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IN OUR FIRST ARTICLE IN THIS

supplement,1 we identify several
critical concepts that need to be
incorporated into risk assessment
to adequately address differential
vulnerability and susceptibility
to environmental hazards. In our
second article,2 we illustrate these
concepts, drawing examples pri-
marily from the literature on lead
exposure and air pollution. Here,
we discuss methodological issues
arising from our recommenda-
tions in those articles. Several
issues are not addressed here,
such as problems of measure-
ment; a rich literature on mea-
surement issues in lead research
is available.3---7 We focus on issues
related to the study of differential
vulnerability and susceptibility.
This research faces 3 core meth-
odological challenges, but existing,
new, and emerging methods can
address them. These challenges are
(1) complex interactions and syn-
ergies, (2) nested data at multiple
spatial scales, and (3) methods to
quantify risk inequality to identify
hidden pockets of vulnerability.

COMPLEX INTERACTIONS
AND SYNERGIES

Certain standard assumptions
underlie the risk assessment ap-
proach: independence (discrete
exposures are independent of one
another), risk averaging (a single
overall scalar estimate of average
risk is adequate for decision-mak-
ing), and risk accumulation (the
potential for complex distributions
that arise from a multirisk expo-
some). The risk assessment ap-
proach needs to expand to account

for complex interactions and syn-
ergies that exist between multiple
exposures and between other im-
portant biological and social vari-
ables that may place individuals or
population subgroups in a higher
state of vulnerability or suscepti-
bility.

The most widely used meth-
odological approach to the study
of differential vulnerability and
susceptibility is the use of regres-
sion models to test hypotheses
about effect modification, by ei-
ther stratification or interaction
terms. Effect modification occurs
when the effect of some exposure
on outcome varies by or depends
on the value of some other vari-
able. Effect modification is a
causal as opposed to a statistical
concept, which implies that causal
associations are contingent or
dependent on 1 or more other
variables. Many examples in the
published literature show that the
effects of environmental expo-
sures vary according to both in-
dividual8---12 and community
characteristics.13

One implication of effect mod-
ification is that a summary effect
estimate may be incomplete or
misleading because if the effect of
exposure varies by a third vari-
able, no single effect estimate can
accurately capture pools of het-
erogeneous effect. If the magni-
tude of an association between
an exposure and an outcome
varies across strata of a third
factor, an estimate that summa-
rizes the association across strata
of this factor will overestimate
the association in a stratum in
which the association is absent

and underestimate it in a stratum
in which it is present.10,14 In ex-
treme examples, a deleterious ef-
fect can be entirely masked when
the relevant effect modifiers are
not taken into account. Effect
modification is not the same as
confounding, although both are
causal concepts. Effect modifica-
tion is a property of a true asso-
ciation and not a consequence of
a distortion in an association
masquerading as a causal effect.10

Several authors have written
about the limitations of interaction
terms in the study of effect modi-
fication, including Vineis and
Kriebel,15 Cox,16 and Greenland.17

At least 5 important limitations of
this approach should be consid-
ered. First, a host of potential
functional forms are possible and
must be correctly specified for in-
teraction terms to adequately
capture the nature of the causal
relations at play. Although inves-
tigators may be sensitive to the
possibility of 2-way interactions
that are either additive or multi-
plicative, these are only 2 among
many complex forms of interac-
tion that should be evaluated, such
as the possibility of nonlinear in-
teractions. Second, stratification
explicitly or through interaction
terms reduces power, which can
increase the likelihood of unstable
estimates. Third, interaction terms
to specify complex causal inter-
actions are limited to a narrow
range of dimensionalities. To the
extent 2 risk factors combine to
produce an etiologic effect that
is different than the additive or
multiplicative effect of the 2 vari-
ables, more complex approaches
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such as thin plate splines and
random forests may be necessary,
and without sufficient power, even
these models may be inadequate.
Fourth, when our data are snap-
shots of complex, dynamic life
course processes, statistical inter-
action may be ineffective at cap-
turing the dynamics of risk ampli-
fication. This is implied by the
concept of a developmental win-
dow of vulnerability, which can
lead to complex interactions that
appear and disappear depending
on when exposure and effect
modifiers are measured. Finally,
linear models are not well suited
to differentiating variables that are
effect modifiers rather than medi-
ators on the causal pathway.18

