the

same degree, in hPKR1 and hPKR2 transfected cells [17].

We therefore will focus mainly on hPKR1 and will return to the

issue of subtype specificity in the Discussion.

Docking of known small-molecule antagonists to hPKR1
binding site and identification of important interacting
residues

To understand the mechanistic reasons for the need of

particular pharmacophores for ligands activity, one has to look

for interactions between the ligands and the receptor.

As a preliminary step, we performed a validation study, aimed

at determining whether our modeling and docking procedures can

reproduce the bound poses of representative family A GPCR

antagonist-receptor crystallographic complexes. We first per-

formed redocking of the cognate ligands carazolol and cyano-

pindolol, back to the X-ray structures from where they were

extracted and from which the loops were deleted. The results

indicate that the docking procedure can faithfully reproduce the

crystallographic complex to a very high degree (figure S6 – A–C);

with excellent ligand RMSD values of 0.89–1.2Å between the

docked pose and the X-ray structure (see table S2), in accordance

with similar previous studies [44,56,57]. The redocking process

could also reproduce the majority of heavy atomic ligand-receptor

contacts observed in the X-ray complex and more generally, the

correct interacting binding site residues and specific ligand-

receptor hydrogen bonds, despite docking to loopless structures.

Next, we built homology models of b1adr and b2adr and

performed docking of the two antagonists into these models to

examine the ability of homology modeling, combined with the

docking procedure, to accurately reproduce the crystal structures.

As can be seen from figure S6 and from the ligand RMSD values

in table S2, the results can reproduce the correct positioning of the

ligand in the binding site, and at least part of the molecule can be

correctly superimposed onto the crystallized ligand, although the

resulting RMSD values are above 2Å. The overall prediction of

interacting binding site residues is good, correctly predicting 47–

66% of the interactions (see Table S2).

We therefore performed molecular docking of the small-

molecule hPKR antagonist dataset to the predicted hPKR1

allosteric 7TM-bundle binding site, to explore the possible

receptor-ligand interactions.

The set of 56 active and 51 inactive small-molecule antagonists

was subjected to flexible ligand – rigid receptor docking to the

hPKR1 model using LigandFit (as implemented in DS2.5,

Accelrys, Inc.) [34]. For each compound the 50 best energy

conformations were generated and docked into the binding site,

resulting in an average of 250 docked poses for each molecule.

The final ligand poses for each molecule were selected based on

the highest LigScore1 docking score, since no experimental data

regarding possible ligand contacting residues was available. The

best scoring docking poses were analyzed visually for features that

were not taken into account in the docking calculation, such as

appropriate filling of the binding site – such that the compound

fills the binding site cavity, and does not "stick out". Specific

ligand-receptor interactions were monitored across all compounds.

Figure 6 shows representative docked poses of two active (A,B) and

two inactive compounds (C,D). As shown, the active molecules

adopt a confirmation that mainly forms interactions with TMs 2,

3, and 6, such that the ligand is positioned in the center of the

cavity, blocking the entry to it and adequately filling the binding

site, as described. In contrast, the inactive small molecules are

apparently incapable of simultaneously maintaining all of these

contacts, and are positioned in different conformations that mostly

maintain interactions with only some of the TMs mentioned.

Figure 5. Homology model of hPKR1. The model is viewed
perpendicular to the plasma membrane, with the extracellular side of
the receptor shown on top, and the intracellular side shown on the
bottom of the figure. The structure is colored from the N (blue) to the C
(orange) terminal amino acid sequence. The insert shows the 7TM-
bundle allosteric small-molecule binding site, predicted by the QSite
Finder server. The binding site is located among TMs 3,4,5,6, and 7.
doi:10.1371/journal.pone.0027990.g005
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For the active compounds, the most prevalent interaction is

observed between the ligand and residues Arg1443.32 and

Arg3076.58, either through a hydrogen bond or a p-cation

interaction. The active ligands interact with at least one of these

two residues. In addition, an electrostatic interaction was observed

between the active ligands and Glu1192.61 (as seen from figure 6A,

B). To quantify this observation, the specific interactions formed

(HB, charged, p-p and p-cation) were monitored across all the best

scoring poses of the docked ligands (active and inactive), and the

results, which represent the number of specific contacts formed

between each ligand and all polar/hydrophobic binding site

residues, were clustered (figure 7).

