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Abstract
Naturally occurring CD4+ T regulatory (Treg) cells are produced during maturation in the thymus
and have a mandatory role in maintaining homeostasis and immune quiescence. Development and
function of Treg cells depends on the transcription factor forkhead box P3 (Foxp3), which is
necessary and sufficient for Treg cell function. Currently emerging evidence indicates Treg cells
display molecular and functional heterogeneity and can be categorized into naïve and effector- or
memory-like cells, which can produce effector cytokines supporting the idea that Treg cells retain
plasticity. The role of Treg cells that acquire these properties remains unclear and is currently
under intense investigation. In this review, we summarize recent advances on the differentiation of
effector- or memory-like Treg cells, the impact of the cytokine milieu on the molecular and
functional heterogeneity of Treg cells, and the clinical implications of the heterogeneity and
specialization of Treg cells.
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Introduction
Naturally occurring CD4+ T regulatory (Treg) cells produced during the normal process of
maturation in the thymus are specialized for immune suppression. Disruption of the
development and function of Treg cells is a primary cause of autoimmune and inflammatory
diseases [1]. Treg cells express transcription factor forkhead box P3 (Foxp3), which is
considered the most specific marker to identity the Treg lineage [2–4]. Extensive studies
have demonstrated that mutation of Foxp3 or down-regulation of Foxp3 expression in Treg
cells leads to reduction of Treg cell numbers and loss of Treg suppressive activity and induces
immune dysregulation [5–7], strongly suggesting that Foxp3 plays a dominant role in the
development and function of Treg cells. Treg cells also express ‘signature’ surface markers
such as CD25, CTLA-4 and GITR but most of these markers lack specificity and can be
expressed by activated conventional CD4+ T cells [8–10]. Therefore, a definitive or highly
specific surface marker identifying naturally occurring Treg cells is lacking thus far.
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Treg cells display heterogeneity in cell surface phenotype and regulatory functions. Treg cells
can be categorized into naïve and effector- or memory-like cells distinguished by the
developmental stage, phenotype and migration properties [11]. Interestingly, recent studies
have revealed that Treg cells particularly effector- or memory-like Treg cells were able to
produce effector cytokines such as IFN-γ and IL-17 under various conditions [12, 13],
supporting the idea that Treg cells are not at the final stage of their differentiation but retain
plasticity. These observations led to the conclusion that natural Treg cells are a
heterogeneous population consisting of a committed Treg lineage and an uncommitted
subpopulation with developmental plasticity [14]. Overall, the fate of Treg cells appears to
be associated with the anatomical location, microenvironment cytokine milieu and the status
of other immune cells present in the same microenvironment. Although the role of
committed Treg cells in the maintenance of self-tolerance and immune homeostasis is well
documented, the role of Treg cells, which acquire the ability to produce effector cytokines
remains unclear and is currently under intense investigation. In this review, we summarize
recent advances in our understanding of the maturation of effector-or memory-like Treg
cells, the impact of the cytokine milieu on the phenotype and functional plasticity of Treg
cells and the clinical implications of the functional specialization of Treg cells.

1. Phenotypic and functional properties of naïve and effector- or memory-
like Treg cells

Naturally occurring Treg cells develop within the thymus through a CD25hiCD4+CD8−
intermediate in a process that depends on multiple factors including T-cell receptors (TCRs)
engaging thymic MHC/self-peptide ligands [15–17] and the presence of γc cytokines IL-2,
IL-7 and IL-15 [18, 19]. Foxp3+ Treg cells generated in thymus, like their naïve conventional
T cells, express L-selectin (CD62L) and the chemokine receptor CCR7 and preferentially
migrate into peripheral secondary lymphoid organs [20, 21]. Within lymph nodes, Treg cells
appear to function by interacting with dendritic cells and limiting their ability to effectively
prime naïve T cells thereby blocking the differentiation of autoreactive T cells and
maintaining the homeostasis [22–24].

