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Abstract

Aims: Heme oxygenase-1 (HMOX1) is a cytoprotective enzyme degrading heme to biliverdin, iron ions, and
carbon monoxide, whose expression is induced in response to oxidative stress. Its overexpression has been
suggested as a strategy improving survival of transplanted muscle precursors. Results: Here we demonstrated
that HMOX1 inhibits differentiation of myoblasts and modulates miRNA processing: downregulates Lin28 and
DGCRS, lowers the total pool of cellular miRNAs, and specifically blocks induction of myomirs. Genetic or
pharmacological activation of HMOX1 in C2C12 cells reduces the abundance of miR-1, miR-133a, miR-133b, and
miR-206, which is accompanied by augmented production of SDF-1 and miR-146a, decreased expression of
MyoD, myogenin, and myosin, and disturbed formation of myotubes. Similar relationships between HMOX1
and myomirs were demonstrated in murine primary satellite cells isolated from skeletal muscles of HMOX1*/,
HMOX1*/~, and HMOX1~/~ mice or in human rhabdomyosarcoma cell lines. Inhibition of myogenic devel-
opment is independent of antioxidative properties of HMOX1. Instead it is mediated by CO-dependent inhi-
bition of ¢/EBP¢ binding to myoD promoter, can be imitated by SDF-1, and partially reversed by enforced
expression of miR-133b and miR-206. Control C2C12 myoblasts injected to gastrocnemius muscles of NOD-SCID
mice contribute to formation of muscle fibers. In contrast, HMOX1 overexpressing C2C12 myoblasts form fast
growing, hyperplastic tumors, infiltrating the surrounding tissues, and disseminating to the lungs. Innovation:
We evidenced for the first time that HMOX1 inhibits differentiation of myoblasts, affects the miRNA processing
enzymes, and modulates the miRNA transcriptome. Conclusion: HMOX1 improves the survival of myoblasts,
but concurrently through regulation of myomirs, may act similarly to oncogenes, increasing the risk of hyper-
plastic growth of myogenic precursors. Antioxid. Redox Signal. 16, 113-127.

Introduction

GROWTH AND REGENERATION of skeletal muscles are ac-
complished by satellite cells, located beneath the basal
lamina of muscle fibers. Under normal conditions, the satellite
cells remain quiescent, but upon muscle damage they convert
to proliferating myoblasts, which differentiate, fuse into
multinucleated myocytes, and form new muscle fibers or in-
crease the size of preexisting ones (4).

Activation of satellite cells is governed by myogenic de-
termination factor-1 (MyoD), myogenin, myogenic factor-5

(Myf5), and myogenic factor-6 (Myf6), known as the muscle
regulatory factors (MRFs). Early stages of development are
characterized by induction of Myf5 and MyoD (4). Myf5 leads
to rapid myoblast proliferation (32), while upregulation of
MyoD results in cell cycle arrest and transition from prolif-
eration to differentiation stage. Together with myocyte en-
hancer factor-2 (MEF2), MyoD induces expression of
myogenin and Myf6, the proteins specific for terminal stages
of development (4, 32). Finally, the mature muscles increase
the level of myosin heavy chain (MHC) and creatine phos-
phokinase (CPK) (4).
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Innovation

This work demonstrates for the first time that HO-1,
a cytoprotective, heme-degrading enzyme, potently
inhibits differentiation of myoblasts and can act simi-
larly to oncogenes. These effects depend on HO-1 en-
zymatic activity and are mediated by HO-1-derived
carbon monoxide, which inhibits cEBP6 binding to the
MyoD promoter. Induction of HO-1 is also associated
with upregulation of SDF-1, and its influence can be
mocked by incubation of myoblasts with exogenous
SDF-1. Accordingly, after intramuscular transplanta-
tion to murine gastrocnemius muscle, the HO-1
overexpressing myoblasts form hyperplastic, undiffer-
entiated tumors, infiltrating healthy tissue, and
spreading to the lungs.

Additionally, it demonstrates for the first time that
HO-1 affects microRNA transcriptome, downregulating
Lin28 and DGCRS, the miRNA processing enzymes, and
reducing the total pool of miRNA. Among ~ 18% miR-
NAs differentially expressed, the most profound inhibi-
tory effect was found for miRNA involved in myoblast
differentiation: miR-1, miR-133a, miR-133b, and miR-
206. Moreover, enforced expression of miR-206 and mir-
133b partially reversed the effect of HO-1.

This study not only broadens the understanding of
biological significance of HO-1, but also suggests new
molecular mechanisms involved in regeneration of
muscles and development of rhabdomyosarcoma.

