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The randomized controlled trial (RCT) is the
gold standard for causal inference for individ-
ual-level interventions.1 When interventions
are applied at the group level and outcomes
are measured at the individual level, the cluster-
or group-randomized trial (GRT) is the gold
standard for causal inference.2,3 However, GRTs
are often costly and time-consuming, prompting
researchers to look for alternatives. One alter-
native that has been suggested is the multiple
baseline design (MBD), which has a venerable
history in education and applied behavior re-
search with individual-level interventions but is
relatively new in public health research with
group-level interventions.4---6 The MBD makes
repeated measurements over a period of time
and introduces a sustained intervention on
a staggered schedule; intervention effects syn-
chronized with the staggered start times provide
evidence for causal inference. Hawkins et al.
described the MBD as ‘‘a viable alternative to the
RCT’’ and suggested that it will be lower cost, use
smaller sample sizes, and still be statistically
rigorous.5 Biglan et al. suggested complemen-
tary roles, with MBDs used to ‘‘develop and
sort through potentially effective interven-
tion methods, followed by evaluation in RCTs
both to test efficacy and to determine the
extent of generalizability.’’4 We review the
structural features that have made MBDs
useful in other fields and consider whether
similar success is likely in public health. We
also compare the statistical power of MBDs
and GRTs.

METHODS

We reviewed the MBD literature to iden-
tify key structural features. We reviewed
recent suggestions that the MBD be adopted
in public health research. Finally, we re-
viewed the literature on GRTs with stag-
gered starts and compared the power of that
design with the more traditional parallel
design.

RESULTS AND DISCUSSION

We used the Murray convention, in which
‘‘condition’’ refers to the study arm, ‘‘group’’
refers to a collection of participants assigned
together to a condition, and ‘‘member’’ refers to
an individual participant.3 Experiments involve
a single intervention, so at any particular time
a group will be in either the control condition or
the intervention condition.

The MBD has several variations with and
without randomization; we focused on MBDs
that introduce the intervention to groups on
a staggered schedule and in a random order.
Before any intervention occurs, the outcome is
measured in each group. Then the intervention
is initiated in 1 or more groups while the others
continue in the control condition. After suffi-
cient time has passed for the intervention to
affect the outcome in the first group(s), out-
come measurements are conducted in all
groups and the intervention is introduced in
1 or more additional groups. This proceeds
until all groups receive the intervention.
Once a group starts the intervention, it re-
mains in that condition until the end of the

study. Figure 1 illustrates an MBD involving
14 measurement periods and 11 groups
with 1 group crossing to intervention at each
start time.

If every group shows a similar change after
crossing to the intervention condition and does
not change at other times, the experiment
provides compelling evidence that the changes
resulted from the intervention. Even with
a limited number of groups, consistently repli-
cated effects can be persuasive, and that is why
some researchers have been drawn to the
MBD.

The term group-randomized trial covers
a broad array of designs in which groups are
randomized to conditions and measurements
are taken from the members of those groups. In
a parallel GRT, baseline measurements are
conducted in every group and then the in-
tervention commences simultaneously in half
of the groups; the remainder serves as controls
and does not receive the intervention during
the study. One or more additional measure-
ments occur in all groups.

MBDs for public health interventions al-
ways have multiple members per group, and
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randomization is used to select the order in
which groups start the intervention. Because
these 2 conditions define a GRT, the MBDs we
considered are GRTs as well. These MBDs are
also called stepped wedge designs (SWDs).
The name stepped wedge originated with the
Gambia Hepatitis Study and refers to the
wedge shape of the intervention timeline across
groups, as depicted in Figure 1.7 Brown and
Lilford reviewed a dozen stepped wedge studies;
the stated reasons for using staggered starts
included easier implementation of the interven-
tion, ethical requirements to give the intervention
to all participants, a desire to estimate trends
over time, and a desire to use participants as their
own controls.8