Treg cells also play an essential role in balancing effector cell-mediated immunity in
response to infection. To function properly in vivo, Treg cells are required to come into
physical proximity to their targets regardless of whether they function through cell contact-
or cytokine-based mechanisms [22, 25]. The ability of Treg cells to traffic from secondary
lymphoid organs to peripheral tissues is controlled by expression of various of homing
receptors and such event is associated with the functional maturation of Treg cells [26].
Although the mechanisms underlying the maturation of Treg cells and the differential
expression of homing receptors in Treg cells in vivo have not been fully elucidated, extensive
research has demonstrated that Treg cells are heterogeneous in their differentiation stage,
tissue localization and expression of effector molecules of suppression [1]. These findings
have provided a framework for further understanding of how specialized subsets of Treg
cells might carry out divergent tasks in regulating ongoing immune reactions.

1.1 Developmental stage and migratory properties of Treg cells
CD4+CD25+ Treg cells in infants express high levels of CD62L and CCR7, which allow Treg
cells to migrate into lymphoid tissues. However, a rapid down-regulation of CCR7
expression occurs in Treg cells between birth and 18 months of age. Moreover, the majority
of the Treg cells in cord blood and in infants up to 18 month of age express the gut-homing
integrin α4β7, while only a minor subset of Treg cells express CCR4, a chemokine receptor
associated with extra-intestinal homing [26–28]. In contrast, the majority of Treg cells
isolated from adult blood express CCR4 while only a minority of cells express α4β7 [29]. At
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3 years of age the expression of α4β7 is significantly reduced and the expression of CCR4 is
significantly increased on Treg cells, suggesting that the switch of homing receptors on Treg
cells occurs at 3 years of age concomitantly with other signs of maturation [26].
Interestingly, the switch of homing receptors on Treg cells reflects not only their migratory
properties but also corresponds to their memory phenotype. Conventional T cells and Treg
cells up to 18 month of age express higher levels of CD45RA, the cell surface marker
associated with a naïve phenotype of T cells, compared with the corresponding T cells from
adults. However, at 3 years of age, the expression of CD45RA is significantly reduced on
the CD25hi T cells compared with those at 18 month of age, while the expression of
CD45RO, the cell surface marker for memory phenotype of T cells, is increased [26].

The dynamic development of homing receptor expression is also associated with the
functional maturation of Treg cells. The fetal intestine is sterile at birth, but colonization by a
variety of microorganisms begins directly after delivery [30]. Studies using mouse models
show that exposure to bacterial antigens favor the generation and expansion of functional
Treg cells [31–33]. In fact, Treg cells from germ-free mice are less suppressive than those
from conventional or colonized but pathogen-free mice [31, 32]. It was reported that the
majority of the Treg cells in umbilical cord and infant blood expressed α4β7 but not CCR4.
This expression profile resulted in migration of Treg cells into intestinal secondary lymphoid
tissues, suggesting that the gut might be the primary site of antigen exposure for Treg cells in
early life. Upon encounter with antigen, Treg cells gain distinct homing characteristics
mediated by de novo expression of organ-specific adhesion molecules and chemokine
receptors and that leads to a potentially widespread distribution of Treg cells later in life.
Indeed, Treg cells can be found in most non-lymphoid tissues even in the absence of any
overt inflammation [22].

1.2 Phenotypic characterization and immune function of effector- or memory-like Treg cells
Studies from Hamann group first demonstrated that Treg cells could be subdivided into
populations resembling naïve T cells and effector- or memory-like T cells based on
expression of homing receptors. The integrin αEβ7 (CD103) discriminates the distinct
subsets of murine CD4+ Treg cells. αEβ7+ cells represent effector- or memory-like Treg cells
that predominantly enter peripheral tissues and inflamed effector sites. These cells displayed
potent suppressive activity compared to CD25+ αEβ7− Treg cells in vitro. Moreover, in vivo
these cells were capable of suppressing acute inflammatory reactions in antigen induced
arthritis [11]. Interestingly, Rap1 activation has a critical role in regulating the generation of
CD103+ Treg cells, as mice transgenic for the constitutively active form of Rap1 display a
significant increase in the proportion of CD103+ Treg and prominent lymphopenia [34].
CCR6 and other surface markers are also used to distinguish naïve and effector- or memory-
like Treg cells.

