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Abstract
(R)-BINOL•SnCl4 was found to catalyze a formal [3+2] cycloaddition reaction between C(3)-
substituted indoles and 2-amidoacrylates to provide pyrroloindolines. A variety of
pyrroloindolines were prepared with high enantioselectivity in one step from simple precursors.
This methodology is expected to facilitate the total synthesis of pyrroloindoline alkaloids, an
important class of biologically active natural products.

Pyrroloindoline alkaloids are an important class of natural products1 that exhibit an
impressive array of promising biological properties, including anticholinesterase,2
antiinflammatory,3 and anticancer activities.4 Owing to their medicinal relevance and
structural complexity, pyrroloindoline alkaloids have served as a fertile area for the
discovery and development of new chemical reactions.5,6 As part of a program targeting
new methods for the total synthesis of alkaloid natural products, we sought to develop a
convergent method to prepare enantioenriched pyrroloindolines.

From a design perspective, it was hypothesized that pyrroloindolines (5) could be assembled
through the union of a C(3)-substituted indole (1) and a 2-amidoacrylate (2) in what would
constitute a formal [3+2] cycloaddition reaction (Scheme 1). It was envisioned that the
reaction would proceed through a stepwise mechanism in which a Lewis acid activates 2-
amidoacrylate 2, promoting conjugate addition by the indole to give iminium ion 4.
Subsequent intramolecular attack of the nucleophilic amide would provide pyrroloindoline
5.

The proposed reaction would harness the intrinsic C(3)-nucleophilicity of the indole
substrate and, in principle, could provide rapid access to a variety of pyrroloindolines from
simple C(3)-substituted indole precursors.7,8 Although 2-amidoacrylates are typically poor
electrophiles for conjugate addition reactions due to the electron donating effects of the
nitrogen lone pair, Piersanti and coworkers recently reported that EtAlCl2 promotes the
reaction of indole (1, R=R1=R2=H) and methyl 2-acetamidoacrylate to provide the C(3)-
Friedel-Crafts type product 3 (R=R2=H, R3=R4=Me, Scheme 1).9

Preliminary experiments were conducted in which equimolar mixtures of commercially
available methyl 2-acetamidoacrylate (8) and 1,3-dimethylindole (6) were exposed to
various Lewis acids. We were pleased to find that strong Lewis acids such as EtAlCl2,
TiCl4, and SnCl4 provided isolable quantities of the desired pyrroloindoline 7a, as well as
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varying amounts of the C(2)-Friedel-Crafts type product analogous to 3 (not shown). After a
preliminary survey of reaction parameters, the use of SnCl4 (1.2 equivalents) in
dichloroethane at room temperature was found to provide pyrroloindoline 7a in 64% yield as
a 6:1 mixture of exo and endo diastereomers (Table 1, entry 1; exo diastereomer is shown).

At this stage we wished to determine the feasibility of accessing enantioenriched
pyrroloindolines using this formal [3+2] cycloaddition reaction. To this end, a screen of
chiral diol additives anticipated to form chiral Lewis or Brønsted acid complexes with SnCl4
was conducted.10 Of the conditions evaluated, it was found that utilization of a 1.1:1 mixture
of (R)-BINOL and SnCl4 provided pyrroloindoline 7a in 86% yield as a 4:1 diastereomeric
mixture favoring exo-7a, which was formed in 64% ee (Table 1, entry 2).11,12 Interestingly,
the minor, endo diastereomer was formed in 83% ee. In follow-up studies, a side-by-side
comparison of two reactions varying only by the presence or absence of (R)-BINOL showed
that it accelerates the rate of 7a formation and increases the overall conversion.13

Based on these observations, it was hypothesized that catalytic quantities of (R)-BINOL may
still provide pyrroloindoline 7a with good levels of enantioselectivity. Indeed, use of as low
as 10 mol % (R)-BINOL furnished 7a without significantly affecting the observed
enantioselectivity (Table 1, entries 3–5). Whereas 10 mol % (R)-BINOL provided
comparable selectivities for the formation of 7a, 20 mol % (R)-BINOL imparted consistently
higher enantioselectivities for more functionalized substrates (vide infra), and was therefore
utilized in subsequent experiments. Control experiments confirmed that no reaction occurred
in the absence of SnCl4, and that 1.2 equivalents SnCl4 were required to drive the reaction to
high conversions.14