MRFs and MEF2 control the generation of myomirs, a set
of conserved microRNAs (miRNAs) specific for skeletal or
cardiac muscles, such as miR-1, miR-133a, miR-133b, and
miR-206 (34), which function by fine-tuning the output of
MREF network. Temporal upregulation of myomirs negatively
regulates the target genes, and is necessary for proper muscle
development (45). On the other hand, miR-1 and miR-206
attenuate proliferation and promote myoblast differentiation
via activation of MRFs (5, 39). Their induction is associated
with increased expression of MyoD, myogenin, MHC, or
CPK, and with fusion of myoblasts (17), whereas inhibition is
related to development of rhabdomyosarcoma (47).

Understanding the mechanisms of myoblast differentiation
may help in establishing cell therapies. Although it has been
proven that muscle progenitors are able to incorporate into
host tissue, the final outcomes of clinical trials have been ra-
ther disappointing, mainly because of massive cell death soon
after transplantation (40). It appears that genetic modification
of progenitor cells can improve their survival (41). Upregu-
lation of heme oxygenase-1 (HMOX1) has been proposed as a
potential approach to improve the viability of muscle pre-
cursors or cardiac grafts (20, 26, 31, 51).

Enzymatic activity of HMOX1 attenuates oxidative stress, in-
creases cell survival, and influences cell cycle, acting through
degradation of pro-oxidative heme to carbon monoxide (CO),
ferrous ions, and biliverdin (25). The cytoprotective and anti-
apoptotic effects of HMOX1 have been demonstrated in different
cell types exposed to reactive oxygen species (ROS) or proin-
flammatory cytokines (12). Furthermore, HMOX1 upregulates
expression of vascular endothelial growth factor (VEGEF) (8, 15),
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and is necessary for proper function of stromal cell-derived factor-1
(SDF-1) (7). Beneficial effects of HMOX1 have been shown in cu-
taneous wounds, tissues subjected to ischemia-reperfusion injury,
and in transplanted organs (13, 48). Nothing is known, however,
about the role of HMOX1 in differentiation of muscle precursors.

Our aim was to examine whether overexpression of
HMOX1 may improve the survival of myoblasts after intra-
muscular transplantation in mice and to investigate the role of
HMOX1 in myoblast differentiation.

Results
Cytoprotective potential of HMOX1

To check whether HMOX1 improves survival of myoblasts,
we used C2C12 murine myoblast cell line expressing green
fluorescent protein (GFP) and luciferase (C2C12-Luc-GFP),
and overexpressing HMOX1 (C2C12-Luc-GFP-HO1). Stable
upregulation of HMOX1 was confirmed by mRNA, protein,
and enzymatic activity measurements (Supplementary
Fig. S1; Supplementary Data are available online at www
Jdiebertonline.com/ars).

As expected, overexpression of HMOXI1 led to decreased
generation of ROS. The same effect was produced by supple-
mentation of control cells with N-acetylcysteine (NAC) (Supple-
mentary Fig. S2A). HMOX1 was also cytoprotective, improving
the survival of cells exposed to HO, and enhancing their serum-
induced proliferation (Supplementary Figs. S2B and S2C).

Effect of HMOX1 on survival of intramuscularly
transplanted cells

To examine whether HMOX1 overexpression improves cell
survival in vivo, we injected C2C12-Luc-GFP and C2C12-Luc-
GFP-HO1 myoblasts into gastrocnemius muscles of NOD/
SCID mice (250,000 cells per muscle). As shown in Figure 1A,
the transplanted cells-derived luciferase activity was easily
detectable at the sites of injection. Importantly, in the C2C12-
Luc-GFP-injected animals, it remained at a constant level
during the experiment, whereas in animals injected with
C2C12-Luc-GFP-HOL1 cells, it rapidly grew up (Figs. 1A and
1B). As a consequence, 3 weeks after transplantation the legs
of all animals injected with HMOX1 overexpressing myo-
blasts were deformed, rigid, and filled with tumor-like
structures. Mice stopped walking and had to be euthanized
on day 22. In the same time, all animals injected with C2C12-
Luc-GFP cells behaved normally and did not show any
deformations.

Measurements of luciferase activity in tissue lysates con-
firmed a tremendous difference between the growth of
C2C12-Luc-GFP and C2C12-Luc-GFP-HOL1 cells in gastroc-
nemius muscles (Fig. 1C). Additionally, in the animals in-
jected with HMOX1 overexpressing myoblasts, we detected a
weak but measurable signal in the lungs (Fig. 1D), which
suggests that cells can disseminate out of the site of injection.

