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Abstract
The eye is the human organ most sensitive to vitamin A deficiency because of vision's absolute
and heavy dependence on vitamin A for light perception. Studies of the molecular basis of vision
have provided important insights into the intricate mechanistic details of the function, transport
and recycling of vitamin A and its derivatives (retinoid). This review focuses on retinoid-related
membrane receptors and transporters. Three kinds of mammalian membrane receptors and
transporters are discussed: opsins, best known as vitamin A-based light sensors in vision; ABCA4,
an ATP-dependent transporter specializes in the transport of vitamin A derivative; and STRA6, a
recently identified membrane receptor that mediates cellular uptake of vitamin A. The
evolutionary driving forces for their existence and the wide spectrum of human diseases associated
with these proteins are discussed. Lessons learned from the study of the visual system might be
useful for understanding retinoid biology and retinoid-related diseases in other organ systems as
well.
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1. Introduction
Vitamins are essential organic molecules that an organism depends on for survival. An
essential organic molecule becomes a vitamin if the organism cannot synthesize it and must
obtain it from the diet. The principle diet of an organism (or its ancestor) may determine that
organism's definition of vitamins. A well-known example is vitamin C, which is not a
vitamin for many organisms such as mice [1], but vitamin C intake is essential for humans.
Human ancestors likely had easy access to vitamin C-rich food and thus lost the ability (and
the need) to synthesize vitamin C. A key feature of vitamin biology is that vitamin status is
heavily influenced by the environment. In addition to diet, other environmental factors may
also influence vitamin status. For example, human skin can produce vitamin D in the
presence of UV light [2] (in this sense, vitamin D is not a true vitamin). Therefore, both light
exposure and human skin color influence vitamin D status and diseases related to vitamin D
deficiency [3]. Human intestinal microbes can produce vitamin K to alleviate its deficiency
[4].

Vitamin A is arguably the most multifunctional vitamin in the human body and is essential
for human survival at every point from embryogenesis to adulthood. The range of cellular
activities it participates in is mind-boggling and is still being discovered. The molecular
mechanism of vitamin A's physiological functions was first elucidated for vision [5, 6].
Since then, biological functions of vitamin A have been discovered in almost every
vertebrate organ. Examples include its roles in reproduction, embryonic growth and
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development, immune competence, maintenance of epithelial surfaces, and proper
functioning of the adult brain [7–13]. The most well known example of vitamin A's large
impact on human survival is the discovery that administration of vitamin A alone is
sufficient to decrease childhood mortality by 20–70% in developing countries [14]. This
finding has led to the development of an alternative vitamin A-rich diet to decrease
childhood mortality [15]. Except for vision, which depends on the aldehyde form of vitamin
A (retinal), most of the physiological functions of vitamin A can be ascribed to the acid form
(retinoic acid) acting on nuclear hormone receptors that regulate gene transcription [16, 17].
New biological functions are continuously being discovered for vitamin A derivatives. For
example, retinol, the alcohol form of vitamin A, also has distinct biological activities [18–
23]. It was recently discovered that retinal inhibits adipogenesis [24, 25] and that retinoic
acid regulates synaptic protein translation, in addition to its role in regulating gene
transcription [26, 27]. Although many organisms (from unicellular organisms to vertebrates)
use vitamin A aldehyde for light detection (vision or the equivalent of vision), the biological
functions of vitamin A derivatives other than vitamin A aldehyde (e.g., retinoic acid) have
only been well defined in vertebrates. Interestingly, retinoic acid was recently isolated from
cyanobacteria, but its biological function has not been identified yet [28].

This review focuses on membrane receptors and transporters involved in the function and
transport of vitamin A and its derivatives. Three kinds of membrane receptors and
transporters involved in retinoid biology are discussed here: opsins, ABCA4 (ABCR) and
STRA6. The opsins and ABCA4 are related to vitamin A aldehyde. Opsins use vitamin A
aldehyde as the chromophore for light absorption, and ABCA4's function is to accelerate the
elimination of vitamin A aldehyde in light-bleached photoreceptor cells. STRA6 is related to
alcohol form of vitamin A, retinol, which is the major transport form of vitamin A in the
blood.

2. Retinoid-Related Membrane Receptors and Transporters
2.1. Opsins: Vitamin A-based transmembrane light sensor

2.1.1. Biological functions—Visual pigments are the light-absorbing proteins in vision
that use vitamin A-aldehyde as the chromophore. They belong to the seven-transmembrane
domain G-protein coupled receptor family. Visual pigments in each organism are uniquely
suited to the needs of each organism. Human has three cone visual pigments (the long-wave,
medium wave and short wave pigments) responsible for bright light vision and trichromatic
color vision [29–31] and one rod visual pigment rhodopsin responsible for dim light vision
[32–35] (Figure 1). Mice do not have the long-wave cone pigment but have a medium wave
cone pigment [36] and a UV cone pigment [37] responsible for dichromatic vision. The
discovery of visual pigments has led to the discovery of many homologous proteins (opsins)
that are expressed in rod and cone photoreceptor cells and/or other cell types. For example,
chicken has a light-sensitive pinopsin in its pineal gland [38, 39]. In one extreme example of
visual adaptation, a fish that has vision both above and below water (Anableps anableps)
was recently found to have ten different opsins expressed in its eye [40]. Frog has
melanopsin, which is an opsin expressed in its skin melanocytes, eye and brain [41].
Melanopsin is also expressed in light sensitive ganglion cells in the mammalian retina [42,
43] that, together with rod and cone photoreceptor cells, sense light for the circadian clock in
the brain [44–47]. Vertebrate ancient (VA) opsin is an opsin expressed in the horizontal and
amacrine cells of the retina and also in the brain of salmon [48, 49]. Parietopsin and
pinopsin are expressed in the parietal eye of the lizard [50].