Structural Features of Multiple Baseline

Designs

The following features of the MBD have
contributed to its success in fields such as
applied behavior research and education.9---19 It
is important to consider whether they are likely
to be as effective in public health research.

d Designs with staggered start times can be
persuasive if the timing of the effects is
synchronized with the timing of the

introduction of the intervention. Further-
more, they guard the internal validity of the
study by ruling out the possibility that
a single external event (e.g., a celebrity
cancer diagnosis or a change in legislation)
could explain the results. In some cases it
would be prohibitively expensive or impos-

sible to start the intervention in half of the
groups simultaneously. This is especially
true when a single team trains all the in-
tervention personnel or when groups are
separated by large geographical distances.
With staggered start times, each group can
start the intervention shortly after being

trained.
d Many measurements may be required to

reliably estimate baseline trends and inter-
vention effects within each group. In some

situations, data collection and reporting will
be standardized processes that occur with
fortunate frequency. Otherwise, the cost of
many measurements may make MBDs pro-
hibitively expensive.

d Randomization of the order in which the
groups start the intervention protects against
bias associated with readiness or eagerness to
participate.

d Each group experiences a single transition
from the baseline condition to the interven-

tion condition. MBDs are typically used in

settings in which it would not be ethical,

healthy, or practical to withdraw the inter-

vention or in which it is unrealistic to expect

participants to revert to their pretreatment

condition quickly after the withdrawal.
d The time between intervention onsets in

different groups is long enough for the in-
tervention to show its full effect in the most
recently treated group. Treatments with a long
latency are not good candidates for the MBD.

Analysis Methods for Multiple Baseline

Designs

Matyas and Greenwood reported that 75%
of the experiments they examined in the

Journal of Applied Behavior Analysis looked for

effects that shifted the mean outcome by more

than 5 standard deviations; 50% looked for

effects larger than 10 standard deviations.20

Thus it is no surprise that MBDs in applied

behavior research have traditionally been ana-

lyzed by simple visual inspection for a substantial

change in within-unit outcomes shortly after the

Note. The intervention commences on a staggered schedule across groups with the idea that a measureable effect in the outcome variable(s) will follow a similar pattern.

FIGURE 1—Conceptual diagram of the multiple baseline or stepped wedge design.
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intervention starts.10,12 This method works best if
the intervention effects are large. More recent
work has explored formal hypothesis testing both
within and between groups to detect more
modest effects. The methods described include
Box-Jenkins time series analysis, interrupted time
series analysis, randomization tests, and multi-
level modeling.11,21---24 Approaches to the analysis
of stepped wedge GRTs are complex and are
described in Brown and Lilford,8 Brown et al.,25

Hayes and Moulton,26 and Hussey and
Hughes.27

Optimistic Claims for Multiple Baseline

Designs in Public Health Research

Hawkins et al. suggested,

Conceptually a multiple baseline design may use
as few as two groups to test an intervention,
reducing costs and alleviating some of the diffi-
culties in obtaining a sufficient sample size re-
quired in RCTs.5(p163)

Success in 2 staggered groups may dispel the
counterfactual suggestion that success resulted
from a single external event, and it may pro-
vide justification for testing in a broader set
of groups. But numerous examples in the MBD
literature demonstrate intervention success in
some, but not all, groups.4,11Given the small effect
sizes that are typical in public health interven-
tions, mixed results will be difficult to interpret.

Biglan et al. observed that

in addition to knowing whether the intervention
was successful or not, data on the differential
effects of alternative forms of the intervention
implemented in individual communities and
implemented at different times will help advance
knowledge on which components influence [the
study outcome].4(p39)

With individual-level interventions, MBD
researchers may be able to guess at the reasons
for their intervention failures if they interact
with the study participants frequently.28 In
public health studies, it will be impractical for any
single investigator to have contact with all study
participants, and those participants will not be
observed often. In addition, community-based
investigators will have a multitude of confound-
ing factors to consider. Data on differential effects
will be confounded with the community effects,
the times of implementation, different baseline
trends, and possibly different implementation
teams. Investigators will have difficulty attribut-
ing differential effects to specific features of the
intervention.

