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Abstract

Dietary restriction (DR), the limitation of calorie intake while maintaining proper nutrition, has been found to extend life
span and delay the onset of age-associated disease in a wide range of species. Previous studies have suggested that DR can
reduce the lethality of environmental toxins. To further examine the role of DR in toxin response, we measured life spans of
the nematode Caenorhabditis elegans treated with the mutagenic polyaromatic hydrocarbon, fluoranthene (FLA). FLA is a
direct byproduct of combustion, and is one of U.S. Environmental Protection Agency’s sixteen priority environmental toxins.
Treatment with 5 mg/ml FLA shortened the life spans of ad libitum fed nematodes, and DR resulted in increased sensitivity
to FLA. To determine the role of detoxifying enzymes in the toxicity of FLA, we tested nematodes with mutations in the
gene encoding the MDT-15 subunit of mediator, a transcriptional coactivator that regulates genes involved in fatty acid
metabolism and detoxification. Mutation of mdt-15 increased the life span of FLA treated animals compared to wild-type
animals with no difference observed between DR and ad libitum fed mdt-15 animals. We also examined mutants with
altered insulin-IGF-1-like signaling (IIS), which is known to modulate life span and stress resistance in C. elegans
independently of DR. Mutation of the genes coding for the insulin-like receptor DAF-2 or the FOXO-family transcription
factor DAF16 did not alter the animals’ susceptibility to FLA compared to wild type. Taken together, our results suggest that
certain compounds have increased toxicity when combined with a DR regimen through increased metabolic activation. This
increased metabolic activation appears to be mediated through the MDT-15 transcription factor and is independent of the
IIS pathway.
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Introduction

Dietary restriction (DR) has been shown to increase life span in

multiple organisms including yeast, flies, nematodes, mice, and

monkeys [1,2,3,4,5]. In addition to life span extension, DR has

also been shown to reduce age-related disease [4], leading to the

suggestion that DR or small molecules that mimic DR could be

utilized to improve healthspan in people [6,7,8,9]. Several

pathways have been implicated in the response to DR, including

increased activity of sirtuin protein deacetylases, reduced insulin/

IGF-1-like signaling (IIS), and reduced activity of the target of

rapamycin kinase [10,11,12,13,14].

Although there is abundant evidence that DR can increase life

span and enhance healthy aging in evolutionarily divergent

species, the beneficial effects of DR do not appear to be universal.

For example, DR increased maximum but not median life span in

one strain of wild-derived mice [15]. In a recent study of 40

recombinant inbred mouse lines, a 40% reduction in caloric intake

failed to extend life span in more than half of the strains examined

[16]. In addition, DR has been reported not to increase life span in

several different genetic backgrounds, including yeast and mice

lacking sirtuin-family proteins [17,18,19,20] and nematodes

lacking either the pha-4 [21] or hsf-1 [22] transcription factors.

Thus, genotype clearly plays an important role in determining

how individual organisms respond to DR.

In the nematode Caenorhabditis elegans DR can be modeled both

genetically and environmentally, and several different protocols

have been described to extend life span via DR [23,24]. Mutations

that reduce food intake by decreasing pharyngeal pumping, such

as loss of function alleles of eat-2, increase life span and are

considered genetic forms of dietary restriction [25]. Environmental

models of dietary restriction involve reducing the availability of the

bacterial food source for animals cultured either in liquid or solid

media. On solid media, extension of life span is observed with

complete removal of food during early adulthood, a process

termed bacterial deprivation (BD) [26,27,28,29]. Combining

mutation of eat-2 with BD does not result in an additive increase

in life span [26,27], consistent with the model that mutation of eat-

2 and BD act via similar downstream mechanisms to increase life

span in C. elegans.