There are also opsins that are unlikely to sense light for light perception. Peropsin and
retinal G protein-coupled receptor (RGR) are two opsin family members expressed in the
retinal pigment epithelium (RPE) cell, a highly pigmented cell type that primarily functions
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as the “caretaker” of photoreceptor cells in the eye [51, 52]. Peropsin is a plasma membrane
protein, expressed specifically on the apical microvilli of the RPE cells (Figure 2) [53]. RGR
is expressed on the intracellular membrane of the RPE cells [54] (Figure 2). Both peropsin
and RGR share the signature lysine residue in the seventh transmembrane helix that is used
by opsins to attach to the chromophore. RGR has been shown to have light-dependent
isomerase activity [55, 56] and also regulates the primary retinoid isomerase in a light-
independently manner [57]. RGR also mediates light-dependent translocation of retinyl
esters [58]. Peropsin homologs have been identified in amphioxus [59] and spider [60].
These peropsins bind to all-trans-retinal as a chromophore and mediate light-dependent
isomerization of the chromophore to the 11-cis form [59, 60]. Encephalopsin [61] and
neuropsin [62] are two opsins that are expressed in the mammalian brain and other tissues.
Although neuropsin's bird homolog is responsible for light sensitivity of the bird brain [63],
the roles of these two opsins in the mammalian brain, which is not known to be
photosensitive, are unknown. Given the fact that bovine rhodopsin can be functionally
expressed in the mouse brain to sense light without exogenous retinal chromophore [64],
these native opsins in the brain may have sufficient access to the retinal chromophore. The
visual cycle to regenerate 11-cis retinal for vision is not known to be present in the brain.
The likely endogenous retinal chromophore in the brain that can regenerate opsins is 9-cis
retinal because 9-cis retinal can reconstitute functional rhodopsin [65, 66] and 9-cis retinoid
is known to exist in vivo [67–69].

2.1.2. Evolutionary roles—Light is not only the ultimate energy source of most living
organisms on earth, it is also used throughout evolution as an information source. One
definition of “light” is the region of the electromagnetic spectrum to which photoreceptor
cells can respond (that's why X-rays are not considered “light”). The use of vitamin A-based
chromophore for light detection is extremely ancient and widespread throughout evolution.
More than 300 prokaryotic and eukaryotic seven-transmembrane domain proteins are known
to use vitamin-A aldehyde as the chromophore for light absorption [70]. Although there are
other chromophores in biology [71], two unique properties of vitamin A aldehyde likely
explain why it is the most popular chromophore for photoreception in evolution. It combines
readily with proteins through its aldehyde end and can create photopigments with absorption
maxima in the range of the peak wavelengths of sunlight reaching earth surface. In addition,
its long chain of conjugated double bonds allows drastic light-induced geometrical
isomerization, which is the basis of initiation of signal transduction. Interestingly, all
multicellular organisms that depend on retinal chromophore for light perception use the 11-
cis form, despite the existence of other forms (e.g., 9-cis, 13-cis and all-trans forms). Most
vertebrate visual pigments use 11-cis retinal, but some fishes and amphibians use 11-cis 3,4-
dehydroretinal as a second chromophore [72, 73]. Invertebrates use 11-cis 3-hydroxylretinal,
11-cis 4-hydroxylretinal, 11-cis, 3,4-hydroxylretinal and 11-cis retinal as chromophores [74,
75]. In contrast, all unicellular organisms use all-trans retinal as the chromophore [70].

The evolutionary driving forces for the emergence of vitamin A-based light sensors include
not only light detection but also differentiation of different wavelengths of light (color
vision). By conjugating covalently to opsins, retinal's absorption maximum can be red-
shifted away from the UV range. In addition to avoiding damage from UV light, the red-
shift allows the retinal chromophore to have different absorption maxima that are influenced
by the opsin proteins [36, 76–79]. Diversification of absorption maxima of visual pigments
is required for color vision. The emergence of a new color vision sensation can be driven by
the emergence of new visual pigments. It has been demonstrated in animal models that
expressing a new cone visual pigment alone is sufficient to drive the new sensation in color
space [80–82]. In addition to rod and cone photoreceptor cells in the eye, opsin expression
has made other cell types in the eye [41, 42, 58, 83, 84] and extraocular tissues, such as skin
and brain, light-sensitive [38, 39, 41, 50, 63].
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In addition to light detection, opsins may have other functions. Vertebrate rhodopsin was
recently found to function as a lipid flipase [85]. This will be discussed later in the context
of ABCA4. Rhodopsin in Drosophila larvae, but not adults, was recently found to function
as a thermosensor in addition to its role as a light sensor [86]. Because vitamin A is required
for this activity, this is the first time a vitamin A-based protein has been linked to
thermosensation. Since the human skin, not the eye, is known to be important in thermo
sensation, opsin expression elsewhere in the body may be relevant for the task (Figure 3).

2.1.3. Human diseases—Mutations in cone visual pigments cause color blindness [30,
31, 87]. Red/green color blindness is in fact the most common single-locus genetic disorder
in humans. Rhodopsin mutations are implicated in two distinct human diseases: retinitis
pigmentosa [88–92], which is a progressive form of retinal degeneration that primarily
targets the rod photoreceptor cells, and congenital night blindness [93–96], a non-
progressive form of blindness that affects rod vision. Mutations in RGR have also been
associated with retinitis pigmentosa [97]. Human diseases associated with other opsins (e.g.,
melanopsin and peropsin) have not yet been identified.

2.2. ABCA4 (ABCR): ATP-dependent transport of light-bleached chromophore
2.2.1. Biological function—ABCA4 (ABCR) is the only known member of the large
ATP-binding cassette (ABC) transporter family that specializes in the transport of vitamin A
derivatives [98, 99]. ABCA4 is the only gene associated with recessive Stargardt macular
dystrophy, the most common form of early-onset macular degeneration [100]. ABCA4 was
also independently identified biochemically as the photoreceptor Rim protein [101, 102].
ABC transporters exist from bacteria to human and are known to transport a wide variety of
molecules such as sugars, peptides, metals, lipids, and drugs across membranes. CFTR, a
member of the ABC transporter family, even functions as a chloride channel. ABCA4 is
most homologous to ABCA1, the Tangier disease protein involved in cholesterol efflux
[103, 104], but ABCA4 is unlikely involved in cholesterol transport. What might ABCA4
transport?

Based on the phenotypes of ABCA4 knockout mice [105] and biochemical properties of
purified and reconstituted ABCA4 from photoreceptor cells [106–108], it was hypothesized
that ABCA4 functions to transport vitamin A aldehyde (retinaldehyde) released from
bleached rhodopsin from the disc membrane so that it can be reduced by retinol
dehydrogenase in the cytoplasm.