Finally, Hawkins observed that ‘‘[the MBD]
is a viable alternative to the RCT.’’5(p167) We
believe that an MBD would need to have many
of the features of an RCT to provide compelling
evidence in public health studies. Modest effects
require many groups, and simple visual inspec-
tion of the time series of results will usually not
suffice. There are conditions under which SWDs
(MBDs for groups) can be more powerful than
parallel GRTs with the same number of groups.
However, the SWD design will often require
more measurements and more time than the
parallel GRT, sometimes substantially more, so
study designers must carefully consider the
tradeoffs involved. Unless the intervention’s ef-
fect sizes are large, we do not share Hawkins’s
optimism that the SWD or MBD can provide
substantially faster or less expensive evidence
than the parallel GRT for causal inference for
group-level interventions.

Stepped Wedge Versus Parallel Design

There may be situations in which the study
designer is able to choose between an SWD
and parallel GRT. We compare the statistical
power of those designs and highlight some
considerations that might influence the choice.
Several questions interest us: Which design is
more statistically powerful given the same
number of groups and measurement periods?
What are the design parameters that influence
the answer? In cases in which the SWD is more
powerful than the parallel design, how many
fewer groups or measurements can be used
without sacrificing statistical power?

Brown et al. provided an illustrative Poisson
event example in which the SWD intervention
effect was estimated using a weighted average
of between-groups differences at each mea-
surement time point.25 Those authors ac-
knowledged the point raised by Hayes and
Moulton: the number of groups in intervention
and control conditions are markedly unbalanced
near the beginning and end of the stepped wedge
study, and that leads to loss of efficiency for
this analytic model.26 Hussey and Hughes de-
scribed the orthogonal complement to that ap-
proach: analyzing an SWD with an estimator that
is a weighted average of within-groups differ-
ences when it is reasonable to assume that there
is no time effect.27 The same problem applies
in that case: some groups spend most of the study
in the control condition and some spend most of

the study in the intervention condition, and that
leads to loss of efficiency for this analytic model.

Hussey and Hughes proposed an alternative
weighted least squares estimator for SWDs that
combines information from within and be-
tween groups.27 This estimator is more compli-
cated but usually more efficient than either the
purely between-groups or purely within-groups
estimators, and we used it to make observations
about conditions under which the SWD can be
more powerful than a parallel GRT. They as-
sumed a mixed effects model that describes the
individual-level response Yijk for member k in
group i and measurement period j (i in1, . . ., I; j in
1, . . ., T ),

ð1Þ Yijk ¼ lij 1 ai 1 bj 1 Xijh 1 "ijk ;

where lij is the average response in group i
during measurement period j, ai ; N(0, s2)
is a random effect for group i, bj is a fixed
effect for time period j, h is the intervention
effect, Xij takes the value 1 if group i is in the
intervention condition during period j and
0 otherwise, and "ijk;N 0; r2

e

� �
. Under this

model, q ¼ s2=ðs21r2
e Þ is the intraclass cor-

relation coefficient (ICC), describing the
correlation between 2 individuals in the
same group, either at the same point in time
or across 2 different measurement occa-
sions.