Histological analysis of paraffin sections prepared from
muscles injected with C2C12-Luc-GFP cells showed the nor-
mally looking mature myofibers in all specimens on the 11"
or 22 day of experiment (Fig. 1E1). In contrast, muscles in-
jected with C2C12-Luc-GFP-HOL1 cells contained also large
areas of undifferentiated, hyperplastic tumors (Fig. 1E2), in-
filtrating healthy tissue (Figs. 1E3 and 1E4). Such tumors were
visible in 2 of 5 individuals sacrificed on day 11, and in all
5 individuals sacrificed on day 22. In some samples, the
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FIG. 1. Effect of HMOX1
overexpression on survival
and proliferation of myo-
blasts transplanted intramus-
cularly to the gastrocnemius
muscle of NOD/SCID mice.
(A) Luciferase activity moni-
tored in vivo using IVIS Lumi-
na system. Images show the
same individuals analyzed at
27, 11", and 22" day of ex-
periment (blue: low intensity;
red: high intensity). (B) Quanti-
fication of IVIS measurements.
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of proliferating cells by immunofluorescent staining of PCNA (red) 11 and 22 days after cell transplantation. Nuclei were
visualized with DAPI (blue). Representative pictures. Each point or bar represents mean + SEM of 5-10 animals (B) or 5 animals (C,

D, G); *p<0.05, *p <0.01, ***p <0.001 vs. C2C12-Luc-GFP cells.

adipogenic (Fig. 1E5) or chondro-osteogenic (Fig. 1E6) accu-
mulations were observed, suggesting that HMOX1 over-
expression inhibits myoblast differentiation or directs it
toward chondro-osteogenic and adipogenic lineages. Im-
munohistochemical staining for GFP confirmed that both
transplanted cell lines contributed to formation of muscle fi-
bers (Fig. 1F). This process seemed to be less effective in the
case of HMOX1 overexpressing cells, which formed the
strongly GFP-positive hyperplastic areas (Figs. 1F3 and 1F4).
Finally, C2C12-Luc-GFP-HO1 myoblasts proliferated more
intensively, as demonstrated by calculating the mitotic index

(Fig. 1G) or by detection of proliferating cell nuclear antigen
(PCNA)-positive cells (Fig. 1H).

Real-time PCR analysis, carried out on the 2 day of
experiment, confirmed the high level of HMOX1 mRNA in
muscles injected with C2C12-Luc-GFP-HO1 myoblasts
(Supplementary Fig. S3A). Interestingly, it was accompanied
by significant upregulation of SDF-1, and by reduced ex-
pression of MyoD (Supplementary Figs. S3B and S3C). Ex-
pression of myogenin was similar in muscles injected with
control and HMOX1 overexpressing cells (Supplementary
Fig. S3D).

21’\d
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Effect of HMOXT1 overexpression on cell differentiation

In vivo analysis suggested that HMOX1 overexpression
may influence myoblast maturation. Therefore in the next set
of experiments, we compared the differentiation process in-
duced in vitro by incubation of cells for 5 days in media sup-
plemented with 2% horse serum (differentiation medium,
DfM) instead of 10% fetal calf serum (growth medium, GrM).
Indeed, formation of elongated, multinucleated myotubes,
well visible in control C2C12-Luc-GFP cell cultures, was
completely blocked in HMOX1 overexpressing cells (Fig. 2A).
Also DfM-induced upregulation of CPK activity was pro-
hibited by HMOX1 overexpression (Fig. 2B). On the other
hand, C2C12-Luc-GFP-HO1 myoblasts produced much more
SDEF-1, a chemokine involved in regulation of myogenesis. In
GrM they displayed a slight (~30%) increase in SDF-1 mRNA,

which became profound (~19-fold) in cells cultured in DfM
(Fig. 2C). These effects were reversed by HMOXI1-specific
siRNA (data not shown).

Differentiation of control cells cultured in DM was confirmed
by upregulation of all markers tested: Mef2, Myf5, Myf6, MyoD,
myogenin, and MHC (Figs. 2D-2I). Similar levels of gene ex-
pressions were observed in C2C12-Luc-GFP-HO1 cells for early
markers Mef2 and Myf5 (Figs. 2D and 2E) and for Myf6, the gene
forming a cluster with Myf5 (1) (Fig. 2F). In contrast, expression
of MyoD, myogenin, and MHC was almost completely abro-
gated in HMOX1 overexpressing myoblasts cultured either in
GrM or in DIM (Figs. 2G-2I). Inhibition of enzymatic activity of
HMOX1 in C2C12-Luc-GFP-HOL1 cells using tin protoporphy-
rin-IX (SnPP) increased the DfM-induced upregulation of
MyoD, myogenin, and MHC (Figs. 3A-3C). Similarly, sup-
pression of HMOX1 using siRNA, significantly increased the
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DfM-induced expression of MyoD, myogenin, and MHC
mRNAs, or MHC protein (Figs. 3D-3H). Thus, downregulation
of differentiation markers in C2C12-Luc-GFP-HOI cells appears
to be a specific effect of HMOX1 expression and enzymatic ac-
tivity, although their restoration by siRNA or SnPP was only
partial, possibly due to not total inhibition of HMOX1.