This hypothesis has been confirmed by overwhelming independent evidence. Traditional
transport assays that depend on the separation of substrates from liposomes do not apply to
retinaldehyde because of its tight association with membranes (more technical challenges
discussed below). Since ABC transporters' substrates are known to stimulate their ATP
hydrolysis (as their transport consumes ATP), analyzing ATP hydrolysis of purified and
reconstituted transporter is another potential method to find the substrate. ABCA4 was
purified from bovine eyes and reconstituted into liposomes. Retinaldehyde and a large
number of compounds including different retinoids were tested for their ability to stimulate
the ATP hydrolysis of ABCA4 [106]. Indeed, retinaldehyde is one of few compounds that
stimulate ABCA4's ATP hydrolysis and is the only compound that behaves as expected of a
substrate, with a simple Michaelis-Menten behavior indicative of a single-saturable binding
site and an interaction with ABCA4 at a rate-limiting step in the ATP hydrolysis cycle
[106]. Although ABCA4 does not distinguish different isomers of retinaldehyde [106], its
predominant substrate is likely all-trans retinal, not 11-cis retinal, given the rapid binding of
11-cis retinal to apo-opsin. Phenotypes of ABCA4 knockout mice provided independent
strong support for the role of ABCA4 in clearing all-trans retinal from disc membranes
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[105]. ABCA4 knockout mice show delayed dark adaptation, consistent with delayed
clearance of all-trans retinal, which likely increases the noise of photoreceptor cells by
activating rhodopsin [109, 110]. Interestingly, phosphatidylethanolamine (PE) and the
adduct formed between retinal and PE, N-retinylidene-PE are significantly elevated in
ABCA4 knockout mice [105]. It was proposed that ABCA4 functions as an N-retinylidene-
PE flippase. Solid phase binding assay demonstrated that N-retinylidene-PE, not free retinal,
is the preferred substrate for ABCA4 [111, 112]. This is consistent with the propensity of
retinaldehyde to form Schiff base with primary amines and the finding that retinaldehyde
stimulation of ABCA4's ATP hydrolysis depends on the presence of PE and is absent in
phosphatidylcholine vesicles [106, 107]. N-retinylidene-PE binds to ABCA4 at a 1:1 ratio
and can be quantitatively released by addition of ATP [111].

There are several interesting puzzles concerning ABCA4's biochemical function. First,
ABCA1, the closest homolog of ABCA4, functions in cholesterol efflux from cells [103,
104]. ABCA1 has also recently been shown to be involved in retinol efflux in intestinal cells
during intestinal absorption of vitamin A [113]. Surprisingly, ABCA4 functions in the
opposite transport direction as ABCA1 (influx not efflux).

Second, due to technical challenges and the fact that retinal diffuses through membranes by
itself, ABCA4's transport activity has not been directly demonstrated using purified ABCA4
(despite the efforts of several groups). Retinal's ability to diffuse through membranes
without ABCA4's help has been confirmed by three studies that detected little or no role of
ABCA4 in all-trans retinal clearance or all-trans retinol formation after light bleaching [105,
114, 115]. Although the fraction of retinal transported to the cytoplasmic side of the disc
membrane by ABCA4 may be very small, this fraction is still detrimental in the long term if
not removed by ABCA4; this will be discussed later in ABCA4-associated human diseases.

Third, it was recently found using a novel lipid flippase assay that rhodopsin functions as a
lipid flippase with high efficiency but little specificity for lipid head groups [85]. Given its
high abundance in rod outer segment (90% of total protein) and its extreme high efficiency
as a lipid flippase [85], it is hard to image why the much lower-abundance ABCA4 is
needed. Since rhodopsin's lipid flippase activity does not depend on ATP, it would be
interesting to add ATP to observe ABCA4's activity in the same outer segment preparation
that demonstrated the rapid flippase activity of rhodopsin [85].

Fourth, ABCA4 is expressed in other tissues, which are not known to have high flux of
retinaldehyde like the photoreceptor cells after light bleaching (Figure 3). For example, in
situ hybridization and Western blot analysis showed that ABCA4 is expressed in the choroid
plexus [116], which is part of the blood brain barrier. What is the function of ABCA4 in
extraocular tissues? It was previously observed that both retinol and retinoic acid (but not
retinoid analog □-ionone) can stimulate the ATP hydrolysis of ABCA4, although they are
not as potent as retinaldehyde [106]. In addition to a retinoid transporter/lipid flippase,
another possibility is that in other tissues, ABCA4 functions similarly to ABCA1, its closest
homolog that functions in cholesterol and retinol efflux from cells [103, 104, 113].

2.2.2. Evolutionary roles—The evolutionary driving force for the emergence of a protein
may be best understood by comparing a system that depends on it and a similar system that
does not depend on it. Why does vertebrate vision depend on ABCA4, while invertebrate
vision does not? The ultimate reason may originate from a basic difference in the visual
pigments. Invertebrate visual pigments do not release their chromophore after light
absorption and can revert the chromophore back to the original state by subsequent light
absorption. Therefore, invertebrate visual pigments are called bistable pigments [117].
Invertebrate opsins can also function as light-dependent isomerase to convert retinal from
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the all-trans form to 11-cis form [118]. In contrast, vertebrate visual pigments release the
retinal chromophore after light bleaching. The consequence of this release (or instability
after light bleaching) is that there is a need to regenerate the released chromophore after
every photoisomerization reaction. For vertebrate visual pigments, the released chromophore
goes through a series of complex enzymatic reactions and transport events called the visual
cycle before it is converted back to the 11-cis retinal chromophore [119–122]. Although it
has generally been assumed that bistable pigments do not need a visual cycle to regenerate,
it was recently discovered that Drosophila does have enzymes involved in the regeneration
of visual chromophore [123]. Unlike vertebrate rhodopsins, Drosophila rhodopsin can be
internalized and degraded in a light-dependent manner. Although a bistable pigment does
not need chromophore regeneration after photoisomerization, Drosophila regenerates its
chromophore released from degraded rhodopsin, not bleached rhodopsin [123]. This
regeneration is important during nutritional deficiency.

Why does vertebrate vision use the kind of pigments that require much higher maintenance,
with a complex regeneration cycle after every photoisomerization event? Vertebrates do
have bistable opsins, such as parapinopsin in the lamprey pineal gland [124] and melanopsin
in the vertebrate retina [125]. Like invertebrate opsins, melanopsin can even form a
functional pigment with all-trans retinal due to its intrinsic isomerase activity [125, 126].
What are the advantages of the complex regeneration cycle for vertebrate visual pigments?
The first likely advantage is that they can be regenerated in complete darkness, unlike
bistable pigment, which depends on light to regenerate. A photoreceptor cell with a visual
pigment that can be regenerated in complete darkness can function better and continuously
in darkness at night. Invertebrates can also regenerate their pigment in the dark in the initial
formation of the bistable pigment [127]. The second likely advantage is spectral
discrimination. Although both vertebrates and invertebrates have color vision, a bistable
pigment that has two absorption maxima (one for activation and one for regeneration) may
be less precise than a pigment that has only one major absorption maximum for
distinguishing different wavelength of lights, which is the basis of color vision.