The IIS pathway has also been shown in numerous studies to

regulate life span in C. elegans [30]. Mutations that reduce signaling

through this pathway, such as loss of function alleles of the insulin-

like receptor daf-2, lead to activation of the FOXO-family
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transcription factor DAF-16 [31,32]. Longevity-enhancing inter-

ventions within this pathway fail to extend life span in animals

lacking functional DAF-16. DR is generally accepted to act by

mechanisms distinct from the IIS pathway because, with one

exception, different DR methods in C. elegans extend life span in a

DAF-16-independent manner [33,34]. Genes regulated by DAF-

16 enhance resistance to different forms of stress and include

superoxide dismutase enzymes, heat shock proteins, cytochrome

p450s, UDP-glucuronosyltransferases (UGTs), short-chain dehy-

drogenase/reductases (SDRs), and glutathione-S-transferases

[35,36]. The abundance of genes involved in detoxification that

are regulated by DAF-16 has led to the hypothesis that one

component of IIS-mediated longevity is enhanced detoxification

[37].

In addition to the positive effects of DR on longevity, several

studies in rodents have examined the effects of DR or short-term

starvation on resistance to environmental toxins [38,39,40,41,

42,43,44,45,46,47,48,49,50]. One particularly interesting recent

report suggests that short-term fasting is sufficient to confer striking

resistance to a lethal dose of the chemotherapy drug etoposide

[51]. The outcomes of these studies have failed to yield a coherent

picture, however, with some reporting that DR confers increased

resistance to toxicity, but others reporting enhanced sensitivity

[39,40,46]. Interpretation of these results is further complicated by

the fact these studies generally fail to examine life span in the

untreated control animals, likely due to the costly and time-

consuming nature of longevity studies in rodents.

C. elegans offers a potentially useful model system for exploring

the effects of DR on resistance or sensitivity to a broad range of

environmental toxins. In this study, we examined the impact of

two different DR regimens, mutation of eat-2 and BD, on toxicity

of the polycyclic aromatic hydrocarbon (PAH) fluoranthene (FLA)

(Figure 1A). PAHs are carcinogenic byproducts of combustion

which are commonly found near landfills and manufacturing

plants [52]. The ability of these compounds to persist in

groundwater, soil, and sediment can result in long-term exposure.

A recent study reported that FLA is present in soil in Denmark at

concentrations between 0.2 and 2 mg/kg [53]. In this study we

have examined the effect of 5 mg/kg FLA in the growth medium

on survival of C. elegans fed a control diet or subjected to DR. We

observed that DR induces sensitivity to FLA, and this sensitivity is

dependent on the MDT-15 subunit of mediator, a highly

conserved complex that regulates transcription through physical

interaction with RNA polymerase II [54,55]. Mediator has been

shown to regulate the expression of enzymes involved in xenotoxic

response and fatty acid metabolism. Mutation of mdt-15 reduces

basal expression of target genes and prevents their up-regulation in

response to environmental changes [56].

Methods

Caenorhabditis elegans were maintained on Nematode Growth

Media (NGM) at 20uC with the exceptions of daf-2 (e1370) and

daf-16 (mu86) strains, which were maintained at 15uC. Worms

were fed UV-killed E. coli OP50 unless otherwise indicated [57].

N2, DA1116 eat-2 (ad1116), CB1370 daf-2(e1370), CF1038 daf-

16(mu86), XA7702 mdt-15(tm2182) and TJ356 (DAF-16::GFP)

[58] worms were obtained from the Caenorhabditis Genetics

Center (CGC).

Synchronized egg layings were used to generate cohorts of

animals for life spans, as previously described [57,59]. For daf-2

and daf-16 mutant strains, synchronized egg layings were initiated

at 15uC and then transferred to 20uC once animals reached the L3

developmental stage. For all strains, L4 larvae were transferred to

plates containing 50 mM 5-fluorodeoxyuridine (FUDR) to prevent

egg hatching and 100 mg/ml ampicillin (Amp) to prevent bacterial

contamination. Day 4 adults were then transferred to FUDR/

Amp plates containing 5 ug/ml FLA or equivalent volume of

dimethylsulfoxide (DMSO). Animals subjected to BD were

transferred to FUDR/Amp plates lacking bacteria, as previously

described [29,57]. For FLA+BD experiments, FLA was included

in the BD plates at the time of transfer. Life span experiments were

maintained at 20uC and cohorts were evaluated every 1–3 days

using tactile stimulation to verify viability of the animals. Animals

Figure 1. Dietary Restriction Shortens the Life Span of
Fluoranthene Treated N2 Adult Animals. (A) The chemical
structure of fluoranthene (FLA). (B) Life span of N2 animals treated
continuously with DMSO or FLA starting at adult day 4. Pooled data is
shown, mean life span is shown in parentheses. Treatment with FLA
shortened life span of N2 animals under control-fed conditions.
Bacterial deprivation (BD) further shortened the life span of N2 animals
compared to the control-fed. Summary data and statistics for both
pooled and individual experiments are provided in Table S1.
doi:10.1371/journal.pone.0028036.g001