As shown, the hierarchical structure obtained from the

clustering procedure of receptor-ligand contacts only, clearly

separates the compounds into sub-trees that correspond to the

experimental active/inactive distinction. In the active sub-tree, the

ligands form a charged interaction with Glu1192.61, and interact

mainly with Cys1373.25, Arg1443.32, and Arg3076.58. In contrast,

in the inactive sub-tree, the molecules still form interactions with

Arg1443.32 to some extent, but the interactions with Glu1192.61,

Cys1373.25, and Arg3076.58 are drastically reduced, and instead

some of the ligands interact with Thr1453.33 and Met3327.47. In

addition, some of the active ligands form either specific

interactions or van der Waals contacts with Asn1413.29,

Phe3006.51, and Phe3247.39.

All of these positions have been shown experimentally to be

important for ligand binding in different family A GPCRs

members, ranging from aminergic (such as the b2-adrenergic

receptor) to peptide receptors (such as chemokine receptors) [25].

In general, the functional groups in the scaffold, which were

identified in our SAR analysis as being important for antagonist

activity, form specific interactions within the binding site (figure 8).

Namely, the main triazine ring of the scaffold forms hydrogen

bonds through its O and N atoms and p-cation interactions. The

two aromatic rings form p-cation interactions and hydrogen bonds

through the O/F/Cl atoms at position 4 of the ring, and the

positive charge at position Q and hydrogen bond donors interact

with residues from helices 2, 3, and 6, predominantly, Glu1192.61

and Arg1443.32, and Arg3076.58, as described above. The

compatibility of the SAR data with the docking results supports

the predicted binding site and modes, and provides a molecular

explanation of the importance of particular pharmacophores in

the ligand.

The positions predicted to specifically bind essential functional

groups in the ligands (mainly Glu1192.61, Arg1443.32, and

Arg3076.58) can be mutated in future studies, to confirm their

role in ligand binding inside the predicted TM-bundle cavity, as

recently applied to other GPCRs [58] and summarized in [25].

Docking of virtual hits to the hPKR1 model suggests
potential binders

Next, the 10 molecules identified through ligand-based virtual

screening of the DrugBank database were docked to the hPKR1

homology model. All docking experiments were performed using

LigandFit, as described in the previous section. However, here the

analysis was more strict: the resulting docked poses of each

molecule were post-processed using structure-based filters derived

Figure 6. Interaction of receptor residues with active and inactive antagonists in the allosteric hPKR1 binding site. Representative
docked poses of two known active compounds (A, B, IC50,0.05 mM), and two inactive compounds (C, D, IC50.1 mM) to the hPKR1 binding site. The
active compounds are denoted by yellow sticks and the inactive ones as orange sticks. Interacting receptor residues are denoted by cyan sticks and
labeled. Hydrogen bonds are denoted by dashed green lines and p-cation or p-p interactions are denoted by orange lines.
doi:10.1371/journal.pone.0027990.g006
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from the analysis of ligand-receptor interactions formed between

the known small-molecule antagonists and receptor residues (see

Materials and Methods for details) and were not only selected

based on the highest docking score. The underlying hypothesis is

that the same interactions are perused by the potential ligands as

by the known antagonists. Selected poses of all 10 molecules

successfully passed this procedure. All poses were visually

examined by checking that they adequately fill the binding site

and form the desired specific interactions. All 10 molecules

successfully passed this analysis and were considered as candidate

compounds that may serve as potential hPKR binders.