Given its essential role in vision, the vertebrate visual cycle has been the subject of intense
investigation. Most, but not all, components of the vertebrate visual cycle have been
identified [119]. ABCA4 is part of the vertebrate visual cycle. However, ABCA4 was an
unexpected and unknown link in the visual cycle because there was no previous biochemical
or physiological evidence for the existence of an ATP-dependent transporter for vitamin A-
derivative in vision. Specifically, there was no previous evidence that retinol dehydrogenase
needs the assistance from a transporter to provide its all-trans retinal substrate. As
mentioned above, even after the discovery of ABCA4, kinetic studies of all-trans retinal
clearance or all-trans retinol formation after light bleaching using ABCA4 knockout mice
have demonstrated that the vast majority of all-trans retinal released from rhodopsin does
not need ABCA4's help to pass through disc membranes to reach retinol dehydrogenase
[105, 114, 115]. Consistently, it has been extremely challenging to demonstrate transport or
flippase activity using purified ABCA4. What is the evolutionary driving force for the
existence of a transporter that is seemingly doing so little biochemically?

Compared to bistable pigments, vertebrate visual pigments have a serious downside.
Because the chromophore is released after every photoisomerization event, rhodopsin still
keeps on releasing retinal chromophore even in daylight when rod photoreceptors are
saturated and not functional for visual perception. Despite the fact that retinal can diffuse
through membranes by itself, the high flux of retinal in the vertebrae photoreceptor cells
during daytime can constantly generate such a high amount of all-trans retinal that it needs
ABCA4's help to completely pass through membrane so that it can be reduced to the less
toxic retinol form. All-trans retinal can activate rhodopsin independently of light [109, 110].
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Without ABCA4, the accumulated retinal increases the noise of photoreceptor cells and
delay dark adaptation. ABCA4's ability to accelerate dark adaptation [105, 128] is obviously
of immediate value to vertebrate survival. Dark adaption makes it possible for vision to
quickly adjust to much dimmer background light levels [129, 130]. For example, faster dark
adaptation can make a life and death difference for a caveman entering a dark cave with a
bear inside. Another likely driving force is ABCA4's contribution to reduced all-trans retinal
toxicity due to the large amount of all-trans retinal generated by photoreceptor cells in
daylight [131, 132].

2.2.3. Human diseases—Human diseases associated with ABCA4 are surprisingly
diverse (Figure 1). ABCA4 was first discovered as responsible for Stargardt macular
dystrophy, the most common form of early-onset macular degeneration [100]. ABCA4 has
also been implicated in retinitis pigmentosa [133–135] and cone rod dystrophy [135–137].
Genetic studies have linked both ABCA4 [138] and its closest homolog ABCA1 [139, 140]
to age-related related macular degeneration, the leading cause of blindness in the elderly.
Diseased-associated ABCA4 variants have been functionally analyzed [141, 142]. It is
generally hypothesized that the degree of loss of ABCA4 function determines the disease
association (Stargardt disease being the mildest, cone rod dystrophy a more severe form, and
retinitis pigmentosa the most severe form).

ABCA4 is the only gene known to be responsible for autosomal recessive Stargardt disease,
which is characterized by the loss of central vision, progressive atrophy of the RPE,
appearance of orange-yellow flecks around the macula, and dark adaptation defects [128,
143]. Histopathologically, it is characterized by massive accumulation of lipofuscin-like
material in the RPE. Stargardt disease is traumatic because of the suddenness in the loss of
central vision, normally around the teenage years. What's responsible for the sudden loss of
central vision? The key to this question might be the composition of the lipofuscin. Based on
the Stargardt disease phenotypes and the localization of ABCA4 in the photoreceptor outer
segment, it was hypothesized that the lipofuscin that accumulates in Stargardt disease
patients might be N-retinylidene-N-retinylethanolamine (A2E) [105, 106, 144], which is the
Schiff base reaction product of two retinaldehyde molecules and ethanolamine and was first
identified as a major component of the fluorophore associated with aging human eyes [145,
146]. This hypothesis is tightly linked to the proposed function of ABCR in eliminating all-
trans retinal released by bleached opsins, as described above. A2E formation is indeed
dramatically higher in ABCA4 knockout mice than the wild-type [105]. A2E has also been
detected in Stargardt disease donor eyes [147]. Visualization of A2E in Stargardt patients
using fundus autofluorescence imaging provided a potential clue as to why Stargardt disease
is manifested as macular degeneration [148, 149], even though ABCA4 is expressed in both
rod and cone photoreceptor cells [144, 150]. A2E formation due to the loss of ABCA4 is
another strong piece of evidence supporting its role in eliminating all-trans retinal, the
precursor to A2E.

Malfunction of ABCA4 leads to the accumulation of all-trans retinal and N-retinylidene-PE
in the photoreceptor outer segment [105]. Further condensation of all-trans retinal with N-
retinylidene-PE forms the precursors of A2E [146, 147]. A detailed biogenic pathway for
A2E formation has been proposed [146, 147]. Although A2E originates from the
photoreceptor outer segments, A2E accumulates in RPE cells through a process of daily
phagocytosis of the photoreceptor outer segments by the RPE cells [151, 152]. A2E is
structurally so unique that no lysosomal enzymes can degrade it. As a result, it gradually
accumulates in the RPE cells and this accumulation is irreversible because RPE cells cannot
get rid of it [147]. This gradual accumulation of A2E, a toxin, explains why it takes many
years for Stargardt patients to lose their sight and the suddenness of that loss. A2E mediates
its toxicity as a photooxidizer [153] and a detergent to destabilize membrane [153–155].
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A2E also impairs the phagocytic activity of the RPE cells [156] and inhibits retinoid
isomerase activity in the RPE cells as an additional means of toxicity [157]. A2E can induce
complement activation on RPE cells [158, 159]. Increased complement activation and
complement dysregulation due to A2E accumulation in RPE cells have recently been
demonstrated using ABCA4 knockout mice [160]. Given the origin of 2E from vitamin A,
A2E may be regarded as a new form of vitamin A-related toxicity: a vitamin A derivative
that the cell cannot get rid of. A2E (and its related compounds) is the first and only known
vitamin A derivative that has only toxic effects and no beneficial functions. In addition to
A2E, it was recently found that all-trans retinal accumulation alone can be sufficiently toxic
in the retina independently of A2E formation [131, 132].