Treg cells with an effector- or memory-like phenotype might arise as a result of Treg cell
activation, presumably owing to recognition of self- or non-self-antigen [25, 26]. In spite of
the fact that Treg cell specificity is still poorly characterized, there is evidence that TCR
recognition and TCR signaling have a key role in influencing the phenotype, function and
localization of Treg cells in vivo [17, 25]. Conditioning loss of TCR signaling due to
inactivation of p56Lck function in Treg cells did not significantly affect Foxp3 expression.
However, p56Lck-deficient Treg cells fail to suppress immune responses of other cells.
Moreover, p56Lck-deficient Treg cells highly express CD62L while remain incapable of
upregulating αEβ7 and CCR6 upon encountering antigen [17]. Thus, sequential molecular
and signaling events may occur during the development and functional specialization of Treg
cells. Naïve Treg cells and Treg cells in early life are activated in vivo presumably through
the recognition of self-antigen or commensal microbes resulting in expression of homing
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receptors and functional maturation (Figure 1). Instability is further enhanced during
activation and expansion of Treg cells particularly effector- or memory-like Treg cells.

2. Stability and functional specialization of Treg cells
The therapeutic potential of Treg cells was envisioned decades ago because of their unique
suppressive function. These cells have been widely used in various conditions from
transplantation to autoimmune diseases [35–37]. However, clinical implementation of their
potent immune regulatory activity has been challenging [38]. Recent findings suggest that
Treg cells are heterogeneous in functions and phenotypes and not all Treg cells are at terminal
stage of differentiation but rather display a significant degree of plasticity. Specifically, Treg
cells can lose their suppressive activity and become conventional effector cells [39] or
acquire the ability to secrete effector cytokines such as IFN-γ and IL-17 while retaining their
suppression function [12, 40]. Current research is focused on understanding the driving
forces and mechanisms underlying the plasticity of Treg cells and on identifying factors that
can either promote or reverse the stability of Treg cells in the context of autoimmune and
inflammatory diseases.

2.1 Treg cells control distinct immune responses
CD4+ T helper (Th) cells play critical roles in orchestrating the adaptive immune responses
mainly through secreting various cytokines and chemokines that activate and/or recruit
targets cells. More than two decades ago, Mosmman and Coffman recognized that effector
CD4+ T cells can be divided into two distinct populations with unique functions: IFN-γ-
producing Th1 cells and IL-4-producing Th2 cells [41]. It was found that Th1 cells help to
combat intracellular pathogens and that Th2 cells mediate host defense against extracellular
parasites [42–45]. Recently, a new effector Th lineage, the IL-17- producing Th17 cells was
discovered [46, 47] and these cells are involved in immune responses against extracellular
bacteria and fungi [48]. Production of polarizing cytokines that drive the lineage
differentiation is dictated by the cytokine milieu and the type of pathogen encountered [25].
IFN-γ and IL-12 direct the differentiation of Th1 cells upon encountering intracellular
pathogens, while IL-4 induces Th2 cells during infection with large mucosal parasites; TGF-
β and IL-6 promote the development of Th17 cells during infection with extracellular
bacterial or fungi [42, 45, 49].

Functional specialization of CD4+ effectors cells is controlled by the differential expression
of lineage specific transcription factors, such as T-bet for Th1 cells, GATA, IRF4 for Th2
cells, RORγt, IRF4 and Stat3 for Th17 cells. These lineage-specific transcription factors
regulate distinct gene expression programs that are involved in determining cytokine
production and migration properties [50–54]. Abnormal activation of any subset of CD4+

effector cells is harmful to host tissues. Aberrant activation of Th1 cells is considered as the
critical event in most organ-specific autoimmunity while aberrant activation of Th2 cells is
considered responsible for allergic inflammatory diseases and asthma. Thus far, some of the
autoimmune responses have been shown to be mediated by Th17 cells [55]. Therefore,
regulation and control of immune responses mediated by CD4+ effector cells is of critical
importance. Active immune suppression by Treg cells is a central mechanism for control of
pathogenic immune responses. Defects in function of Treg cells can result in Th1, Th2 and
Th17 -mediated inflammatory diseases [56–58].