Figure 2. Bacterial Deprivation and Fluoranthene Treatment
Reduce Pharyngeal Pumping. Pharyngeal pump rates of N2 and
eat-2(ad1116) animals after 24 hours treatment with DMSO or FLA
under control-fed (Fed) or bacterially deprived (BD) conditions.
Pharyngeal pumping was reduced in both FLA treated and BD
populations. *denotes p.0.0001 compared to DMSO treated samples.
Rates are recorded as pumps per minute. Summary data and statistics
are shown in Table 1.
doi:10.1371/journal.pone.0028036.g002

Fluoranthene Toxicity and Dietary Restriction
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lost due to foraging off the surface of the agar plates were not

included in the data analysis. Differences in median life span were

considered significant at a P-value of 0.05 by a Wilcoxon rank-sum

test. A summary of all life span data included in this report is

provided in Supplementary Tables S1, S2, S3, and S4.

To evaluate pharyngeal pumping rate, animals were video

recorded using a Canon Powershot S3 IS camera under 102X

magnification on an Olympus SZ60 dissection microscope.

Animals were observed after 24 hours of treatment with FLA or

DMSO under either control fed or BD conditions. Videos were

scored by individuals blinded to the genotype of the groups. Data

were analyzed using a Student’s t-test and differences were

considered significant for p,0.05.

Nuclear localization of DAF-16 in response to FLA was evaluated

using DAF-16::GFP transgenic worms, as previously described

[59,60]. Eggs collected by synchronized egg lay were allowed to

hatch on NGM plates seeded with UV-killed OP50. Animals were

collected 16–22 hours post egg lay (L1 stage) and placed on DMSO

control plates with empty vector (EV) RNAi bacteria (for both the

control and heat shock groups), control plates with daf-2(RNAi)

bacteria, or experimental plates containing 5 ug/ml FLA seeded

with EV bacteria. Animals were incubated on the experimental

plates for 23–30 hours. Heat-shock treated animals underwent a

37uC incubation for the 2 hours immediately prior to quantification

of DAF-16::GFP localization. Animals were immobilized using 1 M

sodium azide and immediately photographed using a Zeiss SteREO

Lumar V.12 microscope. Analysis of the photos was performed by

individuals blinded to the genotype of the group.

Results

Bacterial deprivation enhances toxicity of fluoranthene
To determine the effect of DR on FLA toxicity we examined the

survival of C. elegans treated with 5 ug/ml FLA or equivalent

volume of DMSO fed either a control diet or subjected to BD

beginning at the 4th day of adulthood. As previously reported for

animals maintained on NGM [26], DMSO-treated N2 animals

subjected to BD lived significantly longer than control-fed DMSO-

treated animals (Figure 1B). Treatment with FLA significantly

shortened the life spans of both control fed and BD animals

compared to the DMSO treated controls. Interestingly, FLA

treated animals subjected to BD were significantly shorter-lived

than control fed animals treated with FLA. These data

demonstrate that FLA is toxic to adult C. elegans, and that this

toxicity is enhanced by BD.

We considered the possibility that the enhanced sensitivity to FLA

could result from greater uptake of the chemical from the NGM due

to elevated rates of pharyngeal pumping in BD animals. Pumping

rate was reduced in BD animals under the conditions used here,

however, indicating that this is unlikely to be the case (Figure 2,
Table 1). Treatment with FLA also significantly reduced pumping in

control fed animals. As previously reported [25], eat-2(ad1116)

animals also showed a reduced pumping rate, relative to N2 animals.