Next, we focused on a representative of the three FDA-

approved hits, which we identified as potential ligands for hPKRs,

namely, Indinavir, Argatroban, and Lapatinib. Figure 9 shows

representative examples of docking of Indivavir, Argatroban, and

Lapatinib to the hPKR1 binding site. As shown, the compounds

adequately fill the binding site and are predicted to form specific

interactions with residues found to be important for binding of the

known hPKR antagonists, namely, charged interaction with

Glu1192.61, and hydrogen bonds and/or stacking interactions

with Arg1443.32 and Arg3076.58. These compounds also form

interactions with additional binding site residues, which interact

with the known binders (see figure 7).

Each of the compounds is widely used in the clinic, and provides

well-tested and safe compounds that may also exert their actions

via hPKRs. The potential cross-reactivity of one such candidate

drug, Indinavir, is further addressed in the Discussion.

Discussion

Prokineticin receptor (PKR) subtypes 1 and 2 are novel

members of family A GPCRs. Prokineticins and their receptors

play important roles under various physiological conditions, and

blocking PKRs may serve as a therapeutic tool for various

pathologies, including acute pain, circadian rhythm disturbances,

inflammation, and cancer.

In this study, we extracted essential functional groups from

small-molecule PKR antagonists that were previously reported,

using structure-activity relationship analysis, and we used them in

a virtual screening procedure. Consequently, we were able to

identify several potential PKR ligands with novel scaffolds.

Interestingly, the virtual hits included several HIV protease

inhibitors that are discussed next in terms of known side effects

and potential new indications of these drugs. Computational

docking of known ligands to the multiple-template 3D model of a

PKR’s structure enabled us to predict ligand-receptor contacts and

provided a structural explanation of the importance of the

chemical features we obtained from the analysis of known PKR

binders.

Homology modeling of the hPKR subtypes and docking
of known small-molecule antagonists

In this study we modeled the 3D structure of the hPKR

subtypes and explored the interactions formed between hPKR1

and small-molecule binders. Our computational analysis revealed

that hPKR1 is predicted to possess a TM-bundle binding site,

capable of binding small-molecule ligands, similarly to other

GPCR family A members, such as the aminergic receptors. This

occurs despite the fact that the receptors’ endogenous ligands are

relatively large proteins, which most likely bind the extracellular

surface of the receptors. The latter is demonstrated in experimen-

tal data on Kallmann syndrome mutations. Kallmann syndrome is

a human disease characterized by the association of hypogonad-

otropic hypogonadism and anosmia. Several loss-of-function

mutations in the human PKR2 gene have been found in

Kallmann patients [45]. Among them is the p.Q210R mutation

in ECL2 (corresponding to Q219 in hPKR1), which completely

abolishes native ligand binding and has no affinity for the

orthologue ligand MIT1 (Mamba intestinal toxin 1, which shares

60% sequence identity with PK2, and contains the essential N-

terminal motif AVITGA) [59]. Existence of both an orthosteric

extracellular binding site capable of binding small proteins and an

allosteric TM binding site was already shown in family A GPCRs.

For example, the melanin-concentrating hormone receptor

(MCHR), for which the endogenous ligand is a peptide, also

binds small-molecule antagonists in its TM-bundle cavity [60,61].

The predicted TM-bundle site is identical between the two

hPKR subtypes, except for one residue in ECL2 (Val207 in PKR1

corresponding to Phe198 in PKR2). Since this is a hydrophobic

residue in both receptors, its side chain will probably face the TM

cavity and not the solvent. Indeed, the residue was modeled to face

the TM cavity and was predicted by the energy-based methods to

be part of the TM-bundle binding site. If specific binders are

pursued in the future, this, albeit minor, difference between two

hydrophobic amino acids might be targeted.