Several groups have reported that Treg cells can use canonical CD4+ effector cell-associated
transcription factors to restore or maintain immune homeostasis during polarized Th1, Th2
and Th17 cell-mediated immune responses [25]. In response to IFN-γ, Foxp3+ Treg cells
upregulate the Th1-specifying transcription factor T-bet. Subsequently, T-bet promotes
expression of the chemokine receptor CXCR3 on Treg cells and results in accumulation of T-
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bet+ Treg cells in sites of Th1 cell-mediated inflammation. T-bet-deficient Treg cells display
impaired proliferation during Th1-mediated immune response and subsequently, these Treg
fail to suppress the expansion of Th1 cells [57]. Similarly, IRF4, transcription factor
involved in the control IL-4 production and the differentiation of Th2 cells is required for
Treg cell-mediated control of Th2-type inflammatory responses. Mice in which Irf4 is
specifically deleted within Foxp3+ Treg cells develop a lymphoproliferative disease that is
associated with a selective increase in the number and frequency of IL-4 and IL-5-producing
CD4+ T cells [58]. Moreover, deletion of Stat3 in Foxp3+ Treg cells results in development
of spontaneous fatal intestinal inflammation that is characterized by excessive IL-17
production but with normal levels of Th1 and Th2-associated inflammatory cytokines,
indicating that in the absence of Stat3, Treg cells selectively lose their immune suppressive
function on Th17-type immune responses [56]. Taken together, the aforementioned studies
suggest that Treg cells utilize distinct molecular programs to control Th1, Th2 and Th17 –
type responses. Although the mechanism by which T-bet, IRF4 and Stat3 control Treg cell
activity during Th1-, Th2- and Th17-mediated responses is still unclear, these transcription
factors are likely to be involved in mechanisms that control the migration and functional
properties of Treg cells.

Based on these findings, a model emerges in which selective expression or activation of
transcription factors associated with Th1, Th2 and Th17 lineage differentiation drives the
development of molecularly diverse and functionally specialized Treg subsets armoring them
with the machinery required to restrain responses mediated by distinct types of CD4+

effector T cells [25] as illustrated in Figure 2. These new findings may have significant
clinical implications because isolation or generation of functionally specialized Treg cells
may improve Treg cell-mediated treatments targeted specifically to control Th1, Th2, and
Th17-mediated inflammatory diseases. Therefore, identification of mechanisms underlying
the differentiation and development of such functionally specialized Treg cells and
developing methods to selectively isolate and expand the different subsets of Treg cells will
be highly beneficial.

2.2 Plasticity of Treg cells and the underlying mechanisms
Although the importance of Treg to control responses of other cell types is well established,
Treg cells can become unstable in certain experimental conditions. Specifically, Foxp3+ Treg
cells can lose their inhibitory function and even become pathogenic effector cells in
autoimmune settings [39]. The propensity of Treg cells to convert to other cell types or to
acquire the ability to produce inflammatory cytokines is a real concern, as they might have
the potential to exacerbate conditions that they are intended to treat. However, the ability of
Treg cells to appropriately adapt to a defined setting that promotes the generation of a
specific subset of effector cells while sustaining a regulatory program, might be critical for
their ability to regulate immune responses mediated by this specific effector cell population.

(a). Unstable expression of Foxp3 in Treg cells—The development and function of
Treg cells is critically dependent on expression of Foxp3 [59]. The suppressive activity of
Treg cells with attenuated Foxp3 expression is nearly abolished and interestingly, these cells
preferentially become Th2-type effectors [7]. It has also been observed that decreased Foxp3
expression is associated with human immune disorders [60, 61]. These findings suggest that
decreased Foxp3 expression may be responsible for the instability and conversion of Treg
cells into effector cells. The molecular and functional features conferred to Treg cells by
Foxp3 have been extensively investigated [62]. These studies revealed that Foxp3 protein
amplified and stabilized genes encoding cell surface or secreted molecules, including Fgl2,
CD73, CD39, TRAIL or CTLA-4, which are normally upregulated in conventional T cells
upon TCR stimulation and are capable of mediating negative feedback regulation of T-cell
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activation. In addition, Foxp3 enforces repression of TCR-mediated immune responses such
as secretion of effector cytokines including IL-4, IFN-γ, TNF-α, IL-17 and IL-21. These
observations suggest that Foxp3 might solidify Treg lineage stability through modification of
cell surface and signaling molecules resulting in adaptation of signals required to induce and
maintain Treg cells.

