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in half, and that of MDR is consistently the lowest.  Conclu-
sions:  Our study indicates that the power of RF VIMs is most 

reliable. However, in addition to tuning parameters, the 

power of RF is notably influenced by the type of variable 

(continuous vs. categorical) and the chosen VIM. 

 Copyright © 2011 S. Karger AG, Basel 

 1. Introduction 

 Recently, genome-wide association studies (GWAS) 
have been tremendously successful in identifying suscep-
tibility loci for a variety of complex traits. Thus far, the 
primary analyses of these studies have focused solely on 
main effects of individual SNP markers, in large part due 
to the computational scalability of the analysis of hun-
dreds of thousands or even millions of genetic markers. 
It is commonly believed that epistasis or gene-gene inter-
actions play an important role in the pathogenesis of 
complex diseases, and the current one-marker-at-a-time 
approach may mask the effect of important genetic loci. 
However, to date, simple pairwise gene-gene interaction 
searches in GWAS have failed to identify robust epistasis 
findings. One possible explanation is that gene-gene in-
teractions, if present, are likely to involve complex net-
works that are not well modeled by traditional stepwise 
regression-based methods.
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 Abstract 

  Background:  Genetic association studies, thus far, have fo-

cused on the analysis of individual main effects of SNP mark-

ers. Nonetheless, there is a clear need for modeling epistasis 

or gene-gene interactions to better understand the biologic 

basis of existing associations. Tree-based methods have 

been widely studied as tools for building prediction models 

based on complex variable interactions. An understanding 

of the power of such methods for the discovery of genetic 

associations in the presence of complex interactions is of 

great importance. Here, we systematically evaluate the pow-

er of three leading algorithms: random forests (RF), Monte 

Carlo logic regression (MCLR), and multifactor dimensional-

ity reduction (MDR).  Methods:  We use the algorithm-specif-

ic variable importance measures (VIMs) as statistics and em-

ploy permutation-based resampling to generate the null dis-

tribution and associated p values. The power of the three is 

assessed via simulation studies. Additionally, in a data analy-

sis, we evaluate the associations between individual SNPs in 

pro-inflammatory and immunoregulatory genes and the risk 

of non-Hodgkin lymphoma.  Results:  The power of RF is 

highest in all simulation models, that of MCLR is similar to RF 
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  In the statistical and machine learning literature, tree-
based regression methods are often advocated for model-
ing complex associations between an outcome and mul-
tiple covariates. The performance of these methods has 
been widely studied using prediction- or classification-
error as the main criterion for optimization. The goal of 
the current article is to study the potential utility of these 
methods for genetic association based on a smaller num-
ber of candidate SNPs, where the primary goal is often 
discovery, not prediction. Several other studies have re-
cently employed the tree-based method random forests 
(RF)  [1]  for investigating gene-gene and gene-environ-
ment interactions, including a critical survey by Cordell 
 [2] . Lunetta et al.  [3]  show that RF is more efficient than 
Fisher’s exact test for ranking true disease-associated 
SNPs. García-Magariños et al.  [4]  compare the top-rated 
SNP as chosen by RF, classification and regression trees 
(CART), logistic regression, and multifactor dimension-
ality reduction (MDR) over numerous settings including 
several with missing data, whereas Szymczak et al.  [5]  
compare RF and ensemble methods to penalized regres-
sion and network analyses. Jiang et al.  [6]  use RF Gini 
variable importance measure to rank SNPs before imple-
menting a forward feature selection algorithm to choose 
a subset of SNPs and then adopt a hierarchical procedure 
(unrelated to RF) to determine the statistical significance 
of the subset. Their proposed method is compared to 
BEAM, logistic regression, and the single locus  �  2  test. 
Wang et al.  [7]  compute a null distribution in the same 
manner as we describe in the following but focus the 
comparison of their proposed maximal conditional  �  2  to 
a univariate test and the Gini and permutation impor-
tance measures. Altmann et al.  [8]  compute a null distri-
bution and subsequently fit a probability (Gaussian, log-
normal or  � ) distribution to the null importances   and 
estimate the distribution parameters via maximum like-
lihood in order to derive a p value. If none of the three 
distributions are appropriate, they use a non-parametric 
estimate of the p values similar to the approach outlined 
below. They focus on two variable importance measures 
in simulations and data analysis: RF Gini importance and 
mutual information (see  [9] ). Here, we compare the pow-
er of the four measures of variable importance offered by 
the R package randomForest to each other and to the 
measures provided by Monte Carlo logic regression 
(MCLR) and MDR. We begin by describing the three al-
gorithms and the procedure for generating SNP-specific 
p values in Section 2. The simulation scenarios are de-
tailed in Section 3.1 and data analysis in Section 3.2. Con-
clusions are offered in Section 4.

  2. Methods 

 RF is now one of the most popular tree-based algorithms with 
applications in many scientific disciplines. Our goal is to assess 
RF measures of variable importance as statistics for detecting as-
sociations. Further, we compare performance of RF to two other 
leading algorithms, MCLR and MDR, both of which have been 
applied to genetic epidemiologic studies.

  2.1. Algorithms 
 2.1.1. Random Forests 
 RF is a bagging (bootstrap aggregating) algorithm used for 

measuring the predictive ability and importance of a set of vari-
ables. RF builds a collection of CART  [10]  from multiple boot-
strap samples of the original data. The number of trees in a forest, 
 nT , is typically 500 or 1,000. For an individual tree, the observa-
tions in the bootstrap sample are referred to as the training sam-
ple and those observations left out (approximately one third of 
the total) are called the ‘out-of-bag’ sample. In addition to using 
bootstrap samples to build numerous trees, RF differs from 
CART in two important ways. First, RF does not prune, that is, 
each individual tree is grown to the largest extent possible. This 
increases the strength of prediction for any individual tree by 
achieving low bias. Second, for each node within each tree,  mtry 
 variables are selected at random from the total  p  in the original 
data set and the best split of the  mtry  variables is used to split the 
node. By default,  mtry  is equal to the square root of the number 
of total variables, i.e.  mtry  =  �  p . The purpose of this random vari-
able selection is to decrease the correlation between trees in the 
forest while maintaining low bias  [1] . Both low bias and low cor-
relation contribute to the reduced prediction error of the algo-
rithm.