In an effort to improve the enantioselectivity of the reaction, the amide and ester groups of
the acrylate were modified.15,16 An increase in ee was observed when methyl 2-
trifluoroacetamidoacrylate (9) was employed (Table 1, entry 7). A similar increase was
observed using benzyl 2-acetamidoacrylate (10, entry 8). Gratifyingly, these effects proved
to be additive: use of benzyl 2-trifluoroacetamidoacrylate (11) provided pyrroloindoline 7d
in 81% yield and 91% ee. Preliminary studies indicated that chlorinated solvents provided
the best combination of yields and selectivities. A further screen identified methylene
chloride as the solvent of choice. Under our optimized conditions, pyrroloindoline 7d was
isolated in 86% yield as a 4:1 mixture of exo and endo diastereomers, which are formed in
94% and 91% ee, respectively (entry 10).17

Having identified conditions to prepare 7d in high yields and enantioselectivities, a survey
of indole substrates was conducted. Substrates substituted at C(5) with electron-donating
and electron-withdrawing substituents provided uniformly high ee’s, although a moderate
decrease in yield was observed with electron poor substrates (Scheme 2, 13a–d). 1,3,6-
Trimethylindole reacts smoothly to give a 4:1 mixture of exo- and endo-13e in 91% yield
(94% and 90% ee, respectively).

More functionalized substituents are also tolerated at C(3) of the indole substrate.
Pyrroloindolines bearing t-butyldimethylsiloxyethyl (13f) and phenylethyl (13h) substituents
are prepared in moderate to good yield and high enantioselectivity (Scheme 2). Most
notably, use of N-methyl-1,2,3,4-tetrahydrocarbazole provided a single diastereomer of
pyrroloindoline 13g in 65% yield and 86% ee. Using this reaction, the aza-propellane core
of natural products such as vincorine18 and minfiensine19 was prepared in only two steps
from commercially available 1,2,3,4-tetrahydrocarbazole.

Whereas the exo diastereomer predominates in the (R)-BINOL•SnCl4-catalyzed formation
of the pyrroloindolines shown in Scheme 2, it is known that the endo diastereomer of similar
compounds is favored thermodynamically.20,21 Accordingly, treatment of a 4:1 mixture of
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exo-7d and endo-7d diastereomers (94% and 91% ee, respectively) with excess DBU in
CD2Cl2 resulted in epimerization to give a greater than 10:1 endo:exo mixture of products
after 72 h (Scheme 3). Interestingly, the endo-7d product was recovered in 56% ee, favoring
the opposite enantiomer.22 In a subsequent experiment, exposure of diastereomerically pure
exo-7d to DBU (10 equiv) provided ent-endo-7d in 94% ee. Exposure of diastereomerically
pure endo-7d to the epimerization conditions returned endo-7d without significant erosion
of enantiomeric excess. Taken together, these studies suggest that the initially formed exo
and endo diastereomers of 7d must be of opposite enantiomeric series. From a synthetic
perspective, the diastereomers can be separated prior to subsequent functionalization to
avoid erosion of optical activity through this epimerization mechanism.

At this time the mechanism of the reaction remains to be elucidated. As exo- and endo-7d
have opposite configurations at C(3), analysis of the diastereomeric and enantiomeric ratios
suggests that the first step of the reaction (conjugate addition) occurs with modest levels of
catalyst control, whereas the enolate protonation step occurs with high levels of catalyst
control.23 In effect, the catalyst-controlled protonation step serves to resolve the mixture of
enantiomeric intermediates. Yamamoto and coworkers have demonstrated that
BINOL•SnCl4 behaves as a Lewis acid-assisted Brønsted acid that promotes a number of
enantioselective protonation reactions.11a–c It is unusual, however, for high
enantioselectivities to be observed when employing an excess of SnCl4 relative to BINOL.
The observation that at least 1 equivalent SnCl4 is required for high conversions, coupled
with the fact that use of strong Brønsted acids24 in the absence of SnCl4 fail to provide 7d,
may suggest that this reaction benefits from cooperative Lewis acid-Brønsted acid
activation.

In conclusion, a convergent method to prepare enantioenriched pyrroloindolines is
described. The optimal conditions employ (R)-BINOL as a catalyst in the presence of
stoichiometric SnCl4, and provide access to functionalized pyrroloindolines in uniformly
high ee’s. The application of this methodology to the total synthesis of pyrroloindoline
natural products, as well as studies aimed at understanding the mechanism of this new
transformation are the focus of ongoing research in our laboratory.25
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Scheme 1.
Proposed reaction to prepare pyrroloindolines.
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Scheme 2.
Substrate scope of pyrroloindoline formation.

Repka et al. Page 7

J Am Chem Soc. Author manuscript; available in PMC 2011 November 22.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Scheme 3.
Epimerization studies.
aDetermined by 1H NMR analysis of mixture. bDetermined by chiral stationary phase SFC
or HPLC. c1.6 equiv SnCl4 was employed.
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