Through docking experiments of the known hPKR antagonists,

we have identified important residues that interact at this site,

namely, Glu1192.61, Arg1443.32, and Arg3076.58. These residues

form specific interactions with the chemical features of the ligand

that we found in our SAR analysis to be essential for the

molecules’ antagonistic activity. Specifically, Arg1443.32 is analo-

gous to Asp1133.32 of the b2-adrenergic receptor, which is an

experimentally established receptor interaction site for both

agonists and antagonists [62]. This position has also been shown

to be important for ligand binding in many other family A GPCRs

as well as in other branches of the GPCR super-family, such as the

Figure 7. Clustering of hydrogen bond, charged, and p
interaction patterns in the docked compounds correspond to
activity level. Receptor residues forming the interactions are specified
on the bottom of the clustergram. Residues denoted by p form p
interactions (either p-cation or p- p stacking). Yellow represents a
ligand-receptor contact. The sub-tree formed predominantly by the
active ligands is in green, and the one formed predominantly by
inactive ligands is in red. The ‘‘A’’ on the right side denotes active
compounds. The specific pattern formed by the active compounds is
boxed in orange. The black subtrees are mixed.
doi:10.1371/journal.pone.0027990.g007
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bitter taste receptors (summarized in [25]). This position is highly

conserved within different family A GPCRs subfamilies, but it is

divergent among these subfamilies, for example, an Asp in the

aminergic receptors, compared with a Thr in hormone protein

receptors. It was therefore assumed that the position may play a

role in specific ligand binding within certain subfamilies [55].

Similarly, we suggest that although the residue type is divergent

between the different subfamilies (for example, a positive Arg in

the Prokineticin receptors compared with a negative Asp in

aminergic receptors), its importance in ligand binding in such

diverse receptors may be due to its spatial location in the TM-

bundle binding site. In addition, Arg3076.58 is analogous to

Tyr2906.58 of the GnRH receptor, which was found to be

important for binding the GnRH I and GnRH II peptide ligands

[63]. The equivalent residue at position 6.58 is also suggested, by

mutagenesis studies, to play an important role in ligand binding

and/or receptor activation of other peptide GPCRs, such as the

NK2 tachykinin receptor [64], the AT1A angiotensin receptor

[65], and the CXCR1 chemokine receptor [66]. Moreover, in the

recent crystallographic X-ray structure of the CXCR4 chemokine

receptor bound to a cyclic peptide antagonist, a specific interaction

between position 6.58 and the peptide was observed [67]. Hence,

position 6.58 may serve as a common position for the binding of

both peptides (such as the endogenous ligands PK1 and PK2) and

small-molecule ligands.

Finally, in our analysis position 2.61, which is occupied by a

Glutamic acid in hPKRs, was found to be essential for antagonist

binding, since an electrostatic interaction may be formed between

this negatively charged residue and the positive charge on the

ligand. This may explain the need for the positive charge on the

known small-molecule antagonists, which was indeed deduced

from the structure-activity analysis. The ligand’s positive charge

may interact with the negatively charged residue in receptor

position 2.61, which was also shown to be important in ligand

binding in the dopamine receptors [55].

In summary, the observed interactions reinforce the predicted

putative binding site and may support the concept that family A

GPCRs share a common small-molecule binding pocket inside the

TM cavity, regardless of the nature of their cognate ligand.

Docking of ligands to a single experimental or model structure

of a GPCR receptor has been shown to reproduce the binding

mode of the ligands in several cases [44,68,69], to enrich known

Figure 8. The essential activity-determining groups of the known binders form specific interactions with the receptor. (A) An
example of the ligand’s chemical properties, which are important for its activity, identified in the SAR analysis, and how they interact with receptor
residues. An active molecule is shown docked into the hPKR1 binding site. The activity-related chemical groups are indicated in red. The ligand is
denoted by yellow sticks. Interacting receptor residues are shown as green sticks and labeled. Hydrogen bonds are denoted by dashed green lines, p-
cation interactions are denoted by orange lines. (B) Schematic 2D representation of ligand-receptor interactions. The residues shown have at least
one atom within 4Å of the ligand. Blue lines indicate hydrogen bonds and orange lines indicate hydrophobic interactions. Residues shaded in green
are involved in van der Waals interactions. Residues involved in hydrogen bonds, charge, or polar interactions are shaded in cyan.
doi:10.1371/journal.pone.0027990.g008
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ligands in structure-based virtual screening campaigns [57,70],

and to rationalize specificity profiles of GPCR antagonists [71]

and thus was the approach taken here.