One hallmark of A2E-related phenotypes is that they can be highly influenced by
environmental factors, such as light and retinoid levels. It was first discovered using ABCA4
knockout mice that A2E does not form without light [147]. A2E formation is also influenced
by retinoid levels. Vitamin A supplementation worsens A2E related phenotypes [161], while
vitamin A deficiency lessens the phenotypes [162]. Based on these findings, two general
strategies have been developed to reduce A2E levels: reduction of light exposure and
deceleration of the visual cycle. Both strategies have worked effectively in animal models
[147, 162, 163]. Other small-molecule based therapies [164] and gene therapy [165, 166]
have also been explored to treat ABCA4-associated diseases. Since one of the ultimate
reasons that A2E accumulates in RPE is that it cannot be degraded, another treatment
strategy is to develop an enzyme that can degrade A2E. It has been demonstrated that A2E
can indeed be degraded by an exogenous enzyme (horseradish peroxidase) [167]. Another
potential strategy is to grow bacteria on synthesized A2E [146, 168] as the sole carbon
source to select a “superbug” that evolves a means to degrade A2E.

2.3. STRA6: cellular uptake of vitamin A from the blood
2.3.1. Biological function—STRA6 was originally identified in cancer cells as a retinoic
acid-stimulated gene of unknown function [169, 170]. Through an unbiased strategy of
biochemical purification and mass spectrometry, it was identified as the membrane receptor
for plasma retinol binding protein (RBP) [171]. RBP is the principle vitamin A carrier
protein in the blood [172–178]. STRA6 binds to RBP with high affinity and mediates
cellular uptake of vitamin A from the vitamin A/RBP complex (holo-RBP) [171]. Consistent
with its role in vitamin A uptake, increasing STRA6 expression in cancer cells by retinoic
acid stimulation enhances cellular vitamin A uptake from holo-RBP. Conversely,
suppressing STRA6 expression in cancer cells or RPE cells suppresses cellular vitamin A
uptake [171], and knocking down STRA6 expression leads to decreased retinoid uptake in
the eye [179]. Generation and functional analysis of more than 900 STRA6 mutants have led
to the identification of an RBP binding domain in STRA6 [180]. Mutations in any of the
three essential residues in this domain are sufficient to abolish the RBP binding and vitamin
A uptake activity of STRA6 [180].

STRA6 is expressed in cells or tissues known to depend on vitamin A for proper function.
For example, STRA6 is highly expressed in the RPE cells and is specifically localized to the
basolateral membrane of the RPE cells [171], the exact cellular location expected of a
protein involved in taking up vitamin A from the choroidal blood [181] (Figure 2). Its
expression in the immune system is consistent with the role of vitamin A in immune
regulation and in preventing infectious diseases [9, 182, 183]. STRA6 is highly expressed in
the placenta, which is essential for fetal absorption of vitamin A for embryonic development
[178]. STRA6's expression in the brain is consistent with known neuronal functions of
vitamin A [10, 11, 184] including recently discovered roles in controlling neuron generation
[185] and synaptic protein translation [26, 27]. In general, STRA6 localizes primarily but
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not exclusively to blood/organ barriers such as blood/retina barrier, blood/brain barrier and
maternal/fetal barrier [169, 171]. Both human and animal studies have shown that loss of
STRA6 function can lead to severe defects in multiple organs [179, 186, 187]. Human
diseases associated with STRA6 mutations will be discussed in detail below.

A number of studies in the past have shown that vitamin A uptake mediated by the RBP
receptor does not depend on endocytosis of RBP [181, 188–195]. Consistently, STRA6 has
nine transmembrane domains [196], unlike endocytosis receptors which often are single-
transmembrane domain proteins. STRA6-mediated vitamin A uptake does not depend on
endocytosis of RBP [171]. STRA6's mechanism is highly specific. It mediates retinol uptake
only if retinol is bound to RBP, and does not mediate retinol uptake if retinol is bound to
BSA or to □-lactoglobulin, a milk retinol binding protein [171].

STRA6 is not homologous to any membrane receptors, transporters or channels of known
function, and its sequence provides no clue as to its substrate uptake mechanism. Because
STRA6-mediated vitamin A uptake does not depend on cellular energy [171], its substrate
uptake mechanism is also not primary or secondary active transport. Because STRA6's
substrate, retinol, is not free, has no charge, and can only be provided one molecule at a time
by RBP, STRA6's mechanism is also distinct from channels or facilitated transporters,
which are driven by an electrochemical gradient of the free substrate. STRA6's mechanism
is further complicated by the high affinity interaction between retinol and RBP, its
dependence on both RBP binding to deliver retinol and RBP dissociation for the next RBP
to bind, and the involvement of intracellular proteins [171]. Therefore, STRA6's mechanism
cannot be explained by a known cellular uptake or membrane transport mechanism.

As a new type of multitransmembrane domain protein that has just been studied functionally
for a few years, it is not surprising that there are a lot of questions regarding STRA6. The
following lists some questions about STRA6's vitamin A uptake mechanism:

2.3.1.1: We [171] and other investigators [179, 197] have found that LRAT stimulates
STRA6's vitamin A uptake activity. What is the nature STRA6's vitamin A uptake activity
without LRAT? If STRA6 can take up vitamin A without LRAT, why does LRAT stimulate
its activity? If STRA6 cannot take up vitamin A (by itself) without LRAT, is STRA6 only a
receptor for RBP and does it play any role in vitamin A uptake other than being a receptor
for RBP? STRA6 is not an enzyme that can convert retinol to retinyl esters. What is the role
of STRA6 in STRA6/LRAT-mediated retinyl ester accumulation? LRAT is localized
intracellularly in the ER [198] and cannot physically interact with extracellular RBP.

2.3.1.2: Is LRAT the only protein that can stimulate STRA6's vitamin A uptake activity? If
LRAT stimulates retinol uptake because of its ability to store vitamin A, do the cell
membranes, which have larger capacity to store retinol, also stimulate retinol uptake? It has
been proposed in many previously published hypothetical models of RBP receptor
mechanism that cellular retinol binding protein (CRBP) may play an important role in RBP
receptor-mediate retinol uptake? This hypothesis is reasonable given the known ability of
CRBP-I to supply retinol for LRAT [199, 200]. There are several CRBPs. Can all CRBPs
stimulate STRA6's retinol uptake activity? What's the difference between CRBP and LRAT
in stimulating vitamin A uptake by STRA6? Why can LRAT stimulate STRA6's vitamin A
uptake activity independently of CRBP?