This model can be used to describe parallel
GRTs, SWDs, and traditional crossover designs
by varying the pattern of Xij values. Figure 2
shows the pattern of Xs for a parallel GRT
design with a single baseline and 3 follow-up
measurements and for a SWD with 4 mea-
surements; both designs involve 6 groups.
Hussey and Hughes observed that if s2 and
r2 r2

e =m
� �

are known, where m is the number
of members per group, then estimates of the
fixed effects can be obtained with a weighted
least squares analysis of the cluster means.27 If
Z is the IT · (T +1) design matrix corresponding
to the parameter g = (l, b1, b2, . . . , bT–1, h) for
the SWD, then ĝ = (Z9V–1Z )–1(Z9V–1Y ) and
the covariance matrix of ĝ ¼ Z 0V �1Z

� ��1,
where V is an IT · IT block diagonal matrix.
The estimate of the intervention effect, ĥ, is the T
+ first element of ĝ. Each T · T block within V
describes the correlation structure between the
repeated (in time) cluster means and has r2 + s2

in every element along the diagonal and s2 in the
off-diagonal elements.27
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Hussey and Hughes suggested that power
can be computed for the weighted least squares
analysis using

ð2Þ power ¼ U
halternativeffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Var ĥ
� �r � Z1�a=2

0
BB@

1
CCA;

where U is the cumulative standard normal
distribution function, Z1–a/2 is the (1–a/2)th
quantile of the standard normal distribution
function, and halternative is the hypothesized
treatment effect.27

They gave a closed form expression for
Var ĥ

� �
:

(3) Var ĥ
� �
¼

mr2
e I mr2

e 1 T s2
� �

IU�Wð Þmr2
e 1 U 2 1 ITU�TW � IVð Þs2

where V ¼
P

i

�P
j

Xij
�2, W¼

P
j

�P
i

Xij
�2
; and

U ¼
P
ij

Xij . Equation 3 is general and may

be solved for any pattern of 0 and 1 Xij values.
They also used values of X that increase from
0 to1gradually to indicate that the intervention
effect sometimes takes more than 1 measure-
ment period to be fully realized. Although we
have not done so here, it is possible to use the
same approach to model problems with in-
tervention adherence in long studies. Note that
although the weighted least squares estimator
works with values of X between 0 and 1,
Equation 3 is only valid when X takes the value
0 or 1.

For the remainder of this section we define
a balanced SWD to be a study of T periods
with I groups, each of which has m members,

where all groups are in the control condition in
Period 1 and then the same number of groups,
k= I/(T – 1), crosses over from control to
intervention in each remaining period. In that
case, Equation 3 may be rewritten as

(4) VarðĥSWD Þ¼
6 T�1ð Þ 1�qð Þ r2

e 1 s2
� �

1 1 mT�1ð Þq½ �
mIT T�2ð Þ 11

m T 1 1ð Þ
2 �1

h i
q

n o :

Similarly, we constrain a parallel GRT to be
a study with T measurement periods in which
all I groups are in the control condition in

Period 1 and half the groups (I/2) transition to
intervention in Period 2. For this design,
Equation 3 may be rewritten in a form that is
valid for parallel GRTs with T >2:

(5) Var ĥGRT

� �
¼

4 1�qð Þ r2
e 1 s2

� �
1 1 mT�1ð Þq½ �

mI T � 1ð Þ 1 1 m � 1ð Þq½ � :

Using Equations 4 and 5, we can compare
the power of the parallel GRT with the SWD
under the Hussey and Hughes mixed effects
model. Figure 3 plots VarðĥGRT Þ=VarðĥSWDÞ
as a function of the ICC (q) and number of time
periods (T ) with m=50 individuals per group.
This result holds for any number of groups
entering the intervention in each time period in
the SWD. For T=3 the parallel GRT has
a smaller variance for all values of the ICC. For
T >3 the SWD yields a smaller variance than
the parallel GRT for all but the very lowest
values of the ICC.

We can also use Equations 4 and 5 to
investigate the extent to which the SWD can
employ fewer or smaller groups, measure on
fewer occasions, or look for a smaller effect
size than that of the parallel GRT without
compromising power. Hussey and Hughes

Note. Intervention and control conditions are represented with both shading and the 0/1 Xij nomenclature of Hussey and

Hughes.27 A 0 means the group is in the control condition, and a 1 means the group is in the intervention condition.