In several non-GPCR cases, good docking results have been

reported using multiple receptor conformations [72]. Such an

approach was successful for a sequence identity range of 30–60%

between models and available templates [73].

Though GPCR homology models typically have a lower

sequence identity to their potential templates, using ensembles of

multiple homology models or of a perturbed X-ray structure may

nevertheless be a viable approach, as was recently reported

[74,75,76]. Current breakthroughs in X-ray structure determina-

tion of GPCRs will enable systematic testing of the most

appropriate receptor structure representation and of docking

performance, against the benchmark of experimental structures.

Identification of potential novel hPKR binders
Our study used SAR of known hPKR binders to identify novel

potential binders of hPKR1, and highlighted possible ’off-target’

effects of FDA-approved drugs. Interestingly, the novel candidates

share little structural chemical similarity with the known hPKR

binders but share the same pharmacophores and similar putative

interactions within the TM-bundle binding site. Such a "scaffold

hopping" result is common and is often sought after in drug

discovery. The term is based on the assumption that the same

desired biological activity may be achieved by different molecules

that maintain some of the essential chemical features as the

template molecule, i.e., the molecule possesses the desired

biological activity on the target, but is structurally dissimilar

otherwise. Scaffold hopping is required, for instance, when the

central scaffold is involved in specific interactions with the target,

and changing it may lead to improved binding affinity. One

example of successful scaffold hopping, resulting in a structurally

diverse structure, is the selective D2 and D3 dopamine receptor

agonist Quinpirole [77].

The newly identified potential cross-reactivity may have two

implications – it might explain the side effects of these drugs (as

discussed next), and it might also suggest novel roles for these

drugs as potential hPKR inhibitors. One such example of potential

cross-reactivity identified through our VLS procedure is Indinavir.

Indinavir sulfate is a hydroxyaminopentane amide and a potent

and specific FDA-approved inhibitor of the HIV protease.

Indinavir acts as a competitive inhibitor, binding to the active

site of the enzyme, since it contains a hydroxyethylene scaffold that

mimics the normal peptide linkage (cleaved by the HIV protease)

but which itself cannot be cleaved. Thus, the HIV protease cannot

perform its normal function - proteolytic processing of precursor

viral proteins into mature viral proteins. Specific adverse effects

associated with Indinavir include hyperbilirubinaemia and cuta-

neous toxicities [78,79], accelerated atherosclerosis, and an

increased rate of cardiovascular disease [80]. Protease inhibitors

may cause cardiovascular disease by inducing insulin resistance,

dyslipidemia, or by endothelial dysfunction.

A study of the effects of HIV protease inhibitors on endothelial

function showed that in healthy HIV-negative subjects, Indinavir

induced impaired endothelium-dependent vasodilation after 4

weeks of treatment owing to reduced nitric oxide (NO)

production/release by the endothelial cells or reduced NO

bioavailability [81]. HIV patients treated with Indinavir presented

lower urinary excretion of the NO metabolite NO3 [82]. Wang

et al. demonstrated that Indinavir, at a clinical plasma concen-

tration, can cause endothelial dysfunction through eNOS

(endothelial nitric oxide synthase) down-regulation in porcine

pulmonary artery rings and HPAECs (human pulmonary arterial

endothelial cells), and that endothelium-dependent relaxation of

the vessel rings was also reduced following Indinavir treatment

[83].