To determine whether enhanced toxicity of FLA results generally

from DR or is specific for BD, we examined the effect of FLA on

survival of eat-2(ad1116) animals. As previously reported on NGM

[25], median life span of eat-2(ad1116) animals was extended

relative to N2 controls on DMSO plates (Figure 3). Similar to the

case for BD, FLA resulted in a greater proportional shortening of life

span in eat-2(ad1116) animals relative to N2 animals; however, in

this case, there was not a significant difference between N2 and eat-2

animals treated with FLA. These data indicate that FLA prevents

life span extension by two different DR methods, but that only BD

results in significantly enhanced toxicity from FLA.

Reduced insulin/IGF-1-like signaling does not enhance
resistance to FLA

DR is thought to modulate longevity in a pathway that is

genetically distinct from IIS. Reduced IIS causes DAF-16 to

Table 1. Summary of Pharyngeal Pumping Data.

Strain Treatment N Mean Pump Rate (pumps/min) +/2 SEM p-value vs DMSO Fed p-value vs FLA Fed

N2 DMSO Fed 28 116.4+/24.47 NA p.0.0001

DMSO BD 33 42.7+/24.26 p.0.0001 p = 0.85

FLA Fed 37 37.3+/25.01 p.0.0001 NA

FLA BD 35 58.7+/23.82 p.0.0001 p.0.0005

eat-2(ad1116) DMSO Fed 9 33.8+/23.38 NA p = 0.23

FLA Fed 8 45.5+/22.66 p = 0.23 NA

Pharyngeal pumping was observed after 24 hours treatment with FLA or DMSO under control-fed or bacterially deprived conditions. Student’s t-test was used to
determine statistical significance.
doi:10.1371/journal.pone.0028036.t001

Table 2. Summary of DAF-16::GFP Nuclear Localization Data.

N Foci positive Animals % Positive Mean # foci/animal p-value

EV 18 1 5.60% 4.2 NA

daf-2(RNAi) 35 9 25.70% 5.7 0.035

FLA 40 11 27.50% 11.9 0.018

heat-shock 10 10 100% 115.9 p.0.0001

Animals were scored for presence of nuclear puncta after treatment with DMSO, daf-2(RNAi), FLA or following a 2 hour heat-shock incubation at 37uC. A Student’s T-Test
was used to determine statistical significance.
doi:10.1371/journal.pone.0028036.t002

Fluoranthene Toxicity and Dietary Restriction
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relocalize from the cytoplasm to the nucleus, resulting in increased

life span and resistance to different types of stress [58]. To examine

whether treatment with FLA results in nuclear localization of

DAF-16, we treated animals expressing GFP tagged DAF-16 and

followed localization of the tagged protein. After treatment with

FLA, 25% of animals displayed nuclear localization of DAF-16,

compared to 5% of DMSO treated animals (Figure 4A–B). Thus,

we conclude that DAF-16 nuclear localization is enhanced by

FLA, consistent with activation of DAF-16 in response to FLA

treatment.

To determine whether DAF-16 can promote resistance to FLA,

we examined the effect of mutations in daf-2 and daf-16 on FLA

toxicity. In agreement with previous studies of animals maintained

on NGM, control fed DMSO treated daf-2(e1370) mutants had an

extended life span compared to N2 animals, while daf-16(mu86)

animals displayed slightly shortened life spans (Figure 5).

Treatment with FLA shortened the median life spans of both

daf-2(e1370) and daf-16(mu86) animals to 9 and 8 days respectively,

suggesting that IIS plays little, if any, role in FLA toxicity.

MDT-15 promotes FLA toxicity
FLA toxicity requires metabolic activation by cytochrome p450

enzymes [61]. We hypothesized the transcriptional coactivator

Mediator may be involved in activation of FLA in C. elegans, since

it is known to regulate many genes involved in fatty acid

metabolism and detoxification, including several cytochrome

p450 enzymes [56]. To test this possibility we conducted life

spans on mdt-15(tm2182) animals, which carry partial deletion

allele of the mediator subunit MDT-15. The life spans of mdt-

15(tm2182) animals did not differ significantly from N2 animals

under DMSO control fed conditions, however, deletion of mdt-15

conferred significant resistance to FLA, compared to N2 animals

(Figure 6).