FIGURE 2—Conceptual comparison of (a) stepped wedge and (b) parallel group-randomized

trial designs.

Note. GRT = parallel group-randomized trial; ICC = intraclass correlation coefficient; SWD = stepped wedge design; T = number

of measurement occasions.

FIGURE 3—The variance of the estimator using a parallel group-randomized trial design from

Equation 5 divided by the variance of the estimator using a stepped wedge design from

Equation 4, assuming equal numbers of groups and measurement occasions, and 50

persons per group for various numbers of measurement occasions and ICCs from 0.0 to 0.5.
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described a cross-sectional SWD to evaluate an
intervention to reduce the prevalence of chla-
mydia infections in 24 counties of Washington
State.27 We expanded on that example to
explore the relative sizes of parallel GRTs and
SWDs that have comparable power. We start
with a parallel GRT with 3 measurement periods
and 24 counties. In Period 1, all counties are in
the control condition. In Period 2, 12 randomly
selected counties receive the intervention and
continue to do so through Period 3. The
remaining 12 counties stay in the control condi-
tion. Equations 5 and 2 indicate that a parallel
GRT with 3 measurement occasions and 24
groups would have 81% power to detect
a 50% reduction in prevalence, assuming prev-
alence=l=0.05, m=100, T=3, I=24,q=0.01,
r2

e ¼ lð Þ 1� lð Þ 1� qð Þ; s2=(l)(1 – l)q,
halternative=–0.025, and a=0.05. Again, the
parallel GRT has a smaller variance than a SWD
with the same number of groups when T=3;
Equations 4 and 2 indicate that a balanced SWD
where T=3 and I=24 would have only 69%
power to detect the same 50% reduction in
prevalence.

Table 1 shows the total number of groups
necessary for the SWD to reach or exceed the
power of the parallel GRT under various values
of ICC. The ICC=0.010 row shows that a SWD
using as few as 8 counties could be used in the
Washington chlamydia project and achieve the
same power as the parallel GRT with 24

counties. Note, however, that the ICC=0.010
SWD where ISW=8 would require 9 mea-
surement periods, which is 3 times as many as
the parallel GRT. Both would require 72
group-level measurement efforts: 8 counties on
9 occasions for the SWD and 24 counties on
3 occasions for the parallel GRT. Table 1 uses
a superscript to identify cells in which SWDs
would require fewer total measurements than
would the parallel GRT.

Time is often as important a consideration as
cost. The parallel GRT in the TGRT column of
Table 1 would require 3 measurement periods.
To achieve the same level of power, the SWDs
would always require additional measurement
periods. ICC values<0.050 are common in
public health; with such ICCs, appreciably
more measurement periods may be required
for the SWD to achieve the same power as the
parallel GRT. Thus when choosing between the
parallel GRT and SWD, investigators would
need to consider the time required to complete
each design in addition to the other factors.

Table 1 also lists the power of those study
designs to detect a 50% reduction in preva-
lence (from 0.050 to 0.025). By design, the
power of the SWDs is at least as high as that of
the parallel GRT. In some cases the SWD is
substantially higher in power than the parallel
GRT because the number of SWD groups
was rounded up to be an integer multiple of
TSW – 1 so the same number of groups would

start the intervention in each of TSW – 1
measurement periods.

Limitations

We benefited greatly from Hussey and
Hughes’s weighted least squares formulation to
write closed form expressions for the variance
of the intervention effect estimator. Even so,
our approach has several limitations. The in-
tervention effect, h, is assumed to be constant
across groups and to persist throughout the
study. The correlation between earlier and
later measurements within a group is assumed
to be constant no matter how much time
elapses. And we rounded the number of groups
in the SWD up to ensure a balanced number of
groups starting the intervention in each time
period. Note that the Hussey and Hughes
model assumes repeated cross-sectional mea-
surements, so we do not have to worry about
loss to follow-up of individual group partici-
pants; this would be an important consider-
ation in a stepped wedge cohort design. Further
work is needed to develop results that are free
of these limitations.