2.3.1.3: Although LRAT can stimulate STRA6's retinol uptake activity, it was discovered
previously that STRA6 and LRAT cannot take up retinylamine from the retinylamine/RBP
complex [197] or retinoic acid from the retinoic acid/RBP complex [179]. These
experiments demonstrated that LRAT is not a general stimulator of STRA6's activity. It is

Sun Page 9

Biochim Biophys Acta. Author manuscript; available in PMC 2013 January 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



known from previous studies [179, 197, 201, 202] that RBP can bind other retinoids in
addition to retinol, although retinol is its natural ligand [172, 173]. Is it still possible for
STRA6 to take up other retinoids bound to RBP? Answer to this question can also provide
clues to STRA6's mechanism.

2.3.1.4: Without knowing STRA6's mechanism, LRAT's stimulatory effect on STRA6 as
observed by us [171] and other investigators [179, 197] suggests that LRAT may “drive”
vitamin A uptake into the cell. However, it has been demonstrated that the reverse reaction
of vitamin A loading into extracellular apo-RBP still happen in the presence of LRAT [179].
If LRAT drives cellular vitamin A uptake, how does it permit cellular vitamin A loss? One
hypothesis to explain retinol loss instead of uptake in the presence of LRAT is that retinyl
ester hydrolase [203] present in certain cell types can prevent LRAT from enhancing
STRA6's retinol uptake activity to make it possible for partial retinol loss to occur.

2.3.1.5: There are a few interesting questions regarding retinol loading into apo-RBP, since
this is a possible mechanism for cells to lose retinoid store. If STRA6 encounters both holo-
RBP and apo-RBP, does it mediate cellular vitamin A uptake or cellular vitamin A loss?
Does the reverse reaction of vitamin A loading into apo-RBP happen in human blood, which
contains mostly holo-RBP and a small fraction of apo-RBP [204] because of the active
removal of apo-RBP through kidney filtration? If STRA6 mediates cellular vitamin A loss
when it is exposed to the blood, how does it function as the RBP receptor to mediate cellular
vitamin A uptake?

2.3.1.6: Scavenger receptor class B, type I (SR-BI) is the receptor for HDL that mediates
cellular cholesterol uptake [205]. Mechanistically, STRA6 is perhaps most similar to SR-BI
because both membrane proteins take up molecules bound to extracellular carrier proteins
(RBP or HDL) without endocytosis. Is STRA6's mechanism the same as SR-BI's
mechanism? STAR6 is completely unrelated to SR-BI at the sequence level. STRA6 has 9
transmembrane domains [196], while SR-BI has two [206, 207].

Current research aims to address above questions on STRA6's vitamin A uptake mechanism
(unpublished results).

2.3.2. Evolutionary roles—The RBP/STRA6 system of vitamin A delivery is by no
means the only possible mechanism for cells or tissues to obtain vitamin A. In some sense, it
is surprising that STRA6 (or RBP) exists because there are theoretically much simpler
mechanisms to deliver vitamin A or retinoid. First, retinoids clearly have the ability to
diffuse systemically by themselves. For example, retinoid-based drugs can be targeted to
any organ by random diffusion. Retinoid can “hitchhike” to abundant serum proteins like
serum albumin, which binds many small molecules promiscuously, to be transported in the
blood. In contrast, each RBP can only bind and deliver one vitamin A molecule and seems
to exist primarily for this purpose. Surprisingly, virtually all vitamin A in the blood is bound
to RBP under physiological conditions, not to the much more abundant serum albumin.
Second, for RBP, why does it need a specific receptor like STRA6 instead of leaking retinol
randomly into tissues? Due to its hydrophobicity, retinoid has the ability to pass through
membranes without any assistance from a protein.

Evolution came up with the specific vitamin A delivery system (from liver store to RBP to
STRA6 on target cells or tissues) for targeted delivery of vitamin A to achieve high
specificity and efficiency and to prepare for deficiency. An analogy for the liver/RBP/
STRA6 system of vitamin A delivery is water delivery to a house. In this analogy, the liver
is the water reservoir and treatment plant. RBP is essential in mobilizing the liver-stored
vitamin A [208] and serves as a buffer to maintain stable vitamin A concentration in the
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blood [175]. The buffering function is important to avoid the adverse effects of both low and
high retinoid on the growth and function of diverse organs. Without this buffering function,
blood retinoid level would fluctuate dramatically depending on dietary intake. STRA6 binds
to RBP with high specificity and affinity [171] and is analogous to the water taps in each
house that control water intake. Without water taps that serve to control the outflow, water
flowing out randomly would be both wasteful and cause damage. If a nonspecific
mechanism were always available (rain or flooding), this specific delivery system would not
be essential for survival. However, most, if not all, animals living in natural environments
lack continuous access to vitamin A (some don't eat anything for months at a time). In
addition to surviving deficiency, the specific mechanism also is much less wasteful and
minimizes the damage and side-effects caused by nonspecific mechanism (rain or flooding).

Cellular signaling through retinoids occurs in a precise spatiotemporal manner, and random
distribution of retinoids can have toxic effects. The short and long-term toxic side effects
caused by random retinoid diffusion are illustrated by toxicity of retinoid drugs such as
Accutane that diffuse randomly and are delivered independently of the RBP/STRA6 system
[209–211]. Experiments done more than 30 years ago in an animal model [212] and a study
of human patients with hypervitaminosis A [213] have shown that more toxicity is
associated with vitamin A delivery independent of RBP. An excessive dose of vitamin A is
toxic only when the level of vitamin A in the circulation is so high that it is presented to
cells in a form other than bound to RBP, such as in retinyl esters [172]. An increase of 10%
in retinyl ester is regarded as a sign of vitamin A overload. Toxicity associated with
excessive retinoid has also been recently demonstrated using knockout mouse models [131,
132]. Toxicity of excessive endogenous free retinal has also been demonstrated in the
Drosophila visual system [214].

STRA6 is a relatively recent “invention” by evolution. Like ABCA4, STRA6 only exists in
vertebrates, not in lower organisms. The likely reason to explain the “invention” of STRA6
for vertebrates is that vertebrates use vitamin A for other biological activities such as
regulating gene transcription in addition to light sensing. Invertebrates do not need RBP or
STRA6 perhaps because precise delivery of vitamin A is unnecessarily complex and costly
(in the sense that one RBP only delivers one vitamin A molecule). Random diffusion of
retinoid would have much less toxicity if retinoids were not capable of regulating the
transcription of hundreds of genes (as in the case of vertebrates). Although invertebrates
don't need RBP or STRA6 for vitamin A delivery, they have developed specific mechanism
for dietary carotinoids transport. Interestingly the uptake mechanism of □-carotene is shared
between the invertebrate and the vertebrate and is mediated by the SR-BI family of receptors
[113, 215–218]. One possible explanation is that □-carotene is not as membrane permeable
as retinol and requires assistance to efficiently pass through cell membranes.