We also checked the differentiation of unmodified C2C12
cells cultured with cobalt protoporphyrin-IX (CoPP, HMOX1
activator) or SnPP. Morphological inspection revealed that
activation of HMOX1 with CoPP completely blocked the for-
mation of myotubes, while inhibition of its enzymatic activity
augmented the myoblasts differentiation (Fig. 4A). Corre-
spondingly, in cells cultured in DfM the MyoD and myogenin
mRNA (Figs. 4B and 4C) together with MHC protein (Fig. 4D)
were inhibited by CoPP and augmented by SnPP.

Effect of HMOX1 products on differentiation markers

Then we incubated C2C12-Luc-GFP cells with biliverdin,
bilirubin, FeCls;, CO-releasing molecule (CORM), inactive

Luc-GFP-HOI

CORM (iCORM, negative control), or with CoPP (positive
control). It turned out that effects of HMOX1 can be mimicked
by two of its potential products, iron ions and CO, but not by
biliverdin and bilirubin (Figs. 4E-4G).

Effect of HMOX1 on miRNA transcriptome

Unexpectedly, we noticed that overexpression of HMOX1
affected the genes involved in regulation of miRNA proces-
sing. Namely, it reduced the expression of mRNAs for ab-
normal cell LINeage (Lin28) (Fig. 5A) and DiGeorge
syndrome critical region-8 (DGCRS8) (Fig. 5B). Also DGCRS8
protein, which acts as a heme-dependent dimer, was de-
creased in cells with high activity of heme-degrading HMOX1
(Fig. 5C). Furthermore, a total pool of pre-miRNA and miR-
NA was lower in C2C12-Luc-GFP-HO1 myoblasts, the effect
reversed by enforced overexpression of DGCRS (Fig. 5D). This
suggests that some effects of HMOX1 in C2C12-Luc-GFP-
HO1 may result from decreased generation of miRNA and
disturbed regulation of miRNA-dependent pathways.
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Therefore, we compared a miRNA transcriptome in C2C12-
Luc-GFP and C2C12-Luc-GFP-HOL cells cultured in the GrM
or DfM (Supplementary Tables 1 and 2). Importantly, in the
C2C12-Luc-GFP cell line, a group of muscle-specific myomirs,
namely miRNAs 1, 133a, 133b, and 206, was significantly in-
duced in response to DfM, as shown by transcriptome anal-
ysis and confirmed by routine qRT-PCR (Figs. 5E-5H). In
sharp contrast, expression of these myomirs was much lower
and their upregulation was totally blocked in cells over-
expressing HMOX1 (Figs. 5E-5H). On the other hand, miR-
146, regarded as an inhibitor of muscle differentiation (18)

biliubin  biliverdin  FeCI3

iCORM CORM

was strongly increased in C2C12-Luc-GFP-HOIL cells, both in
growth and differentiation conditions (Fig. 5I). Partial rever-
sion of these effects by HMOX1 siRNA or SnPP (Supple-
mentary Fig. S4) confirms the specificity of HMOX1 action.
Interestingly, the generalized downregulation of miRNA
biogenesis and specific inhibition of myomirs seem to be
separate events. Overexpression of DGCRS8 in C2C12-Luc-
GFP-HOL1 cells fully restored the total pool of miRNA (Fig.
5D), but did not influence the expression of myogenic markers
(data not shown). On the other hand, exposure of C2C12-Luc-
GEP cells to FeCl; or CORM mimicked the effect of HMOX1
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activity on MRFs (Figs. 4E-4G) but did not affect the total pool
of miRNA or pre-miRNA (data not shown).

Mediators of HMOX1 activities

Overexpression of HMOX1 reduced cellular production of
ROS and the same effect was observed in NAC-treated control
myoblasts (Supplementary Fig. S2A). However, incubation
of C2C12-Luc-GFP cells with NAC did not influence the
DfM-induced upregulation of MyoD or myogenin (Figs. 6A
and 6B). Accordingly, we did not observe any phenotypic
differences between cells cultured with or without NAC (not
shown). Thus, it appears that inhibition of myoblast differ-
entiation is independent of antioxidative properties of
HMOX1. Instead, the influence of HMOX1 on miR-1, miR-
133a, miR-133b, and miR-206 was mocked by incubation of
myoblasts with SDF-1 protein (Figs. 6C-6F). Such a treatment
reduced also the expression of MyoD and myogenin (Figs. 6G

Luc-GFP-HO1

and 6H). Thus, SDF-1 might be proposed as one of mediators
of HMOX1 activity in C2C12 cells.