Endothelium-derived NO is the principal vasoactive factor that

is produced by eNOS. Lin et al. showed that PK1 induced eNOS

Figure 9. Docking of potential PKR binders identified through
VLS, to the hPKR1 binding site. The proposed docked conforma-
tions of (A) Indinavir, (B) Argatroban, and (C) Lapatinib are shown. The
ligands are denoted by yellow sticks. Interacting receptor residues are
denoted by gray sticks and labeled. Hydrogen bonds are denoted by
dashed green lines, and p-cation interactions are denoted by orange
lines.
doi:10.1371/journal.pone.0027990.g009
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phosphorylation in bovine adrenal cortex-derived endothelial cells

[14]. It has also been shown that PK1 suppressed giant contraction

in the circular muscles of mouse colon, and that this effect was

blocked by the eNOS inhibitor L-NAME. In vitro, PK1 stimulated

the release of NO from longitudinal musclemyenteric plexus

cultures [84]. We have found that PK1 treatment elevated eNOS

mRNA levels in luteal endothelial cells. Cells were also treated in

the presence of PI3/Akt pathway inhibitor, which caused a 20–

40% reduction in eNOS levels (Levit and Meidan, unpublished

data).

These opposing effects of Indinavir and PK1 on eNOS levels

and NO production/release are compatible with the chemically

based hypothesis arising from the current work, which suggests

that Indinavir can bind to the hPKR subtypes by acting as a PKR

antagonist. We suggest that this would subsequently reduce eNOS

expression levels in endothelial cells and impair NO bioavailabil-

ity, leading, at least partially, to the observed Indinavir side effects

in HIV patients. This hypothesis should be explored experimen-

tally in future studies to determine the possible binding of

Indinavir to hPKRs and its subsequent effects.

The proposed hypothesis is in accordance with the concept of

polypharmacology - specific binding and activity of a drug at two

or more molecular targets, often across target boundaries. For

example, ligands targeting aminergic family A GPCRs were also

found to act on protein kinases [85]. These "off-target" drug

actions can induce adverse side effects and increased toxicity. In

contrast, there are also cases where the drug is a "magic shotgun",

and its clinical effect results from its action on many targets, which

in turn enhances its efficacy. For example, drugs acting through

multiple GPCRs have been found to be more effective in treating

psychiatric diseases such as schizophrenia and depression [86].

This concept was demonstrated by Keiser and colleagues [48] who

utilized a statistics-based chemoinformatics approach to predict

off-targets for ,900 FDA-approved small-molecule drugs and

,2800 pharmaceutical compounds. The targets were compared

by the similarity of the ligands that bind to them. This comparison

resulted in 3832 predictions, of which 184 were inspected by

literature searches. Finally, the authors tested 30 of the predictions

experimentally, by radioligand competition binding assays. For

example, the a1 adrenergic receptor antagonist Doralese was

predicted and observed to bind to the dopamine D4 receptor (both

are aminergic GPCRs), and most interestingly, the HIV-1 reverse

transcriptase inhibitor Rescriptor was found to bind to the

histamine H4 receptor. The latter observation crosses major

target boundaries. These two targets have neither an evolutionary

or functional role nor structural similarity in common. However,

some of the known side effects of Rescriptor treatment include

painful rashes. This observation is similar to our findings of

possible interactions of Indinavir and the other enzyme-targeting

VLS hits with the PKR subtypes.

In summary, defining the selective and non-selective actions of

GPCR targeting drugs will help in advancing our understanding of

the drugs’ biological action and the observed clinical effect,

including side effects.

Potential differences between the hPKR subtypes
Both subtypes are capable of binding the cognate ligands at

approximately the same affinity [12]. Therefore, the diversification

of cellular events following activation of the subtypes [16] is not

likely to stem from the extracellular loop regions. This suggestion

warrants further experimental investigation. Our study also

suggests, in agreement with previous findings, that small-molecule

antagonists are not likely to easily differentiate between the

subtypes. This is because the TM-bundle small-molecule binding

site identified in this study is identical in its amino acid

composition for the two hPKR subtypes. Thus, an intriguing

question arises: what molecular mechanisms are responsible for

PKRs’ differential signaling patterns?