  With a categorical outcome, subsequent to assembling the for-
est, each observation is classified by the trees for which it was ‘out-
of-bag’. A tally of those classifications leads to a final class assign-
ment based on a majority ‘vote’ by the trees, i.e. forest. The predic-
tion error of the forest is then estimated by comparing the 
predicted class of the out-of-bag observations to their true class.

  In classification, the R package randomForest used here (see 
 [11, 12] ) returns four measures of variable importance: the class-
specific measures computed as mean decrease in accuracy for 
each class (in the two-class scenario, these are labeled  out0  and 
 out1 ); the mean decrease in accuracy over all classes ( overall ), and 
the mean decrease in the Gini index ( gini )  [11] . The first three are 
calculated as the average increase in prediction error (i.e. decrease 
in accuracy) when the values of an individual variable are ran-
domly permuted. Gini   is based on the measure for splitting a par-
ent node into two daughter nodes. That is, at each split in a tree, 
one of  mtry  variables is selected to dichotomize the observations 
based on the Gini   measure, thus decreasing the Gini   index value. 
The corresponding variable importance measure is calculated by 
summing the decrease in the entire forest due to a given variable 
and normalizing by the number of trees.

  To evaluate RF as well as compare it to the other algorithms, a 
p value was assessed for each of the four variable importance mea-
sures. To do so, an initial,  observed , data set was simulated with 
 n  cases    and  n  controls  using one of the three models outlined in Section 
3.1. When both evaluating RF and comparing it to MDR, the SNP 
values were input as continuous variables; however, when in com-
parison to MCLR, they were converted to dummy variables as 



 Power of Data Mining Methods to Detect 
Genetic Associations and Interactions 

Hum Hered 2011;72:85–97 87

described in Section 2.1.2. In either case, the initial data set was 
used to generate a null distribution by permuting the case/control 
status labels. The permutation was repeated  B  = 100,000 times, 
each time RF was implemented to predict the permuted labels. 
The four importance measures were recorded for each variable 
across the  B  permuted data sets. After the null distribution was 
generated, the RF algorithm was run on the initial data set with 
un-permuted status labels, with  nT  trees and  mtry  randomly se-
lected variables for each split. Again, for each variable, the four 
importance measures were recorded. Subsequently, an additional 
 nsim  – 1 data sets were simulated from the chosen model and, for 
each, the RF variable importance measures were recorded. We 
save computational time by using a single simulated null distribu-
tion in all of the different simulation studies. The approach is jus-
tified based on the ground that in large samples all the association 
test statistics are expected to converge to a theoretical null distri-
bution that does not depend on the actual simulation setting.

  Subsequently, the values for the real, observed data were com-
pared to that of the null distribution for estimating the  p -th p 
value via the following formula:

1
1 ,                               (1)

B O b

p pb

p

I VI VI
p value

B

  where  B  is the number of permuted samples,  VIp  
O      is the variable 

importance measure for the  p -th variable as assessed using the 
observed (non-permuted) data set, and    VI  b  p  is the variable impor-
tance measure for the  p -th variable as assessed using the  b  = 
1, ...,  B  sample with permuted labels ( fig. 1 ). 

 As this entire procedure was repeated  nsim  times, there were 
 nsim  p values for each of the variables. The reported value for each 
variable was the ratio of p values out of  nsim  that fall below a 
specified cutoff, e.g.  �  cutoff  = 0.05/ p . For comparisons between RF 
and MCLR, the reported value for each variable was the sum of its 
corresponding dummy variables’ p values out of  nsim  that fall be-
low the specified cutoff. In the simulations presented below, four 
values for  mtry   D  (1 ,  3 ,  5 ,  7) and two for  nT   D  (500 ,  1,000) were 
examined for all models.

  2.1.2. Monte Carlo Logic Regression 
 Logic regression is a regression methodology which forms 

Boolean combinations of binary covariates  [13] . For our goal of 
assessing a measure of variable importance, we focused on MCLR. 
This implementation returns a summary of all models built using 
Monte Carlo methods as opposed to returning a single model as 
in the original logic regression. In MCLR, the suggested variable 
importance measure is how frequently an individual variable ap-

Step 3

SNP

1 0.12 0.02 0.28…

2 0.37 0.79 0.21…

p 0.45 0.18 0.79…

VI1 VI2 VIB

Step 6

p valuep = 1–
B

�
B
b = 1 I(VIO

p  > VIb
p )

Step 5

SNP

1 0.89 0.98 0.72…

2 0.65 0.66 0.83…

p 0.12 0.19 0.09…

VI1 VI2 VIB

Step 1

Obs

1 0 01 1…

2 0 00 0…

n 2 11 0…

SNP1 SNP2 SNPp Case/

Control

Step 4

Obs

1 0 01 1…

2 0 00 0…

n 2 11 0…

SNP1 SNP2 SNPp Case/
Control

Obs

1 0 01 1…

2

n

SNP1 SNP2 SNPp Case/
Control

Obs

1 0 01 1…

2

n

SNP1 SNP2 SNPp Case/
Control

Obs

1 0 01 1…

2

n

SNP1 SNP2 SNPp Case/
Control

Obs

1 0 01 1…

2

n

SNP1 SNP2 SNPp Case/
Control

Step 2

…

0

0

1

Case/

Control
Case/Control

Case/Control

Case/Control

1 1 0

…

…

0 1 1

…0 0 0

OOO

  Fig. 1.  Summary of steps for generation of null distribution and p 
values. In step 1, an initial data set is generated from the chosen 
model with  n  observations (Obs) and  p  SNPs. In step 2, the case/
control status is permuted  B  times and paired with the original 
SNPs resulting in  B  data sets for the null distribution. In step 3, 
the algorithm is run  B  times, once for each of the  B  data sets and 
the variable importance measure is recorded ( VI  b , where  b  = 

1, ...,  B ). In step 4,  nsim  – 1 additional data sets are generated from 
the chosen model. In step 5, the algorithm is run on each gener-
ated data set (with un-permuted labels) and the  VI  O  are recorded. 
In step 6, the p values for the  p -th SNP are calculated by summing 
the number of times  VIp  

O    is greater than the  B ,    VI  b  p  from the null 
distribution. 
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pears across all models. From the summary, the contribution of 
each variable can be evaluated by the ratio of the number of times 
it was included in any of the models divided by the total number 
of models. MCLR is implemented in the R package LogicReg  [14] . 
Details of the simulation and p value assessment are given in the 
online supplementary Section 1.1 (for all online suppl. material, 
see www.karger.com/doi/10.1159/000330579).