To investigate the role of myomirs in HO-1-induced inhi-
bition of myogenesis, we transfected C2C12-Luc-GFP-HO1
cells with myomirs, and cultured them in GrM or DfM. En-
forced expression of miR-133b and miR-206 partially restored
the generation of myogenin, and myosin. MiR-206, but not
miR-133b, was also able to rescue the MyoD induction in cells
cultured in DfM (Fig. 7). This indicates that effect of HMOX1
on myoblast maturation is, in part, mediated by inhibition of
miR-133b and miR-206 cluster.

It was reported that CO may inhibit transcriptional activity
of CCAAT/Enhancer-binding protein (c/EBP¢) (37), the
major transcription factor regulating the myoD expression
(38). Therefore, we analyzed the function of ¢/EBP¢ in C2C12-
Luc-GFP and C2C12-Luc-GFP-HOL1 cells (Fig. 8). The results
show that overexpression of HMOX1 or exposure of control
cells to CORM inhibits nuclear translocation of c¢/EBPo
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(Fig. 8A) and strongly reduces binding of ¢/EBP¢ to the
myoD promoter (Fig. 8B). Importantly, the enforced over-
expression of ¢/EBP¢ in C2C12-Luc-GFP-HO-1 myoblasts
fully restored the DfM-induced upregulation of myoD,
myogenin, and myosin (Figs. 8C-8E), and partially rescued
the expression of miR-206 (Fig. 8I). On the other hand, it did
not affect the generation of miR-1, miR-133a, and miR-133b
(Figs. 8F-8H).

To check whether increase in miR-206 can be modulated
by myoD, we overexpressed myoD in C2C12-Luc-GFP-
HOT1 cells. Such a treatment resulted in total restoration of
myogenin and partial rescue of myosin expression (Supple-
mentary Figs. SSA and S5B), but did not show any influence
on generation of myomirs, including the miR-206 (Supple-
mentary Figs. S5C-5F). Moreover, myoD overexpression,
in contrast to ¢/EBPd overexpression, did not promote the
myotube formation by C2C12-Luc-GFP-HO1 cells (data not
shown).

Role of HO-1 in murine satellite cells and human
rhabdomyosarcoma cell lines

To confirm the importance of HO-1 in muscle differen-
tiation, we analyzed the primary satellite cells isolated from

the muscles of HMOX1*/*, HMOX1*/~, and HMOX1 /"~
mice. We found that, in accordance with results obtained in
C2C12 cell lines, expression of HO-1 increased resistance of
satellite cells to oxidative stress (Fig. 9A), facilitated the
FCS-induced proliferation (Fig. 9B), and decreased the
differentiation rate, as demonstrated by lower number
of cells expressing the MRFs (Figs. 9C-9E). Importantly,
analysis of myomirs in primary satellite cells demonstrated
a higher generation of miR-1, miR-133a, miR-133b, and
miR-206 in cells isolated from the HMOX1-deficient mice,
than in satellite cells possessing at least one functional
HMOX1 allele (Figs. 9F-9I). This observation addition-
ally supports the inhibitory effect of HMOX1 on myomir
production.

In the last set of experiments, we investigated human
rhabdomyosarcoma cell lines: RD (with very low level of
HMOX1), RH18 (with moderate level of HMOX1), and RH28
(with high level of HMOX1). Augmented production of
HMOX1 was associated with a higher expression of SDF-1
and miR-146a, and lower generation of miR-133a, miR-133b,
and miR-206 (miR-1 was undetectable in this model) (Fig. 10).
This suggests that the relationship between HMOX1, SDF-1,
and myomirs demonstrated here in murine models can occur
also in humans.
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Discussion

The salient finding of our study is that HMOX1, the rate-
limiting enzyme in a heme degradation pathway, po-
tently inhibits differentiation of myoblasts in a process
dependent on regulation of miRNAs and inhibition of ¢/EBP¢
activity. Pharmacological or genetic activation of HMOX1
attenuates formation of myotubes, decreases expression of
MyoD, myogenin, or myosin, and reduces production of
myomirs. Inhibition of differentiation is mimicked by SDF-1
and can be partially reversed by miR-133b, miR-206, or myoD
overexpression or rescued by enforced upregulation of
c/EBPo.