The variation of protein amino acid composition in the

extracellular and intracellular regions of PKRs is significant

(represented as black-filled circles in Fig. 1). Moreover, analysis of

the level of selection acting on the two PKR subtypes, by

calculating the ratio between non-synonymous (Ka) and synony-

mous (Ks) substitutions [46,47] predicted purifying selection for

the transmembrane helices of both subtypes (figure S7). This

analysis should be expanded in future studies, as PKR subtype

sequences from additional species become available.

The variation in amino acid composition in the intracellular

regions of the PKR subtypes may affect at least two signaling

events: receptor phosphorylation by kinases and the receptors’

coupling to G proteins. We therefore suggest that this region is

most likely to be involved in differential signaling, as detailed next.

Interaction with G proteins
Differential coupling of PKR subtypes to G proteins has been

demonstrated experimentally (reviewed in [16]). Coupling of

PKR1 to Ga11 in endothelial cells induces MAPK and PI3/Akt

phosphorylation, which promotes endothelial cell proliferation,

migration and angiogenesis [11]. In cardiomyocytes, coupling of

PKR1 to Gaq/11 induces PI3/Akt phosphorylation and protects

cardiomyocytes against hypoxic insult. In contrast, PKR2 couples

to Ga12 in endothelial cells, causing Ga12 internalization and

down-regulation of ZO-1 expression, leading to vacuolarization

and fenestration of these cells. In cardiomyocytes, PKR2 acts

through Ga12 and Gaq/11 coupling and increases cell size and

sarcomere numbers, leading to eccentric hypertrophy [16]. Thus,

sites of interactions with G-proteins may represent an additional

factor affecting PKR subtype specificity.

Receptor Phosphorylation
It is well established that GPCR phosphorylation is a complex

process involving a range of different protein kinases that can

phosphorylate the same receptor at different sites. This may result

in differential signaling outcomes, which can be tailored in a tissue-

specific manner to regulate biological processes [87]. We suggest

that part of the differential signaling of PKR subtypes may be due

to differential phosphorylation of the intracellular parts of the

receptors. Namely, phospho-acceptor sites may be missing in one

subtype or another, and analogous positions may be phosphory-

lated by different kinases due to variation in the positions

surrounding the phospho-acceptor residue (which is conserved

between subtypes), thus, changing the kinase recognition sequence

[88]. Hence, using different combinations of kinases for each

subtype results in different phosphorylation signatures. This

phosphorylation signature translates to a code that directs the

signaling outcome of the receptor. This may include two types of

signaling events: (a) common phosphorylation events for both

subtypes will mediate common regulatory features such as arrestin

recruitment and internalization and (b) subtype-specific events will

mediate specific signaling functions related to the specialized

physiological role of the receptor subtype. Preliminary analysis

using prediction tools for phosphorylation sites suggests that

Thr178 (Thr169) in the second intracellular loop and Tyr365

(Gln356) in the cytoplasmic tail of hPKR1 (hPKR2) may represent

subtype-specific phosphorylation-related sites (Levit, Meidan and

Niv, unpublished data). Further experimental studies are required

to elucidate the role of receptor phosphorylation in specific

signaling events following activation of PKR subtypes.
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Conclusions
In conclusion, we have identified a small-molecule TM-bundle

site that can accommodate the known small-molecule hPKR

antagonists. Hence, it can be explored in the future for designing

additional PKR-targeting compounds. The VLS procedure

identified tens of compounds that are likely to affect hPKRs.

Interestingly, FDA-approved drugs may also bind to these

receptors, and in some instances, such as with Indinavir, this

binding may provide a potential explanation for the drug’s side

effects. One residue in ECL2 is different between the two subtypes

(Val207 in hPKR1 corresponding to Phe198 in PKR2), and

several residues in the intracellular loops may affect phosphory-

lation. These residues may be exploited for designing subtype-

specific pharmacological tools, to target different pathological

conditions involving hPKRs.