  2.1.3. Multifactor Dimensionality Reduction 
 MDR is a non-parametric and genetic model-free algorithm 

which reduces a high-dimensional data structure to a single di-
mension for the purpose of finding interactions among small 
sample sizes  [15] . Implementing  v -fold cross-validation, MDR at-
tempts to find the best combination of  N  (user-defined) variables 
for classification purposes. As implemented in the R package 
Rmdr  [16] , a list of the best  N  variables is returned for each of the 
 v  cross-validation iterations.

  To assess variable importance, the frequency with which each 
variable is included in the best combinations within the  v -folds 
can be ascertained. To quantify this over  v -folds, we have defined 
the variable importance measure for MDR as the number of times 
the  p -th variable is chosen in the reported  v -fold combinations 
divided by  v , the total number of cross-validation folds performed. 
Details of the p value assessment are given in the online supple-
mentary Section 1.2.

  3. Results 

 3.1. Synthetic Data 
 Three different models were used to generate data for 

the simulations. The first two models (Sections 3.1.1 and 
3.1.2) are borrowed from Huang et al.  [17] . In both, there 
are 30 measured loci of which 6 are related to the proba-
bility of disease. The other 24 loci are independently and 
identically distributed, and the genotype is prevalent type 
or not, with equal probabilities. The first is based on an 
accumulation of mutations (additive model), while the 
second requires exact mutations (exact model). In Section 
3.1.3, we explore a third model which more realistically 
portrays current association studies. In this third model, 
we assume that the genotyped SNPs themselves may not 
be functional (tagging SNPs). As such, numerous scenar-
ios are generated including different levels of association 
between the unobserved causal SNPs and the observed 
tagging SNPs (details given in Section 3.1.3 and online 
suppl. tables 1–3). For each simulation model, data sets 
with 200 and 500 observations were generated.

  3.1.1. Additive Model 
 The first model borrowed from Huang et al.  [17]  is re-

ferred to as ‘additive’ in that the effects of mutations on 
disease are simply additive based on the number of muta-
tions,  M , at the 6 sites (ranging from 0 to 12) surpassing 

specific thresholds. The probability of disease,  D , is writ-
ten as:

   P ( D   �   M ) = 0.1 I ( M   6  4) + 0 . 4 I ( M   6  6) + 0 . 4 I ( M   6  7)

+ 0 . 1 I ( M   6  9),

  where  I ( � ) is the indicator function. Thus, if the mutations 
accumulate past the specified thresholds, there will be a 
high risk of disease, whereas if there are few (here  ! 4) 
variants, there is minimal risk, i.e.  P ( D   �   M ) = 0.   The num-
ber of mutations at the 6 loci,  m  1 , ...,  m  6 , are independent-
ly and identically distributed as: 

    P ( m  i  =  j ) = (  j 
2   )0.5 2 ,    where j = 0, 1, 2 and i = 1, 2, ..., 6.

  Thus,  M   �   Binomial (12, 0.5) and the unconditional 
 probability of disease is  P ( D ) = 0.5 because  P ( D    �    M ) = 
 P ( D   �  12 –  M ) and  M   �  12 –  M .   The marginal relative risk 
for the 6 key SNPs is approximately 2.3. 

 For the additive model (Model A), the power of RF 
variable importance measures to select the 6 key SNPs is 
shown on the left of  figure 2 . The four measures have 
similar power which all remain consistent as  mtry  in-
creases. As expected, the power increases (from approxi-
mately 0.65 to 1) when the sample size doubles (online 
suppl. fig. 1). The type I error for these comparisons is 
displayed in the top left of  table 1 . For both sample sizes, 
 gini  has the smallest error followed by  overall  and  out1 . 
Although, when  n  = 200, the error for  gini  decreases 
(from 0.014 to 0.002), the error for the others remains the 
same as  mtry  increases.  Figure 3  displays the power of RF 
and MCLR when dummy variables are used for the SNPs 
with a sample size of 200.  Figure 3  compares the two al-
gorithms for each of the 30 SNPs. The power of the  over-
all  measure for RF is approximately 0.97 for all 6 related 
SNPs (SNPs 1–6) and 0 for the remaining 24 unrelated 
SNPs. MCLR has a range of 0.43–0.47 for the 6 related 
SNPs and almost 0 for the remaining unrelated SNPs. 
The same comparison with 500 observations can be 
found on the top right side of online supplementary fig-
ure 2 where the power for RF increases slightly while that 
of MCLR noticeably increases to 0.8–0.85. The top left of 
the same figure shows the power averaged over the 6 ef-
fective genes in Model A for each of the RF measures as 
 mtry  is increased. As with continuous valued SNPs 
(shown in  fig. 2  and online suppl. fig. 1), the four mea-
sures perform consistently over an increasing  mtry  and 
similarly to each other. As seen in online supplementary 
figure 3, the power for MDR ranges from 0.2 to 0.25 for 
the related SNPs, while the type I error is 0 for the unre-
lated SNPs.
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  Fig. 2.  RF results for Model A and Model E simulations. With 200 observations, power is measured on the y-
axis and  mtry  on the x-axis, p value is adjusted for 30 SNPs, and  nT  = 1,000. The different lines correspond to 
four RF variable importance measures. 