2.3.3. Human diseases—Consistent with the diverse and critical functions of vitamin A,
STRA6 mutations cause a wide spectrum of pathological phenotypes including the absence
of eyes (anophthalmia), mental retardation, congenital heart defects, lung hyperplasia,
intrauterine growth retardation and embryonic lethality [186, 187, 219–224]. STRA6 is the
first example of a retinoid signaling pathway gene whose mutations cause developmental
abnormalities in humans [13]. The severe phenotypes caused by STRA6 mutations
suggested that there might be less redundancy in vitamin A transport mechanisms than other
aspects of retinoid signaling in humans. Redundancy is necessary to ensure that backup
mechanisms take over when one mechanism fails. However, the great variability in
phenotypes associated STRA6 mutations, as discussed below, suggests that there is
redundancy in vitamin A transport as well. Human mutations identified in STRA6 belong to
two categories: large deletions and point mutations. All human disease-associated point
mutations that have been analyzed abolish STRA6 cell-surface expression, RBP binding and
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vitamin A uptake activity [180]. Consistently, retinoid analysis showed that knockdown of
STRA6 in zebrafish led to decreased tissue retinoid uptake [179].

One hallmark of STRA6 mutations in humans is the tremendous phenotypic variability of
pathological phenotypes ranging from embryonic lethality to “mild” eye-specific phenotype,
although the eye phenotype is shared by all patients surviving to birth [186, 187, 219–224]
(Figure 1). In fact, this is perhaps one of the most extreme examples of phenotypic
variability ever known to be caused by mutations of one single human gene. The variability
of STRA6 mutation phenotypes in humans is likely caused by variable degrees in the loss of
STRA6 function (genetic factor) and the variability in vitamin A intake of the affected
individuals (environmental factor). It's well established that vitamin A intake alone (either
insufficient or excessive) is sufficient to cause severe developmental defects without any
genetic contribution. RBP/STRA6 independent mechanisms of retinoid delivery (e.g., serum
albumin bound retinoid independent of liver storage if retinoid intake is sufficiently large)
may take over in the absence of RBP or STRA6. But as shown by the extreme severe
phenotypes such as embryonic lethality, such a random mechanism often does not work.
Without the RBP/STRA6-mediated specific delivery system, an individual is at the “mercy”
of the environmental factor by completely depending on constant but not excessive dietary
vitamin A intake. As discussed in the above section, problems associated with random
mechanisms are what make it necessary to evolve RBP/STRA6 in the first place.

Although currently there is no evidence for its existence, another interesting possibility to
account for phenotypic variability are genetic modifiers. For examples, genetic modifiers
have been identified to explain the phenotypic variability of cystic fibrosis [225, 226],
another human disease that affects the lung (STRA6 mutation can lead to lung hypoplasia).
If variability in dietary intake of vitamin A is wholly responsible for the phenotypic
variability, constant supplement of the appropriate amount of vitamin A could potentially
lessen the severity of the disease. As illustrated by ABCA4, a disease heavily influenced by
an environmental factor can be targeted for treatment by changing the environmental factor,
which is usually easier to modify than genetic factors.

It is well known that different tissues are very different in their vulnerability to vitamin A
deficiency and excess. It is notable that the eye is the organ most sensitive to STRA6
mutations. This is consistent with the fact that the eye is the organ that most depends on
vitamin A for both adult physiological function [119, 120, 227] and for embryonic
development [228] and therefore is most sensitive to vitamin A deficiency.

3. General lessens learned from the visual cycle
Because of the dependence of human beings on vision, our high sensitivity to vision defects,
and vision's absolute dependence on vitamin A, vision research has offered a wealth of
information of the mechanisms of vitamin A related proteins, despite the fact that both the
photoreceptor cells and the RPE cell are extremely rare cell types in the body as a whole. All
three kinds of membrane proteins described here are involved in the visual cycle, which is
perhaps the best understood retinoid transport and recycling system. Mechanistic studies of
the visual cycle have generated some likely general principles on retinoid transport, storage
and usage:

3.1. Storage vs. usage
A cell that needs vitamin A for physiological function is likely not the cell that takes up
vitamin A from the blood. This is clearly the case for vision (Figure 2). The RPE cell is
known to express STRA6, which takes up vitamin A from the blood, and to store a large
quantity of vitamin A as retinyl esters, but ultimately the cell type that needs vitamin A is
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photoreceptor cell. This principle may also apply to the brain. Blood-brain barriers like the
choroid plexus, meninges, and a subset of astrocytes express STRA6 at high levels. It was
recently demonstrated that the meninges are the source of retinoic acid for corticogenesis
[185]. Despite the many known physiological functions of retinoic acid on neuron [10, 11],
STRA6 is not known to be expressed in brain neurons, which, like photoreceptor cells in the
retina, are not directly exposed to the blood. There might exist a local delivery system
equivalent to the visual cycle to deliver retinoid from cells at the blood brain barrier to
neurons.

3.2. Protein bound form vs. free form
Despite the fact that retinoids other than retinyl esters predominantly exist as protein bound
forms (e.g., RBP or CRBP), free retinoid does exist under physiological conditions, at least
transiently. For example, free retinol is generated by reduction of retinal following light
bleaching of rhodopsin at the beginning of the visual cycle. The retinol intermediate of the
visual cycle, which eventually moves out of the photoreceptor cell into the RPE cell, was
first discovered about 40 years ago [229]. This transient form of free retinol can be
visualized in the photoreceptor cell following light bleaching using sensitive fluorescence
microscopy [230, 231]. Although the retinal chromophore is supposed to be covalently
bound to opsins, biochemical and electrophysiological studies have demonstrated that the
free retinal chromophore gets exchanged between opsin molecules [232, 233]. How protein-
mediated transport and free diffusion is balanced in each organ or cell context need to be
further studied. For example, is the morphogenic gradient of retinoic acid during embryonic
development in its free form, the protein bound form (CRABP), or both?

3.3. Environmental factors and human diseases
Retinoid related diseases can be substantially influenced by environmental factors. Both
ABCA4 and STRA6-related human diseases can be influenced by environmental factors. In
the case of ABCA4, environmental factors such as light can have a huge impact. Without
light, the vitamin A-related toxin A2E does not even form in animal model of Stargardt
disease, despite the knockout of the gene [147]. Loss of ABCA4 phenotype is also
influenced by retinoid levels [162]. This lesson makes it necessary to control environmental
factors that influence overall or tissue-specific retinoid levels, especially diet [234], in
designing experiments and to understand human disease phenotypes. Phenotypes associated
with loss of STRA6 are also highly variable in humans, ranging from embryonic lethality to
the “mild” phenotype of anophthalmia [186, 187, 219–223]. As discussed above,
environmental factors such as dietary intake of vitamin A likely contribute to the high
phenotypic variability.