Supporting Information

Figure S1 Structure-based multiple sequence alignment
of modeled PKR subtypes and X-ray structures used as
templates in the modeling procedure. Alignment was

generated by the TCoffee server. The most conserved residue in

each helix is shaded yellow and is indicated by its Ballesteros-

Weinstein numbering [33]. Identical residues are in red and

similar residues are in blue. bRho - bovine Rhodopsin (PDB

code:1L9H), hB2ADR - human b2-adrenergic receptor (2RH1),

hA2AR - human A2A adenosine receptor (3EML). The sequence

of T4 lysozyme that was fused to the hB2ADR and hA2AR

proteins to facilitate structure determination was removed prior to

alignment, for clarity.

(TIF)

Figure S2 Structural superposition of the PKR1 model
and GPCR X-ray templates used for homology model-
ing. All structures are shown in ribbon representation. PKR1 is in

turquoise, human b2-adrenergic is in orange (A), bovine rhodopsin

is in gold (B) and human A2A-adenosine receptor is in gray (C). (D)

Superposition of the hPKR1 model and the b2-adrenergic

receptor structure with emphasis on the TM-bundle binding site.

The structures are shown in a view looking down on the plane of

the membrane from the extracellular surface. Binding site residues

experimentally known to be important for ligand binding are

denoted as sticks and are labeled with Ballesteros-Weinstein

numbering. The T4 lysozyme fusion protein was removed from

the b2-adrenergic and the A2A-adenosine receptor structures, for

clarity. Structural superposition was performed using the Match-

maker module in UCFS Chimera version 1.4.1.

(TIF)

Figure S3 Structures of the three known PKR antago-
nists that were used as reference compounds for
constructing ligand-based pharmacophore models.
(TIF)

Figure S4 Structural similarity between the identified
VLS hits plotted as a heatmap. The degree of similarity was

calculated using the Tanimoto coefficient, as described in

Methods, and ranges between 0 (completely dissimilar com-

pounds) and 1 (identical compounds). Compounds with similarity

values .0.85 are usually considered structurally similar. Color

intensity corresponds to the similarity value according to the

legend. The heatmap was prepared using Matlab version

7.10.0.499 (R2010a).

(TIF)

Figure S5 Structural superposition of human PKR1 and
PKR2 models. Both structures are shown in ribbon represen-

tation, with hPKR1 in turquoise and hPKR2 in khaki. The insert shows

a detailed view of the predicted transmembrane binding site, with side

chains denoted as sticks. Structural superposition was performed using

the Matchmaker module in UCFS Chimera version 1.4.1.

(TIF)

Figure S6 Predicted binding modes of cognate ligands
redocked into crystal structures and homology models.
(A) Cyanopindolol redocked to b1adr crystal structure (PDB code:

2VT4), (B) Carazolol redocked to b1adr crystal structure (2YCW),

(C) Carazolol redocked to b2adr crystal structure (2RH1), (D)

Cyanopindolol docked to b1adr homology model, (E) Carazolol

docked to b1adr homology model and (F) Carazolol docked to

b2adr homology model. The docked ligands are shown as green

sticks. X-ray structures are represented as gray ribbons and the

crystallized ligand is shown as gray sticks. In panels (D–F) the

homology models are shown as gold ribbons.

(TIF)

Figure S7 Measure of Ka/Ks ratio on the amino acid
sequence of the PKR subtypes suggests positive selection
acting only on PKR2. Ka/Ks ratio (v) representing the ratio of

non-synonymous (Ka) to synonymous (Ks) nucleotide substitution

rates was calculated for each site for the PKR subtypes. The ratio is

plotted against the amino acid position for hPKR1 (A) and hPKR2

(B). Residues showing v.1 are indicative of positive Darwinian

selection, while residues showing v,1 are indicative of purifying

selection; the ratio for neutral selection is one (indicated on the

graph by a red line). Significant positive selection (p = 0.001) was

detected only for PKR2, by the likelihood ratio test, and is

concentrated in the N-terminus and C-terminus domains.

(TIF)

Table S1 Potential hits identified from the ZINC
database.
(DOC)

Table S2 Ligand RMSD values and contact analysis for
cognate ligand docking to b1adr and b2adr crystal
structures and homology models.
(DOC)
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