Table 1. T ype I error for RFs

Sample size mtry Model A Model E

1 3 5 7 1 3 5 7

200 gini 0.014 0.004 0.002 0.002 0.066 0.028 0.022 0.008
overall 0.028 0.022 0.016 0.032 0.06 0.042 0.038 0.04
out0 0.038 0.03 0.032 0.032 0.058 0.046 0.038 0.04
out1 0.036 0.034 0.03 0.03 0.046 0.032 0.032 0.036

500 gini 0.002 0 0 0 0.006 0 0 0
overall 0.04 0.022 0.03 0.028 0.05 0.038 0.022 0.038
out0 0.046 0.042 0.04 0.042 0.038 0.016 0.024 0.058
out1 0.042 0.028 0.026 0.03 0.056 0.044 0.04 0.052

Sample size mtry Tagging SNP Model 1 T agging SNP Model 2

1 3 5 7 1 3 5 7

200 gini 0.05 0.04 0.028 0.03 0.014 0.012 0.01 0.008
overall 0.036 0.046 0.038 0.036 0.02 0.016 0.014 0.018
out0 0.046 0.036 0.04 0.036 0.024 0.026 0.014 0.026
out1 0.028 0.042 0.04 0.038 0.02 0.008 0.008 0.014

500 gini 0.036 0.038 0.04 0.042 0.048 0.036 0.036 0.03
overall 0.042 0.032 0.042 0.038 0.026 0.026 0.026 0.038
out0 0.04 0.038 0.036 0.028 0.026 0.024 0.028 0.034
out1 0.038 0.028 0.04 0.032 0.036 0.026 0.014 0.024

For  all, nT = 1,000, and the columns represent different values of mtry.
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  3.1.2. Exact Model 
 In the second model from Huang et al.  [17] , there is an 

epistatic impact of the number of mutations at the 6 sites 
on the probability of disease, which is written as:

   P ( D   �   M ) = 0.1 + 0.8 I ( M  = 12) . 

  Thus, it is not as detrimental to have mutations with the 
exact model (Model E) as it is with Model A because 
Model E requires all 12 mutations in order for a high risk 
of disease, whereas the risk increases with an increasing 
number of mutations in Model A. Here  m  1 , ...,  m  6  are also 
i.i.d., but with the following distribution: 

    P ( m  i  =  j ) = (  j 
2   )0.9 j /0.1 2 –   j ,     where j = 0, 1, 2 and i = 1, 2, ..., 6 . 

  Thus,  M   �   Binomial (12, 0.9) and the unconditional prob-
ability of disease under this model is  P ( D ) = 0.9 12  0.9 +
(1 – 0.9 12 ) 0.1 = 0.326 .  The marginal relative risk for the
6 key SNPs is approximately 5.5. 

 For Model E, the power in selecting the first of the 6 
related SNPs for RF variable importance measures is 
shown on the right of  figure 2 . For 200 observations, 
three of the measures have similar power which increas-
es as  mtry  increases. In comparison,  gini  has a mark-
edly lower power, e.g. 0.3 versus 0.75 for  mtry  = 1, al-
though it too increases with  mtry . Again, the power for 
all measures increases with the sample size, and any dis-
tance between  gini  and the others becomes indistin-
guishable (online suppl. fig. 1). The type I error for these 
comparisons is displayed in the top right of  table 1 . For 
both sample sizes,  gini  has the smallest error, followed 
by  out1  and  overall . Although, when  n  = 200, the error 

for  gini  decreases (from 0.066 to 0.008), the error for the 
others remains similar as  mtry  increases. The power of 
RF when dummy variables are used for Model E (shown 
in online suppl. fig. 2) is identical to that shown in  figure 
3  for Model A. As with continuous valued SNPs, the four 
measures perform consistently over an increasing  mtry 
 and similar to each other. As illustrated in online sup-
plementary figure 2, for Model E the power of the  over-
all  measure for RF as well as that of MCLR is approxi-
mately 1.0 for all 6 related SNPs (SNPs 1–6) and 0 for the 
remaining 24 unrelated SNPs. As seen in online supple-
mentary figure 3, the power for MDR for Model E is 
slightly higher than for Model A, falling within the 
range of 0.2–0.3.

  3.1.3. Tagging SNPs 
 The goal of this simulation model is to see how the 

three different algorithms perform in current association 
studies where the genotyped SNPs themselves may not be 
functional. We assume there are 10 candidate genes, de-
noted by  G  1 ,  ...,   G  10 , under study, say within a pathway. 
For each gene  i , we assume 6 tagging SNPs,  T  i  1 ,  ...,   T  i  6 , 
have been genotyped, giving rise to a total of 60 SNPs. We 
assume two different disease risk models: in the first, 
Model 1, only  G  1  and  G  6  contain a causal SNP, denoted  S  1  
and  S  6 , and the risk of the disease is given by

  logit {Pr( D  = 1  �   S  1 ,  S  6 )} =  �  +  �  G ( S  1 )  �   G ( S  6 ),

  where  G ( S  i ) denote a particular genotype coding for the 
causal SNP  S  i . For example, if  S  i    is coded as dominant, 
then  G (0) = 0,  G (1) = 1, and  G (2) = 1. The marginal rela-
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  Fig. 3.  RF and MCLR results for Model A 
simulations. Results are based on 200 ob-
servations with dummy variables for the 
SNPs. Power is measured on the y-axis. RF 
 overall  is compared to MCLR over each 
SNP (x-axis). p values are adjusted for 30 
SNPs and  nT =  1,000. 
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tive risks for the 6 tagging SNPs in  G  1  range from 0.89 to 
2.25 and in  G  6  range from 0.82 to 1.82. 

 Under the second risk model, Model 2, we assume  G  1 , 
 G  2 ,  G  6 , and  G  7  each contain a causal SNP, denoted  S  1 ,  S  2 , 
 S  6 , and  S  7 , and the risk of the disease is given by

  logit {Pr( D  = 1  �   S  1 ,  S  2 ,  S  6 ,  S  7 )} =  �  +  �  1  G ( S  1 )  �   G ( S  6 )
                                                               +  �  2  G ( S  2 )  �   G ( S  7 ).