In contrast to our results with N2 animals, where BD sensitized

animals to FLA toxicity, BD enhanced resistance to FLA in mdt-

15(tm2182) animals. The survival of mdt-15(tm2182) animals in the

presence of FLA increased from 13.8 days for control-fed animals

to 16.1 days for BD animals. Unexpectedly, mdt-15(tm2182)

animals in the absence of FLA showed an even more robust life

span extension than N2 in response to BD.

Discussion

Dietary restriction has been proposed as a potential means of

increasing health span and life span in people [62,63]. The

importance of genetic and environmental variation on the

response to DR is poorly understood, however. As an initial foray

into understanding how DR might influence the response to

common environmental toxins, we examined the effect of FLA on

Caenorhabditis elegans under control fed and DR conditions. We

anticipated that DR would enhance resistance to FLA, based on

the observation that many long-lived mutants are stress-resistant.

To our surprise, two different methods of DR failed to enhance

resistance to FLA. In fact, BD animals displayed reduced survival

in the presence of FLA. Also surprising in light of the fact that

DAF-16 localized to the nucleus in response to FLA, we found no

evidence that IIS influences FLA toxicity. Mutants with either

enhanced or reduced signaling through this pathway showed

sensitivity to FLA that was comparable to wild-type N2 animals.

FLA requires metabolic activation for toxicity. Activation is

mediated primarily through oxidation by the cyp450 enzymes

[52]. Increases in cyp450 enzymes have previously been associated

with dietary restriction in mice [38,64,65,66], suggesting that

increased activation of FLA may be one potential mechanism for

the enhanced toxicity caused by BD in C. elegans. These findings

are consistent with our observation that mutation of mdt-15, which

was previously shown to regulate nine different cyp450 enzymes in

response to FLA [56], attenuates FLA toxicity in control fed

animals and suppresses the enhanced toxicity associated with BD.

Figure 3. eat-2(ad1116) Animals are not Resistant to FLA
Treatment. Life spans of N2 and eat-2(ad1116) animals after
continuous exposure to DMSO or FLA starting at day 4 of adulthood.
Pooled data is shown, mean life span is shown in parentheses. Mutation
of eat-2 increased life span in DMSO treated populations compared to
N2. FLA treated N2 and eat-2(ad1116) populations were not significantly
different. Summary data and statistics for both pooled and individual
experiments are shown in Table S2.
doi:10.1371/journal.pone.0028036.g003

Figure 4. FLA Induces Nuclear Localization of Daf-16. Proportion
of DAF-16::GFP animals with nuclear puncta after treatment with FLA,
DMSO, daf-2(RNAi), or 2 hour incubation at 37uC (A). Treatment with
FLA induced nuclear puncta similar to those observed daf-2(RNAi) with
treatment. (B) Images of DAF-16::GFP animals treated with DMSO (i),
heat-shock (ii), or FLA (iii). Summary data and statistics are shown in
Table 2.
doi:10.1371/journal.pone.0028036.g004

Fluoranthene Toxicity and Dietary Restriction
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In fact, BD significantly extends the survival of FLA treated mdt-

15(tm2182) animals, albeit only to a modest extent. These data

support a model whereby activation of FLA requires mediator,

and activated FLA is particularly toxic to BD animals. It should be

noted that this model does not require enhanced mediator activity

in response to DR, only differential sensitivity to the activated

toxin.

Although mutation of MDT-15 reduced the sensitivity of

animals to FLA, we did not observe a complete resistance to FLA.

Several possibilities could account for this observation. First, the

mdt-15(tm2182) allele is predicted to produce a truncated protein.

Therefore, residual MDT-15 activity could promote activation of

FLA. Second, not all of the C. elegans cyp450 genes are regulated

by MDT-15 [56], making it unlikely that cyp450 activity is

completely absent in mdt-15 animals, even if MDT-15 is inactive.

Third, although PAH’s are thought to be primarily activated by

cyp450’s, alternative mechanisms of activation have been

proposed [67]. Fourth, the native form of FLA may have some

inherent toxicity. Platt et al. [68] have reported that FLA induces

formation of DNA adducts the absence of metabolic activation

under standard laboratory conditions. We also observed that mdt-

15(tm2182) animals show a slight increase in resistance to FLA

under BD conditions. This observation is likely due to up-

regulation of additional detoxification pathways that are unrelated

to the metabolic activation of FLA.