Conclusions

The MBD is a good design when interven-
tions are applied to individuals and result in
rapid, large changes in the outcome variable.
The design is especially compelling when the
change is large enough to be obvious just from

TABLE 1—Total Groups as a Function of Measurement Periods Required in Stepped Wedge Designs to Provide Power

at Least as Great as That in the Parallel Group-Randomized Trial With 24 Counties and 3 Measurement Periods

TGRT = 3a TSW = 3 TSW = 4 TSW = 5 TSW = 6 TSW = 7 TSW = 8 TSW = 9 TSW = 10 TSW = 11 TSW = 12 TSW = 13

ICC IGRT P, % ISW P, % ISW P, % ISW P, % ISW P, % ISW P, % ISW P, % ISW P, % ISW P, % ISW P, % ISW P, % ISW P, %

0.0001 24 98 48 98 27 98 20 98 20 99 18 >99 14 99 16 >99 9 98 10 >99 11 >99 12 >99

0.001 24 96 44 96 27 96 20 97 20 99 18 99 14 98 16 >99 9 96 10 98 11 99 12 >99

0.005 24 87 36 87 24 90 20 93 15 91 12 89 14 96 16 99 9 91 10 96 11 98 12 99

0.01 24 81 32 81 21 84 16 85 15 89 12 88 14 95 8 82 9 90 10 95 11 97 12 99

0.05 24 70 28 73 18 76 12b 71b 10b 73b 12 87 7b 71b 8 82 9 89 10 94 11 97 12 99

0.1 24 70 26 72 18 78 12b 73b 10b 75b 12 88 7b 73b 8 83 9 91 10 95 11 98 12 99

0.2 24 74 26 76 15b 75b 12b 78b 10b 79b 12 91 7b 78b 8 87 9 94 10 97 11 99 12 >99

Note. GRT = group-randomized trial; I = number of groups; ICC = intraclass correlation coefficient (q); P = power to detect a drop in prevalence from 0.050 to 0.025 with cross-sectional
measurements made on m = 100 persons per group per measurement period, assuming a = 0.05; SW = step wedge; T = number of measurement periods. Stepped wedge table entries are rounded
up to be integer multiples of TSW – 1, so the same number of groups start the intervention in each measurement period.
aThe TGRT = 3 column shows the power for the parallel GRT with 24 groups and 3 measurement periods at various values of ICC. Each of the remaining TSW columns to the right lists the number of
groups necessary to achieve at least as much power as the 3-group GRT using an SWD with TSW measurement periods.
bDesigns with fewer total measurements (ISW · TSW) than the 24 · 3 = 72 measurements required by the group-randomized trial.
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looking at the time series of measured out-
come data. These conditions are not likely to
hold in most public health interventions in
which effect sizes are often on the order of
0.25---0.50 standard deviations.29---31 There
may be a place for small, quick MBDs in the early
stages of protocol development, when interven-
tions that will eventually be applied at the group
level are tested out at the individual level. But
to draw causal inferences, we do not share the
enthusiasm expressed by Hawkins et al. that
small MBDs might be a ‘‘viable alternative’’ to
RCTs.

To support strong conclusions and to esti-
mate a generalizable treatment effect in
group-level public health interventions, in-
vestigators who have reason to use a stag-
gered start design should use a stepped wedge
GRT. Before doing so, they should recognize
the limitations of the SWD and the available
evidence on its power. The SWD will take
longer than the parallel GRT and may require
as many measurements even if there are
fewer groups involved. With fewer groups,
adjustment for group-level confounding fac-
tors will be important because randomization
will be less likely to balance differences, and
it will be challenging because there will be
fewer degrees of freedom. Investigators will
want to consider all these factors as they
choose between the parallel GRT and the
SWD. j
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