  The haplotypes and their frequencies defined by the 
 combination of (potential) causal ( S  i ) and marker SNPs 
( T  i  1 ,  ...,   T  i  6 ) for the genes  G  1 ,  ...,   G  5  are given in online 
supplementary table 1. The first position indicates the lo-
cation of the potential causal SNP. Note that the frequen-
cy of the causal SNP is approximately 12%. Similar hap-
lotype frequencies for the genes  G  6 ,  ...,   G  10  are given in 
online supplementary tables 2 and 3 for two different sce-
narios that correspond to two different frequencies for 
the causal SNP(s): (F1) 12.7% and (F2) 4%. For each table, 
we use three different values of  �    which correspond to 
different levels of  R  2  between the causal SNP and tagging 
SNPs haplotype. The marginal relative risks for the 6 tag-
ging SNPs in  G  1  range from 0.91 to 1.66, in  G  2  range from 
0.89 to 1.69, in  G  6  range from 0.87 to 1.47, and in  G  7  range 
from 0.87 to 1.45. 

 The data is generated as follows: given the set of hap-
lotype frequencies in online supplementary tables 1–3, 
first generate the diplotype (haplotype pair) for a given 
gene assuming Hardy-Weinberg equilibrium. Under 
Hardy-Weinberg equilibrium, note

  Pr({ h  k ,  h  l }) =  �  2  k  if  k  =  l 
                      = 2 �  k  �  l  if  k   0   l ,

  where  �  k    denotes the haplotype frequencies given in the 
tables. Thus, for different subjects, the diplotype data for 
a given gene, say  G  k , can be generated by i.i.d. sampling 
from a suitable multinomial distribution. Once we have 
the diplotype status for a subject, the genotype data at a 
given position (locus) would be given simply by the sum 
of the 0 – 1 numeric codes (online suppl. tables 1–3) at that 
locus on the constituent haplotype pair for that subject. 
Given the genotype data, we generate disease status for a 
subject assuming the risk model (Model 1 or 2). For each 
simulation, a case-control sample is generated by first 
simulating data from a large random sample and then us-
ing it as the database for further selecting the pre-speci-
fied number of cases and controls. The intercept param-
eter of the disease risk model is manipulated to make the 
Pr( D  = 1) = 0.01 in the underlying population. 

 For the analysis of the data using different data mining 
methods, we assume we have the (unphased) genotype 

data from the marker SNPs only, and not from the causal 
SNPs. In other words, we assume that for each gene we 
have the genotype data on all but the first locus. In total, 
there are 2  !  2  !  3 = 12 different parameter settings cor-
responding to two different risk models, two different 
sets of haplotype frequencies for  G  2 , ...,  G  6  (online suppl. 
tables 1–3) and three different values for  � .

   Figure 4  displays the power of RF variable importance 
measures in selecting Gene 1 for Model 1 in the left pan-
el and Genes 1 and 2 (averaged) for Model 2 in the right 
panel. The results shown here are based on 200 observa-
tions, while those based on 500 observations are repre-
sented in online supplementary figures 4 and 5. Overall, 
there are minor differences between  gini ,  overall , and 
 out1  with power in the range of 0.3–0.4, while  out0  does 
markedly worse in all four scenarios with power  ! 0.2. 
Regardless, all measures perform consistently if not 
slightly better as the value of  mtry  increases. To calibrate 
the models, we reduced the effect sizes for larger sample 
sizes; therefore, the power for all measures does not no-
ticeably increase with the sample size (online suppl. 
fig. 4). Additionally, the distance between  out0  and the 
others persists. The type I error for these comparisons is 
displayed at the bottom of  table 1 . For both sample sizes 
and both models, the error (ranging from 0.14 to 0.05) is 
consistent over  mtry  with no remarkable differences be-
tween the four measures of variable importance.

   Figure 5  displays the power of RF and MCLR for Mod-
els 1 and 2 when dummy variables are used for the SNPs 
with a sample size of 500. The left panels of  figure 5  show 
the power for detecting Gene 1 for each of the RF mea-
sures as  mtry  is increased. In Model 1,  gini  performs 
slightly better than  overall  and  out1 , while  out0  performs 
the worst and slightly decreases as  mtry  increases. A more 
distinct difference between  gini  and the other measures 
is apparent in Model 2. Interestingly, for all four measures 
in Model 1 and for  gini  in Model 2, there is an obvious 
increase in power when dummy variables are employed 
as opposed to continuous valued SNPs ( fig. 4 ) for select-
ing Gene 1. The middle panels of  figure 5  compare the 
four measures for each of the 10 genes. For Model 1, the 
importance of genes 1 and 6 is detected by all measures; 
however, gene 3 is also frequently incorrectly selected. 
For Model 2, Gene 1 is the only one of the four correct 
genes (i.e. Genes 1, 2, 6, and 7) that is noticeably selected, 
while the type I error appears notable for most of the re-
maining genes. The right panels of  figure 5  compare the 
 overall  measure for RF to that of MCLR over the 10 genes. 
For Model 1, RF correctly picks Genes 1 and 6 while fre-
quently erroneously choosing Gene 3. MCLR has notice-
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  Fig. 4.  RF results for the tagging SNP Model 1 and 2 simulations. 
For 200 observations, power is measured on the y-axis and  mtry 
 on the x-axis. The p value is adjusted for the 60 SNPs and  nT = 
 1,000. The different lines correspond to the four variable impor-

tance measures. For Model 1, only the results for Gene 1 are dis-
played. For Model 2, the average power over Genes 1 and 2 is dis-
played. 
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  Fig. 5.  RF and MCLR results for tagging SNP simulations. Top row 
results are based on Model 1 and bottom row results on Model 2. 
Power is measured on the y-axis and dummy variables are used 
for the SNPs. RF results are presented only in the left and middle 
panels. In the left panels,  mtry  are on the x-axis and different lines 
represent different variable importance measures. In the middle 

panels, the power for RF ( mtry  = 7) for each of the importance 
measures is shown across all 10 genes. The right panels compare 
RF ( overall  importance measure,  mtry =  7) to MCLR. For all re-
sults, there are 500 observations,  nT =  1,000, and the p values are 
adjusted for 60 SNPs, i.e. 0.05/60 = 0.00083. 
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ably less power for the important genes and comparable 
type I error for the other genes, except that it does not er-
roneously choose Gene 3, resulting in lower error. In 
Model 2, MCLR is negligibly more apt to pick the impor-
tant genes and similarly apt to choose the other genes. 
Importantly, both algorithms have power  ! 0.2 for all 
genes except 1 and 2. As seen in online supplementary 
figure 5, the power for MDR for Models 1 and 2 is ap-
proximately 0 for all 10 of the genes. The left panel of on-
line supplementary figure 5 displays the power of RF to 
detect the important genes when the variables are input 
as continuous. In contrast to the middle panels of  figure 
5  (which report the results when dummy variables are 
used), all measures with the exception of  out0  have type 
I error close to 0 for the unrelated genes, while retaining 
marginal power to select the correct genes.