3.4. Seemingly small contributions can be critical
Despite the overwhelming amount of independent experimental evidence for the
biochemical function of ABCA4 in transporting alltrans retinal for its reduction to all-trans
retinol, little or no change in either the clearance of alltrans retinal or the production of all-
trans retinol was observed in ABCA4 knockout mice [105, 114, 115]. These in vivo
experiments demonstrated that ABCA4 contributes little to retinal transport compared to
what retinal can do by itself. These surprising findings illustrate an important lesson that a
protein might only affect retinoid transport slightly, but this activity can be sufficiently
important to justify its existence. Human retinal diseases associated with ABCA4 mutations
demonstrate that loss of such as a seemingly “slight” contribution has serious consequences
(e.g., delayed dark adaptation and toxic A2E accumulation).
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3.5. Passive diffusion vs. active or facilitated transport
Despite its ability to diffuse through membrane, retinoid transporters do exist to facilitate its
transport. In addition to ABCA4's function described above, ABCA4's closest homolog,
ABCA1, is involved in retinol efflux in small intestine cells [235]. SR-BI, which was first
identified as a HDL receptor mediating cholesterol uptake [205], has been shown to mediate
beta-carotene uptake in the small intestine [113, 218]. As mentioned above, SR-BI
homologs in Drosophila also mediate carotenoid uptake [215–217].

3.6. Need vs. cost
For a biological need (e.g., higher sensitivity or specificity), evolution may come up with a
seemingly costly and complex mechanism instead of using a theoretically simpler
mechanism. One example in retinoid biology is the vertebrate visual pigment, which is
unstable after light absorption and needs to be regenerated after every photoisomerization
event. It is amazing to realize that as we see the world, every photon we detect depends on
the regeneration of the bleached chromophore through the complex visual cycle consisting
of several retinoid-related enzymes, transport proteins and binding proteins. In bright light
when rod vision is saturated and not useful, the continuous regeneration of rhodopsin
through this complex cycle may even be considered “wasteful”. As discussed above, the
choice of this unstable pigment may be advantageous because the pigment can be
continuously regenerated in complete darkness and may have better resolution in spectral
sensitivity. Another example in retinoid biology is the delivery of vitamin A. Although
retinoid can diffuse systemically, evolution came up with a specific vitamin A delivery
protein in the blood (RBP) and its receptor (STRA6) for vitamin A uptake. Instead of
employing the highly abundant serum albumin, which is capable of binding to vitamin A,
virtually all vitamin A in the blood is bound to RBP. Although this choice is seemingly
costly because each RBP can only bind one vitamin A molecule, it has the advantages
discussed above.

3.7. There exist vitamin A derivatives that have only toxicity and no beneficial function
A2E and related compounds are the only known examples. Most, if not all, other known
vitamin A derivatives (e.g., alcohol, aldehyde or ester forms) have beneficial biological
functions. The biological functions of less common vitamin A derivatives such as
retinoylation of proteins [236] are still not well understood.

4. Unsolved questions
Despite what we have learned, there are still numerous interesting questions that remain
unanswered. Addressing these questions will lead to better understanding of retinoid biology
and retinoid-related human diseases and potentially lead to the development of new
therapies for human diseases. In addition to questions raised in previous sections, other
examples are listed below:

4.1. How does the liver sense RBP concentration in the blood to maintain its stable
concentration under physiological conditions to prevent excessive secretion or
insufficient secretion? This question also applies to the adipose tissue, another
major site of vitamin A storage. Excessive secretion of RBP has been linked to
insulin resistance [237]. Is there a membrane receptor that senses blood RBP
concentration to control its secretion?

4.2. Under physiological conditions, the blood maintains micromolar concentrations
of holo-RBP STRA6 can efficiently take up vitamin A from nanomolar holo-
RBP concentrations. If STRA6 takes up vitamin A from the blood continuously,
a STRA6-expressing cell would become bloated with vitamin A in days if not
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months. What are the mechanisms that control cellular vitamin A uptake by
STRA6 to prevent excessive uptake?

4.3. STRA6 was first identified as a retinoic acid-stimulated gene in cancer cells
[169, 170, 238] Certain cancer cells have more than 100 fold higher STRA6
expression levels than normal cells [170]. What is the role of STRA6 in cancer
cells? Retinoid can both enhance and suppress cell growth. Is STRA6's role
positive or negative for cancer cells? This knowledge may be useful in targeting
cancer cells.

4.4. Are there other receptors and transporters for retinoid? There is strong evidence
for the existence of a receptor for interphotoreceptor retinoid binding protein on
RPE cells that mediates the export of 11-cis retinal produced by the RPE [239,
240]. The identity of this receptor is still unknown.

4.5. There exists a homolog of STRA6, the RBP receptor What is the function of the
STRA6 homolog [241]? Is it also involved RBP binding or retinoid uptake?

4.6. Humans also have an orphan GPCR that is rapidly induced by retinoic acid
[242]. Is it involved in retinoid biology?
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Figure 1.
Human membrane receptors and transporters discussed in this review that mediate the
function and transport of vitamin A and its derivatives. The transmembrane topologies of
these proteins are depicted in the upper picture. Rhodopsin is depicted in the picture as an
example for opsins. Physiological functions, likely evolutionary driving forces, and human
diseases associated with these proteins are presented in the lower picture.
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Figure 2.
Retinoid-related membrane receptors and transporters in the RPE and photoreceptor outer
segment are localized to highly specific cellular structures. Rhodopsin is localized to both
the disc membrane and the plasma membrane of the photoreceptor outer segment. ABCA4
is localized only to the disc membrane of the outer segment. It is unclear why rhodopsin is
expressed on the plasma membrane where there is no ABCA4. Peropsin is localized to the
apical microvilli of the RPE cell surface. RGR is localized to the internal membrane of the
RPE cells. STRA6 is localized to the basolateral membrane of the RPE cells.
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Figure 3.
Distribution of retinoid-related membrane receptors and transporters in human and mouse
tissues. The intensity of the ovals indicates the abundance of each message as suggested by
EST (Expressed Sequence Tag) counts recorded by NCBI's EST Profile Viewer. The
absence of the oval for a particular tissue means no detectable expression. Abundant
expression from rare cell types, such as the RPE cells, may be underrepresented in this
analysis.
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