HMOX1 acts as a cytoprotective enzyme owing to removal
of cytotoxic free heme and due to activity of heme degrada-
tion products. Namely, biliverdin and bilirubin reduce oxi-
dative stress and inhibit the complement cascade, while CO
downregulates caspases, induces antiapoptotic genes, and
decreases production of proinflammatory cytokines. Iron
ions, the last product of HMOXI, can induce tissue injury via
production of free hydroxyl radicals but, at the same time,
they stimulate the expression of protective ferritin (12, 25).

Due to antiapoptotic and anti-inflammatory properties,
upregulation of HMOX1 has been proposed as a strategy
to improve the efficacy of cell therapies by preventing the
massive cell death just after transplantation (20). We con-
firmed that HMOX]1 is cytoprotective for C2C12 myoblasts,
diminishing production of ROS, improving survival of cells
under oxidative stress, and increasing their proliferation. It
can be important, as skeletal muscles are subjected to oxida-

tive stress due to a high rate of oxidative metabolism, and
increased ROS production impairs regenerative capacity of
satellite cells (11).

Possibly both the proproliferative and cytoprotective ac-
tivities of HMOXT1 facilitated growth of C2C12-Luc-GFP-HO1
cells injected intramuscularly into NOD-SCID mice. Similar
improvement in cell survival has been already demonstrated
in porcine myogenic precursors overexpressing HMOX1 (20).
In our model, however, it resulted also in development of
large, highly proliferating, hyperplastic tumors. HMOX1
overexpressing cells infiltrated the surrounding tissue and
could be detected in lungs, the most frequent site of metastasis
in rhabdomyosarcoma patients (6). In contrast, control
C2C12-Luc-GFP myoblasts incorporated into muscles, as ob-
served earlier in experiments with C2C12 line (16, 44). This
indicates that HMOX1 is an important regulator of muscle
maturation. Furthermore, activation of HMOX]1 led also to
reduced expression of MyoD in the transplanted myoblasts. It
has been speculated that satellite cells unable to upregulate
MyoD more easily differentiate into other mesenchymal lin-
eages (49). The presence of adipogenic or chondro-osteogenic
accumulations in muscles treated with C2C12-Luc-GFP-HO1
cells seems to support such a supposition.

Several studies have indicated the potential significance of
HMOX1 in cell maturation. Thus, HMOX1 activation in-
hibited differentiation of osteoclasts (22), adipocytes (43),
monocytes (19), Kupffer cells, and dendritic cells (3), the latter
effect dependent on CO (35). It also reduced the maturation of
osteoblasts acting through all downstream products: CO,
bilirubin, and iron ions (23). On the other hand, HMOX1
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facilitated differentiation of hematopoietic precursors (2),
enterocytes (42), or odontoblasts (21), again through the CO-
dependent pathway (29).

However, effect of HMOX1 on muscle maturation has not
been appreciated so far. The sole report describing the role of
HMOX1 in porcine myoblasts, did not notice any changes
(20). Possibly, the analysis based on cell morphology and
expression of single terminal-differentiation marker was not
sensitive enough to detect differences after a short-term
in vitro incubation, especially when HMOX1 was over-
expressed in ~50% of cells. The myoblasts were then trans-
planted for 5 days only and their differentiation was not
investigated. Similarly as in our model, the cells survived

better (20), so it cannot be excluded that a hyperplastic tissue
formation would be visible later.

Our in vitro experiments indicate that HMOX1 does not
influence the early stages of myoblast maturation character-
ized by induction of Myf5 and Mef2. Instead it potently in-
hibits expression of MyoD, the master regulator of muscle
differentiation (4), and reduces the downstream MyoD-
dependent genes such as myogenin and myosin. Restoration
of differentiation of C2C12-Luc-GFP-HOL1 cells by SnPP, and
results of incubation of C2C12-Luc-GFP cells with HMOX1
products or with NAC indicate that effects of HMOX1 depend
on its enzymatic activity, and can be mediated by CO- or iron-
regulated pathways, independently of ROS generation. In
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fact, we demonstrated that HMOX1-derived CO inhibits the
nuclear translocation of ¢/EBP¢ and potently decreases its
binding to the myoD promoter. The significance of this
mechanism is supported by restoration of differentiation in
C2C12-Luc-GFP-HOL1 engineered to overexpress c/EBPJ.
Additionally, inhibitory effects of HMOX1 might be aug-
mented by SDF-1, known regulator of myoblast differentiation
(30), which is strongly upregulated in C2C12-Luc-GFP-HO1
cells and can mimic HMOX1 action. This interaction can be,
however, cell-type specific, as correlation between HMOX1
and SDF-1 expression in primary satellite cells and rhabdo-
myosarcoma cell line is not evident.