   Computing.  All simulations were run on the Yale Uni-
versity Biomedical High Performance Computing Cen-
ter’s Bulldogi, a cluster of 170 Dell PowerEdge 1955 nodes, 
each containing 2 dual core 3.0 Ghz Xeon 64 bit EM64T 
Intel cpus, for a total of 680 cores. Each node has 16 GB 
RAM. The three methods varied in computational re-
quirements. To build a null distribution for  n  = 200 with 
1,000 permutations for Model A, employing 10 nodes 
with 4 processors per node and using dummy variables, 
RF ran in  ! 1 min, while MCLR ran in 7.5 min. For  n  = 
500, RF ran in  ! 1 min, while MCLR ran in about 16 min. 
In the same setting with continuous valued variables and 
 n  = 200, RF ran in  ! 2 min, while MDR ran in 25 min. For 
 n  = 500, RF ran in about 3 min, while MDR ran in 63 min.

  3.2. Data Analysis 
 In a recent study, collaborators at multiple institutions, 

including the National Cancer Institute, reported their 
findings on 1,321 newly diagnosed non-Hodgkin lym-
phoma (NHL) cases identified in four Surveillance, Epi-
demiology, and End Results (SEER) registries  [18] . An ad-
ditional 1,057 population controls were identified via 
random digit dialing and Medicare files. Of these, the 
researchers were able to collect biological samples on a 
total of 1,172 cases and 982 controls. The data is fully de-
scribed in Chatterjee et al.  [19] .

  The goal of the study was to evaluate associations be-
tween 57 SNPs in pro-inflammatory and other immuno-
regulatory genes and risk of overall NHL as well as the 
risk of five subtypes. For the purposes of the evaluation, 
univariate logistic regression models were used to esti-
mate odds ratios (OR) and 95% confidence intervals. The 
findings indicated that SNPs in two pro-inflammatory 
cytokines, tumor necrosis factor- �   (TNF)  and lympho-

toxin- �   (LTA) , as well as a SNP in the innate immune 
gene  Fc  �   receptor 2A (FCGR2A) , increased overall NHL 
risk. Both  TNF  and  LTA  were also implicated as increas-
ing risk for the subtype diffuse large B cell (DLBCL).

  The goal of the current data analysis was to investigate 
a multivariate perspective via RF. Our hope was that by 
examining the SNPs in concert with each other addition-
al associations with both outcomes (DLBCL and NHL) 
would be unearthed. As in the simulations, the first step 
of the analysis was to build a null distribution based on 
permuting the case/control status labels of the collected 
cohort, here 10,000 times. Subsequently, the permuted la-
bels were paired individually with the original SNP val-
ues and RF was run (note that missing SNP values were 
imputed as described in the online suppl. Section 3). For 
each of the 10,000 samples, the four variable importance 
measures were recorded. Finally, RF was run on the orig-
inal data (with non-permuted case/control labels). This 
final set of variable importance measures was compared 
to the null distribution and p values were assigned as in 
equation 1. The results including the p values and ORs for 
the original univariate logistic regression models as well 
as the p values based on two RF measures,  overall  and 
 out1 , for both outcomes (DLBCL and NHL) are shown in 
 table 2 . To estimate the false discovery rate, we employed 
the R, bioconductor package LBE which bases the q value 
estimation on the marginal distribution of the p values 
without an assumption for the alternative hypothesis  [20, 
21] . Shaded p values in  table  2  indicate corresponding 
LBE q values  ! 0.2.

  RF is affected by an unbalanced number of cases and 
controls. In the NHL analysis, there were 966 cases and 
747 controls; thus, the proportions were close. However, 
in the DLBCL analysis, the number of cases was reduced 
to 316. Several approaches for addressing this issue have 
been suggested: non-uniform misclassification costs and 
either oversampling or undersampling to balance the 
data  [22] . For the DLBCL data, we employed both overs-
ampling and a variation of undersampling. For the for-
mer, the majority of SNPs were considered significant for 
all four variable importance measures suggesting that 
oversampling inflates the significance of the variable im-
portance measures. For the latter, we randomly selected 
316 of the 747 controls to pair with the 316 cases. The null 
distribution was built and final analysis performed with 
just those 632 observations. The results are those shown 
on the right-hand side of  table 2 .

  For the NHL analysis, of the 57 SNPs only 2 are uni-
variately significant at the q value cutoff of 0.2. In com-
parison, there are 7 significant SNPs determined by the 
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Table 2. D ata analysis combined results