It was thought that Foxp3+ Treg cells are stable in vivo and Foxp3 expression is controlled by
Foxp3 itself through a positive feedback loop [63]. However, a series of reports have
challenged this view. Treg cells isolated from inflammatory sites have lower expression of
Foxp3, which might account for increased susceptibility to autoimmunity [62]. Adoptive
transfer experiments suggested that these unstable Treg cells can become autoreactive
effector T cells as a consequence of Foxp3 instability [39]. Moreover, in a lymphopenic
setting, a fraction of adoptively transferred Foxp3+ Treg cells displays unstable expression of
Foxp3 and can convert to follicular helper T cells and promote the formation of germinal
centers in mouse Peyer’s patches [64]. Because the levels of Foxp3 expression are crucial
for the stabilization of Treg, many studies have investigated the forces that regulate
expression of Foxp3 in post-tymic Treg cells. It has been determined that IL-6 acts in
synergy with IL-1 to downregulate Foxp3 expression via a pathway dependent on the
transcription factor Stat3 [65]. Evidence of active regulation of Foxp3 stability is provided
by the observation that loss of Dicer, which regulates expression of microRNAs, resulted in
normal development of thymic Treg cells, but downregulation of Foxp3 and dysfunction of
Treg cells in the periphery. Moreover, Dicer deficient Treg cells lost their suppressive
function in vitro and Dicer deficient mice developed fatal systemic autoimmune disease
[66].

It is currently accepted that autoimmunity is caused by imbalance of pathogenic T cells and
Foxp3+ Treg cells [67, 68]. This could be due to a defect in Treg cells that allows pathogenic
cells to escape regulation and mediate disease [69]. With the emerging findings, the
alternative possibility could be entertained that instability of Foxp3 results in generation of
pathogenic effector- or memory-like T cells that themselves promote autoimmunity [39].

(b). IL-17-secreting Foxp3+ Treg cells—Several groups have now described the
conversion of Treg cells into Th17 phenotype induced by appropriate inflammatory stimuli
[13, 40, 70–72]. These observations are particularly relevant in the context of cell-based
therapy. The reciprocal relationship between Treg cells and Th17 cells has been established
since the discovery of Th17 cells [65]. Expression of RORγt is observed in Foxp3+ Treg
cells; however, Foxp3 is able to physically bind to RORγt and to inhibit the transcriptional
activity of RORγt thereby blocking IL-17 production [73]. Therefore, under steady
conditions Treg cells are unable to produce IL-17. In the presence of IL-6 or other
appropriate inflammatory stimuli, a fraction of Foxp3+ Treg cells acquire a phenotype
resembling Th17 cells and this event may be associated with instability of Foxp3 expression.

Recently, we determined that Treg cells can be converted into IL-17+ Treg cells under
physiologic conditions in the absence of exogenous polarizing proinflammatory cytokines
[74]. This process requires the presence of antigen presenting cells and conventional CD4+

T cells. Under these conditions, stimulation of conventional and Treg cells in the presence of
antigen presenting cells selectively promotes the differentiation of Treg but not conventional
CD4+ T cells into IL-17+ cells. IL-1β was identified to play an essential role in the
differentiation of Treg cells into IL-17+ cells and activation of MAPK pathways may have an
active role in this differentiation process. IL-17-producing Treg cells express enhanced levels
of RORγt and retain Foxp3 expression, albeit at levels slightly lower compared with IL-17−
Treg cells isolated from the same culture conditions. Our studies strongly suggest that
Foxp3+ Treg cells are subjected to differentiation that is imposed by other immune cells
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during activation. This subset of differentiated Treg cells may acquire the ability to regulate
immune responses induced by specific populations of effector T cells.

In human, IL-17+ Treg cells have been identified under various conditions [13, 40, 75, 76].
Human Treg cells expressing CD4, CD25 and Foxp3 but not CD45RA can differentiate into
IL-17-producing cells in the presence of allogeneic antigen presenting cells and the cytokine
IL-2 or IL-15. This differentiation process is enhanced by exogenous IL-1, IL-23 and IL-21,
whereas IL-6 and TGF-β do not affect the emergence of IL-17+ Treg cells [13]. Although
IL-1 and IL-6, were previously described as important factors in the development of human
Th17 cells from conventional CD4+ T cells [77], IL-1 plays the dominant role in promoting
IL-17 production from Treg cells [13, 75]. Several studies in human showed that these Treg
cells retain their suppressive function in vitro [40, 78]. It has also been determined that
CD45RO+ memory-like Treg cells but not naïve Treg cells are capable of producing IL-17
upon TCR-mediated stimulation in the presence of the combination of IL-1β, IL-2, IL-23
and IL-21 [40, 76]. A recent study reported that naïve CD45RA+ Treg cells retain stable CpG
methylation across the RORC locus even upon prolonged ex vivo expansion and as a
consequence, they display only a marginal tendency to express RORγ and develop into
IL-17-producing cells. In contrast, stimulation-induced DNA demethylation of RORC occurs
selectively in CD45RA− memory-like Treg cells, irrespective of their Foxp3 expression
levels [79]. This finding may explain why CD45RO+ memory-like Treg cells are more
susceptible to conversion into IL-17+ cells compared to naive Treg cells.