We showed for the first time that HMOX1 regulates Lin28
and DGCRS, and influences the miRNA expression profile.
Because DGCRS, the protein involved in miRNA processing,
requires heme (10), one could expect that removal of heme in
HMOX1 overexpressing cells may lead to insufficient forma-
tion of DGCRS8 dimers, and to disturbed miRNA production.
Indeed, in C2C12-Luc-GFP-HOL1 cells, the DGCRS protein was
lowered, and this effect could not be mocked by any of the HO-
1 products. Inhibition of DGCRS8 was accompanied by decrease
in total pools of pre-miRNA and miRNA, the feature charac-
teristic also for malignant tumor cells (28). Again, restoration of
miRNA biogenesis by enforced overexpression of DGCRS in

C2C12-Luc-GFP-HOL1 cells confirms role of this pathway in
HMOX1-dependent regulation of miRNA transcriptome.

Importantly, activation of HMOX1 not only inhibits
generalized miRNA biogenesis, but also specifically blocks
the generation of myomirs, which are both the markers and
key regulators of muscle differentiation (5). Among their
targets are polymerase II (necessary for proliferation, (17),
histone deacetylase 4 (HDAC4, transcriptional repressor of
muscle genes (5), serum responsive factor (SRF, enabling
proliferation, (5), c-met (receptor for hepatocyte growth
factor, the myoblast activator (39, 47), fibroblast growth
factor binding protein (FGF-BP), augmenting the pro-
proliferative activity of FGF (45), inhibitor of differentiation
(Id) 1-3 and musculin (repressors of MRFs (17)). Myomir-
mediated downregulation of those genes leads to muscle
differentiation and cell-cycle withdrawal (5, 17).

Synthesis of myomirs can be upregulated by MRFs (5, 34):
Mef2 and MyoD have been reported to control the expres-
sion of miR-1 and miR-133a (24) or, together with myogenin,
to regulate miR-206 and miR-133b (45). Thus, inhibition of
myomirs in our model could be both a direct action of
HMOX1 or indirect result of decrease in MyoD and myo-
genin. Restoration of differentiation capacities in cells
transfected to overexpress miR-133b and miR-206 indicates
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that inhibition of myomirs mediates, at least in part, the
HMOX1 activity. On the other hand, overexpression of
myoD does not influence myomirs. Thus, miR-206 and miR-
133b act upstream but not downstream of myoD in HMOX1
overexpressing myoblasts.

MiR-206 is a known inducer of myogenic pathway (47). Its
forced upregulation is sufficient to cause a major switch in
the global expression profile toward mature muscle, pro-
mote differentiation of neoplastic rhabdomyosarcoma cells,
and block rhabdomyosarcoma tumor growth (39). Also the
expression of miR-133 is elevated during myoblast differ-
entiation (5, 34). There are, however, some discrepancies
regarding its function. Some studies indicate that miR-133
inhibits myoblast proliferation, albeit less potently as miR-1
or miR-206 (17). Some others describe the increased prolif-
eration and attenuated differentiation in response to miR-
133, suggesting the inhibition of MyoD and MEF2 as a
mechanism responsible for the observed effects (5, 34). Our
study, where transfection with miR-133b upregulated ex-
pression of myogenin and MHC, supports its pro-differen-
tiation activity in C2C12 myoblasts.

Regulation of miRNAs may become a powerful diagnostic
and therapeutic approach as particular miRNAs can modulate
dozens of targets, leading to potent phenotypic effects (45). For
example, upregulation of miR-206 probably slows progression
of amyotrophic lateral sclerosis (ALS) (46), and blocks rhab-
domyosarcoma tumor growth (39). Interestingly, we showed
that increased production of HMOX1 was associated with a
lower generation of myomirs also in human rhabdomyosar-
coma cell lines. Our results suggest that HMOX1 can be con-
sidered as a potential tool to modulate miRNAs.

We confirmed also the earlier suppositions that pharma-
cological or genetic activation of HMOX1 may improve the
survival of transplanted myoblasts (20, 26, 31). Such im-

provement has been demonstrated in a pig model of myo-
blast transplantation (20). Better survival and enhanced
engraftment of myoblasts were also observed after a heat
shock treatment, a possible inducer of HMOX1 (9, 27, 37). On
the other hand, our findings highlight a potential limitation
of such strategy—the risk of hyperplastic growth and at-
tenuated differentiation of myogenic precursors. Tumoro-
genic potential of C2C12 cells has been noticed before (e.g.,
after a 5-week observation period and transplantation of a
high number of cells) (44). In our model, the formation of
hyperplastic tissue was not spontaneous, but resulted from
overexpression of HMOX1, as it was completely absent in
animals treated with a control C2C12-Luc-GFP cell line.
Noteworthy, Jia and coworkers (16) used a very similar
model of C2C12 cells transduced retrovirally to express lu-
ciferase and GFP reporter genes with or without er-
ythopoietin receptor (EpoR). They demonstrated the
improvement in cell differentiation, which can further con-
firm that observed effects are dependent on the transgene,
not on the cell line or viral vector.