% genotypes
missing
n = 1,713

NHL DLBCL

univariate logistic regression RFs univariate logistic regression R Fs

OR p overall
p

out1
p

OR p over all
p

out1
p

CCR2_01 0.04 1.0118 0.731 1.0257 0.5218
CCR5_01 0.04 0.9732 0.3819 1.0037 0.9177
CTLA4_01_2 0.07 1.0121 0.6383 1.0334 0.2742 0.0594 0.0786
CX3CR1_01 0.32 0.9836 0.5717 0.0021 0.0002 0.9809 0.5569 0.0149 0.0004
CXCL12_01 0.03 0.9565 0.0803 0.0235 0.9755 0.4012 0.2011
FCGR2A_01 0.03 1.0537 0.0677 0.1212 1.0259 0.4358 0.0628
ICAM1_01 0.03 1.3112 0.1819 1.2319 0.5174 0.2743
IFNG_07 0.05 0.9815 0.4482 0.9926 0.7972
IFNG_10 0.05 0.9845 0.5279 1.0002 0.9954
IFNGR1_05 0.30 0.9512 0.1385 0.0277 0.0003 0.9926 0.8405 0.0036 0.0001
IFNGR2_01 0.02 0.9595 0.135 0.9297 0.0242 0.0390 0.0826
IL10_01 0.02 1.0178 0.4731 1.0217 0.455 0.0439 0.0717
IL10_02 0.02 1.0168 0.499 0.2258 1.0206 0.4787 0.0397 0.0182
IL10_03 0.02 1.0202 0.458 1.0314 0.3261
IL10_17_2 0.02 1.028 0.2688 1.0408 0.172 0.2549
IL10RA_02 0.02 0.9718 0.2778 0.9937 0.8394
IL12A_01 0.02 0.9666 0.2176 0.9666 0.2892
IL12B_04 0.04 1.0334 0.1942 0.1566 1.0414 0.1708 0.0264 0.2020
IL13_01 0.05 1.0239 0.3584 0.0687 0.0762 1.0345 0.2638 0.1879
IL13_03 0.01 1.0414 0.11 1.0591 0.0533
IL15_02 0.05 0.9745 0.3048 0.9408 0.0377
IL15RA_02 0.05 0.9797 0.4615 0.9868 0.6869 0.1387
IL16_02 0.04 0.9792 0.3928 0.9718 0.3201
IL16_03 0.03 0.9776 0.4073 0.1971 0.9716 0.366 0.2223
IL1A_01 0.03 0.9986 0.9542 0.9693 0.2726
IL1A_02 0.01 0.9977 0.9251 0.9669 0.2338
IL1B_01 0.01 0.9909 0.7061 1.0123 0.667 0.2071
IL1B_02 0.02 1.0151 0.5423 0.9737 0.3568
IL1B_03 0.02 0.9817 0.4472 1.0081 0.7763
IL1RN_02 0.02 1.0198 0.4185 0.9998 0.9943
IL2_01 0.02 0.9947 0.8279 1.0042 0.882
IL4_01 0.03 0.9599 0.1307 0.1193 0.0312 0.9843 0.6142
IL4_02 0.01 1.0312 0.3913 1.0377 0.3813
IL4_03 0.02 0.9632 0.1698 0.2698 0.0325 0.9732 0.389 0.2712
IL4R_23 0.03 0.9973 0.9161 0.2151 1.019 0.5284
IL5_02 0.03 0.9679 0.18 1.0062 0.8293 0.1214 0.0137
IL5_10 0.04 0.5675 0.048 0.2255 0.7443 0.2629
IL6_01 0.01 0.9665 0.182 0.2177 0.9757 0.4132
IL6_04_2 0.03 0.9598 0.109 0.9663 0.2582
IL7R_01 0.30 1.0187 0.5206 0.1392 0.004 1.0408 0.2146 0.0310 0.0007
IL8_01 0.05 1.0496 0.0724 0.0216 0.0338 1.0579 0.0738 0.0620 0.2068
IL8_04 0.05 1.0528 0.0543 0.1273 1.0562 0.0791 0.0855
IL8_05 0.05 1.037 0.1611 0.211 1.0416 0.1761 0.1313
IL8RB_01 0.06 1.0482 0.0843 0.0838 1.0363 0.2584 0.0658 0.2104
IL8RB_02 0.30 1.0304 0.3804 0.0531 0.002 1.0127 0.7367 0.0158 0.0004
IL8RB_04 0.06 1.0002 0.9927 0.2892 0.0792 1.0023 0.9386 0.1049 0.0080
JAK3_01 0.30 1.0246 0.4792 0.0657 0.0123 1.0351 0.3699 0.0435 0.0087
LTA_01 0.01 1.0654 0.0086 0.0144 0.0742 1.0831 0.0046 0.0001 0.0000
LTA_04 0.12 0.9546 0.0764 0.9066 0.0015 0.0642 0.0323
SELE_01 0.33 1.0461 0.2137 0.0038 0.0002 0.9748 0.5537 0.0355 0.0005
STAT1_01_2 0.32 1.05 0.0963 0.0054 0.0009 1.0553 0.1037 0.0008 0.0000
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 overall  measure and 10 by  out1  in the RF analysis. There 
is good overlap between the selected SNPs by the two 
measures including a number of SNPs with significance 
that are not evident in the univariate analysis. For the 
DLBCL analysis, only 3 SNPs are deemed univariately 
significant, while 19 are significant by each of the two RF 
measures. Again the overlap between the significant 
SNPs selected by  overall  and  out1  is substantial. The re-
sults shown for DLBCL in  table 2  point to cytokine poly-
morphisms in the Th1/Th2 pathway genes including
IFNGR2, IL5, IL7R, and TNF; and the same SNPs were 
identified recently for the NHL subtype marginal zone 
B-cell lymphoma  [23]  as well as for IL10 in DLBCL and 
follicular lymphoma  [24] . Interestingly, Lan et al.  [24]  
found IL7R, JAK3, and IFNGR1 to be significantly as-
sociated with one or more NHL subtypes, but all three 
lost significance after adjusting for multiple corrections. 
In comparison, we found all three to be significantly as-
sociated with NHL and DLBCL after adjustment, attest-
ing to the increased power of RF over univariate models. 
Similar to the results in Purdue et al.  [25] , polymor-
phisms in IL10, IFNGR2, and FCGR2 are associated with 
the subtype DLBCL but not overall NHL. Of note, in our 
results LTA 04 (rs2239704) is only significant in DLBCL 
as is true in Purdue et al.  [25] ; however, we additionally 
found LTA 01 (rs909253) to be significant for both NHL 
and DLBCL, which they did not. When studying the 
JAK-STAT pathway, Butterbach et al.  [26]  found IFNGR1 
to be associated with DLBCL as also seen in our results. 
We also found STAT1 to be significant for both NHL and 
DLBCL; however, they focus more on STAT3 in their 

analysis. Overall, there is substantial overlap between the 
findings previously reported in the NHL literature and 
our analysis.

  4. Conclusion 

 Until the present, much of the focus in cancer genetics 
has been on generating lists of univariately significant 
SNPs. However, these approaches have not been effective 
for elucidating the synergistic qualities of the numerous 
SNPs in complex diseases. As SNPs do not act one at a 
time, but rather in concert with numerous others, a com-
pelling need exists to examine analytically sound and 
computationally advanced methods that elucidate a more 
biologically meaningful understanding of the mecha-
nisms of cancer initiation and progression.