Our finding that mdt-15(tm2182) animals are resistant to FLA

differ somewhat from a prior study in which an increased

frequency of ‘‘scrawny animals’’ was reported in mediator mutants

following 4 days of treatment with FLA [56]. This is likely due to

the very different conditions and end points used in the two

studies. Under our conditions, we observed a greater than 90%

survival for N2 animals at day four of FLA treatment and greater

than 99% survival for mdt-15(tm2182) mutants. We did not

quantify the occurrence of scrawny worms and instead used

viability as a measure of toxicity. Our observation that the mdt-

15(tm2182) allele has relatively little effect on life span under

Figure 5. Insulin/IGF-1 signaling does not influence FLA toxicity. Life spans of N2, daf-2(e1370), and daf-16(mu86) animals after continuous
treatment with DMSO or FLA under control-fed conditions starting at day 4 of adulthood. Mutation of daf-2 and daf-16 extended and shortened life
span, respectively, compared to N2 in DMSO treated samples. N2, daf-2(e1370), and daf-16(mu86) animals displayed significantly shortened life spans
when treated with FLA. Summary data and statistics for both pooled and individual experiments are shown in Table S3.
doi:10.1371/journal.pone.0028036.g005

Figure 6. mdt-15(tm2182) mutants are resistant to FLA and improve response to BD. Life spans of N2 and mdt-15(tm2182) animals after
continuous treatment with DMSO or FLA under control fed or BD conditions starting at day 4 of adulthood. mdt-15(tm2182) animals had life spans
similar to N2 under control fed conditions. Treatment with FLA shortened the life spans of mdt-15(tm2182) animals but not as severely as N2 animals.
Control fed and BD mdt-15(tm2182) animals treated with FLA did not have significantly different life spans. Summary data and statistics for both
pooled and individual experiments are shown in Table S4.
doi:10.1371/journal.pone.0028036.g006

Fluoranthene Toxicity and Dietary Restriction
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control conditions is notable in light of two studies reporting that

RNAi knock-down of mdt-15 shortens life span [69,70]. This may

indicate that the tm2182 allele alters MDT-15 activity in a manner

that is different from RNAi knock-down. In addition, the role of

mdt-15 as a modulator of longevity may be sensitive to

experimental conditions such as food source and temperature.

For example, we used killed OP50 E. coli as food, whereas the

prior reports used live E. coli.

The apparent further extension of life span from BD in mdt-15

mutant animals was unexpected, considering that mdt-15(tm2182)

animals were neither long nor short-lived under control fed

conditions and Rogers et al. [70], observed a reduction in life span

extension from mutation of eat-2 following mdt-15(RNAi). One

possibility is that mediator activity is altered by BD in a way that

limits the longevity wild-type animals subjected to BD animals.

Alternatively, it may be that loss of mediator indirectly affects a

process that is important for survival under BD conditions. One

interesting possibility is that deletion of mediator alters fat

metabolism in a way that allows BD animals to survive in the

absence of bacterial food for extended periods of time. It will be of

interest to explore this possibility in future studies.

In this study, we have reported that an important environmental

toxin, FLA, prevents life span extension from DR or reduced IIS

in C. elegans. Animals subjected to the extreme form of DR, BD,

are more susceptible to FLA, and this enhanced toxicity is

suppressed by mutation of the mediator subunit mdt-15. We have

also shown that mdt-15 influences the magnitude of life span

extension from BD in the absence of FLA. This convincingly

demonstrates the point that the effect of DR on life span is robustly

influenced by both environmental and genetic components.

Although we have no evidence that sensitivity to FLA or other

environmental toxins is similarly impacted by caloric intake in

humans, it is likely that effects of DR will be strongly influenced by

genetic and environmental variation. Understanding the molecu-

lar mechanisms that control differential responses to DR in model

organisms provides a path toward predicting how such variation

will influence the effects of DR and DR mimetics on health and

longevity in people.
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