Recent studies identified IL-17+ Treg cells in inflamed intestinal mucosa of patients with
Crohn’s disease [80]. These cells were also found to selectively accumulate in the colititc
microenvironment and to associate with cancer [78]. Although the biological relevance of
this conversion in vivo is unknown, these findings indicate the existence of
IL-17+Foxp3+Treg cells in vivo and strongly suggest that these cells might be associated with
progression of inflammation and development of cancer.

Conclusions
The existence and importance of Treg cells have been well documented over the past decade.
Treg cells have the potential to be used as cell-based therapy in various conditions from bone
marrow and organ transplantation to autoimmune and infectious diseases. Because of the
unique function and clinical potential of Treg cells, the study of Treg cells represents one of
the major areas of research in immunology during the last 10 years. Such effort has led to
significant advances in understanding the development of Treg cells and the molecular
mechanisms underlying their suppressive function. However, in the past 3 years a new twist
has unexpectedly developed regarding the function and fate of Treg cells. It is no known that
like conventional T cells, Treg cells are a heterogeneous population that is not at a terminal
stage of the differentiation but displays a significant degree of plasticity, which allows them
to convert into cells with different effector properties. To date, only the rudimentary
mechanisms of this phenomenon have been identified. Greater understanding of the
mechanisms underlying this conversion process as well as the function and fate of converted
Treg cells might shed light to the immunopathology of immune diseases and may lead to
identification of targets for pharmacological intervention for Treg cell differentiation thereby
improving the efficacy of Treg cell-based therapies.
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Figure 1. Post-thymic differentiation of Treg cells
The majority of Treg cells at birth are naïve cells and express high levels of CD62L, CCR7
and the gut homing receptor α4β7 allowing them to migrate into secondary lymphoid organs
and gut-associated lymphoid tissues where naive Treg cells encounter self-antigens and
commensal microbes. Subsequently, Treg cells express diverse homing receptors, which
render them capable of migrating to specific tissues and organs. For instance, expression of
CCR4 is required for migration to skin, lung and other inflamed tissues; T-bet-dependent
expression of CXCR3 is important for localization of Treg cells to inflamed liver; Treg cells
expressing CCR6 are able to migrate to Th17 cell-mediated inflammatory sites. Upon
recognition of antigen Treg cells, like conventional naïve T cells, lose their naïve phenotype
and become effector- or memory-like cells expressing distinct surface markers. Thus, post-
thymic differentiation of Treg cells occurs through a sequence of events that involve antigen
recognition, migration and functional maturation, which eventually determine the specific
function and fate of Treg cells.
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Figure 2. A model of functional specialization of Treg cells
The differentiation of naïve CD4+ T cells into distinct effector subsets, such as Th1-, Th2-
and Th17- cells is controlled by key transcription factors that are induced by different
environmental factors including the type of pathogen and cytokine milieu. It seems that Treg
cells can also differentiate into distinct subsets that are capable of regulating responses of
individual T effector cell populations. Thymus-derived Foxp3+ Treg cells differentiated in
the presence of IFN-γ express T-bet and specifically suppress the function and expansion of
Th1 cells. IRF4 deficient Treg cells are incapable of suppressing Th2 cells but retain their
suppressive activity on Th1 and Th17 cells. Treg cells lacking Stat3 are unable to control
Th17 cell-mediated inflammation. Although the driving forces regulating expression of
IRF-4 and Stat3 in Treg cells have not yet been identified, it seems that Treg cells might use
specific molecular programs controlled by transcription factors to restrain particular types of
immune responses mediated by distinct effector T cell subsets.
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