  Although modern GWAS involve potentially hun-
dreds of thousands of tagging SNPs, in this report we ex-
amine the performance of several methods in settings 
that involve a relatively small number of candidate SNPs 
for two main reasons. First, not all of the methods we 
study are currently scalable for the analysis of a large 
number of SNPs, and thus direct comparisons of the 
methods are not possible on the GWAS scale. However, 
relative power of the methods for detecting true multi-
locus interactions that involve a relatively small number 
of SNPs is likely to be similar irrespective of the total 
number of SNPs studied. Thus, the knowledge we gain 
from smaller-scale studies can be potentially useful for 
deciding on strategies for the analysis of larger-scale 

Table 2 (continued)

% genotypes

missing

n = 1,713

NHL DLBCL

univariate logistic regression RFs univariate logistic regression R Fs

OR p overall

p

out1

p

OR p over all

p

out1

p

TLR4_01 0.04 1.0035 0.9288 0.991 0.8422 0.1831 0.0325
TNF_02 0.01 1.0748 0.0064 0.1839 1.0974 0.0028 0.0041 0.0055
TNF_04 0.04 1.0059 0.8825 0.9906 0.84 0.2170 0.0516
TNF_07 0.03 0.9637 0.2382 0.9622 0.287 0.1976
VCAM1_02 0.05 1.0309 0.2576 0.0671 0.9987 0.9683
VCAM1_05 0.04 0.9737 0.599 0.9347 0.2614

The  table presents a list of SNPs in alphabetical order and the corresponding results for NHL patients as well as DLBCL patients. 
For each patient group, the univariate logistic regression OR and (unadjusted) p values are displayed. The shaded boxes indicate cor-
responding LBE q values <0.2.
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studies. Second, we observe that current GWAS have led 
to the discovery of a variety of susceptibility SNPs for 
many complex traits. Given that these findings are gener-
ally considered robust and well validated, there is now 
increasing interest in exploring interactions among such 
known loci for a better understanding of the underlying 
biologic mechanisms. The scale of our study is directly 
relevant for such analysis.

  The goal of our study is to assess a SNP-specific p 
value which simultaneously accounts for the influence of 
other SNPs. RF provides us with a convenient tool for 
measuring a variable’s importance via four different val-
ues: the class-specific measures (one for each outcome), 
the mean decrease in accuracy over all classes, and the 
mean decrease in the Gini index. In the current imple-
mentation, for each of the importance measures, con-
tinuous values for each variable are returned that can 
subsequently be ranked by the user. However, no guide-
lines are available to indicate which of these variables are 
significant. Without such, the user must rely on arbitrary 
cutoff values. As described in Section 3.1, we accomplish 
our goal of evaluating a SNP-specific p value by generat-
ing a null distribution.

  Multiple simulations were performed in order to eval-
uate this approach in RF, MCLR, and MDR. RF had the 
highest power when the mutations were additive (Model 
A) or exact (Model E), when the causal SNPs were located 
within 2 genes (tagging SNPs Model 1) and when the 
causal SNPs were located within 4 genes (tagging SNPs 
Model 2). MCLR performed similarly to RF in Models E 
and 2. In the other two scenarios, MCLR did not have as 
much power. Interestingly, when using tagging SNPs, RF 
had better power to detect the 6 disease-related SNPs with 
dummy variables and lower type I error for the unrelated 
SNPs when using continuous covariates. With dummy 
variables, RF and MCLR had similar power in Model 2 
for both the related and unrelated genes, while RF had 
much greater power to detect the related genes in Model 
1. MDR had low power to detect disease-related SNPs/
genes in all simulation models.

  In comparison, García-Magariños et al.  [4]  found that 
RF and CART performed as well as logistic regression 
and MDR when there were SNPs with marginal effects 
and unknown interactions in the presence of a large 
number of noise SNPs. In pure interaction models, they 
found that RF performed as well as MDR especially with 
large sample sizes. However, their simulations are limited 
to the  overall  importance measure and only the highest 
ranked SNP.

  Given the results of our simulations,  overall  and  out1 
 are the most reliable variable importance measures in RF, 
either performing consistently or better than the other 
two measures. This is in contrast to Kim et al.  [27]  where 
Gini identified more important variables. In additional 
simulations (data not shown), we noted that Gini is strik-
ingly affected by the number of levels of a covariate, 
which has been noted in several other studies  [8, 28, 29] . 
As also observed in Diaz-Uriarte and Alvarez de Andres 
 [30] , different values of  mtry  led to almost identical re-
sults. The exception is in Model E of epistasis where the 
default value of  mtry  performed better, similar to the re-
sults seen in Kim et al.  [27] .

  Although we note that the frequency with which a 
variable is included in multiple models is a naive measure 
of variable importance, it is the suggested measure for 
MDR and MCLR. Recently, two algorithms which form 
forests with logic regression have been suggested, logicFS 
 [31]  and LogicForest (LF)  [32] , each with a variable im-
portance measure. In LF, the variable importance mea-
sure for variable  X  j    is an average of the out-of-bag mis-
classification rate for each tree in a (logic regression) for-
est based on randomly permuting the values of  X  j .   The 
difference between the variable importance of LF and of 
logicFS is that the latter replaces permutation with the 
addition/removal of ‘prime implicants’ (i.e. predictor in-
teractions) in each tree. Additionally, the returned vari-
able importance measure in logicFS is for prime impli-
cants which can be single variables but more frequently 
are interactions of two or more variables. LF returns a 
variable importance measure for each individual vari-
able as well as for the prime implicants, i.e. interactions. 
To explore whether the variable importance of LF im-
proved on that returned by MCLR, we compared the two 
in simulations for Model A and found that the power was 
slightly lower for LF than that reported for MCLR; there-
fore, we did not include the results here.

  A limitation of the suggested approach for assessing a 
SNP-specific p value is the computational burden. In this 
study, the computational intensity is limited as we fo-
cused on candidate gene studies. In studies including 
thousands of SNPs, the approach would currently be in-
feasible. However, as computational intensity and mem-
ory requirements have limited the use of RF at the ge-
nome-wide level, software packages such as Random Jun-
gle and Willow have recently been introduced  [33, 34] . 
The suggested approach could be implemented with such 
packages.
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