We do not exclude that risk of uncontrolled proliferation
will be lower or even negligible in primary satellite cells
transplanted to the immunocompetent hosts. Moreover,
among different myogenic subpopulations tested, the acti-
vated, highly proliferating, and less differentiated muscle
precursors gave the best clinical outcomes in tissue regener-
ation (14). We postulate, however, that such a potential risk
should be taken into consideration and should be excluded
before a use of HMOX1 as a cytoprotective factor in clinical
applications of muscle precursors.

To sum up, pharmacological or genetic activation of
HMOX1 potently inhibits differentiation of myoblasts through
a mechanism(s) dependent on HMOX1 enzymatic activity, CO-
mediated inhibition of ¢/EBP¢ binding to the myoD promoter,
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and changes in miRNA profile. This suggests that inhibition of
HMOX1 might be proposed as a potential strategy to augment
the maturation of myoblast precursors or to induce the differ-
entiation some rhabdomyosarcomas.

Materials and Methods
Cell culture

The C2C12 cell line, a subclone of C3H cells derived from
mouse limb muscle, is a model of activated satellite cells (4). In
response to low serum conditions, they differentiate in vitro
into multinuclear, spontaneously contracting myotubes. Si-
milarly as satellite cells they are able to develop into adipo-
cytes or osteoblasts (49).

C2C12-Luc-GFP control cells were obtained by transduc-
tion of wild-type cells with the retroviral vector containing a
luciferase-IRES-GFP construct driven by CMV promoter. The
cell line was purified by cell sorting for GFP expression using
a MoFlo High-Performance Cell Sorter (Dako, Carpinteria,
CA). C2C12-Luc-GFP-HOL1 cells were produced after second
transduction of C2C12-Luc-GFP cells with the retroviral vec-
tor harboring a human HMOX1 ¢cDNA under control of CMV
promoter, purified by selection on G418 antibiotic. For a
routine culture, the Dulbecco’s modified Eagle’s medium
(DMEM) supplemented with glucose (25mmol/L), 10% of
FCS, penicillin (100U/mL), and streptomycin (100 ug/mL)
was used (Growth medium, GrM). C2C12-Luc-GFP-HOT1 cells
were additionally supplemented with G418 (0.4 mg/mL).

To induce differentiation, cells were seeded in GrM
(100,000 cells/well in 24-well plate). Next day, GrM was re-
placed with differentiation medium (DfM), the DMEM, sup-
plemented with glucose (25mmol/L), 2% of horse serum,
penicillin (100U/mL), and streptomycin (100 ug/mL), and
cells were further incubated for 5 days. Primary muscle sat-
ellite cells were isolated according to a pre-plate technique
described elsewhere (33). Experiments were performed on
pre-plate no. 6 (PP6) which represented a population of
muscle-derived cells enriched in satellite cells.

Human rhabdomyosarcoma (RMS) cell lines RD (embry-
onic RMS, with very low level of HMOX1), RH18 (alveolar
RMS, with moderate level of HMOX1), and RH28 (alveolar
RMS, with high level of HMOX1) were cultured in RPMI-1640
medium supplemented with penicillin (100 IU/mL), strepto-
mycin (10 ug/mL), and 10% FCS.

Animal models

All procedures were performed in accordance with na-
tional and European legislations, after approval by the Local
Ethical Committee for Animal Experimentation in Krakow.
Animals were kept in standard conditions with water and
food available ad libitum.

NOD/SCID mice (8-10-week-old) were subjected to
C2C12-Luc-GFP or C2-C12-Luc-GFP-HOL1 cell transplanta-
tion (10 animals per group). First, the cells were trypsinized,
centrifuged (1000 g, 5min, 4°C), and resuspended in sterile
PBS. Each mouse received 2.5x10° of cells in 25 uL. of PBS
injected into gastrocnemius muscles of both legs. All mice
were provided with analgesia (Buprenorphine, 0.5mg/kg
every second day), and sacrificed on day 11 (5 animals) and 22
(5 animals).
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Statistical analysis

Unpaired or paired Student’s t-tests, o <0.05, were used to
assess whether the means of two normally distributed groups
differed significantly. One-way ANOVA analysis with Bon-
ferroni’s multiple comparison post-test was employed to
compare multiple groups. Significance is indicated as
*p<0.05, *p<0.01, **p<0.001. All error bars represent the
standard mean errors.
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