Although regression ap-
proaches that use interaction
terms represent a powerful and
important set of tools for the
evaluation of complex interac-
tions and synergies, other tools
are available. Recently, marginal
structural models and inverse
probability-of-treatment weight-
ing have been used to examine
effect modification.19,20 This ap-
proach is effective in studying
dynamic life course developmen-
tal processes, where the value of
either exposures or effect modi-
fiers is known to be time vary-
ing.21 Berkey et al. demonstrated
the use of multilevel random-ef-
fects models for estimating effect
modification across places,22 an
approach well illustrated in an
analysis of EM effect modification
in 29 European cities in the
APHEA2 project.14

A potentially powerful set of
alternative methods comes from
systems analysis, a flexible method
of examining higher-dimensional
interactions that include nonline-
arities and feedback loops.23---26

Systems dynamics models have
been implemented most widely in
infectious disease epidemiology

and only rarely to study environ-
mental exposures. Finally, a host
of general approaches character-
ized by classification and regres-
sion trees can identify clusters
of jointly occurring risk factors
without imposing any linear mod-
eling assumptions.27,28 These rep-
resent another underused tool
with great potential for studying
highly complex patterns of differ-
ential vulnerability.

A key issue in modeling inter-
actions between environmental
exposures and measures of sus-
ceptibility, whether social, genetic,
or arising from disease status, is
that the variables often exist on
multiple levels, with different and
crosscutting influences. For exam-
ple, socioeconomic position (SEP)
is a variable that can be concep-
tualized at the level of the indi-
vidual, the family, or the commu-
nity or across generations. In
addition to individual-level SEP,
the socioeconomic aspects of so-
cial context affect people’s health
and potentially their response to
exposure.29---33 Hence, a wealthy
person residing in a predomi-
nantly poor geographic area may
be exposed to the same risk land-
scape (excess of fast food, dearth
of fresh produce, psychosocial
hazards, toxicant exposures) as
poorer residents. However, weal-
thy individuals with substantial re-
sources may escape the deleterious
influences of area-level socioeco-
nomic deprivation through their
greater access to more distant re-
sources. A substantial body of evi-
dence has shown that SEP mea-
sured at various levels modifies the
influence of a variety of environ-
mental exposures.8,10,11,13,34 Inves-
tigators have rarely examined both
area- and individual-level effect
modification and how they may
help define pockets of differential
vulnerability across spatial and life
course dimensions.

SPATIAL NESTING OF
DATA

A second key methodological
challenge is that sources of differ-
ential vulnerability and suscepti-
bility may arise at higher levels of
organization––in the household,
neighborhood, community, or
other geography of exposure. The
presence of environmental con-
taminants may similarly vary geo-
graphically, and this spatial pat-
terning may affect exposure. For
example, within-city variation in
airborne particles is predominantly
driven by traffic particles, but
cross-city or cross-time variations
may be attributable to secondary
particles, which may not be equally
toxic. Similarly, soil lead declines
with distance from a smelter, but
some soil lead is from past emis-
sions of leaded gasoline or lead
paint residues. Toxicant exposures
have generally been found to vary
substantially on different spatial
scales.35---38 This supports the find-
ing that bioavailability of toxicant
exposure is geographically pat-
terned, often at fairly small geo-
graphic scales.

Statistical modeling needs to
recognize different scales of vari-
ation, both spatial and temporal.
Consideration of the life course
dynamics of differential vulnera-
bility requires data collected re-
peatedly from individuals or
across generations. This can yield
multilevel data on exposure, risk
factors, treatments, policies, and
other relevant variables. Methods
that can handle the nested nature
of these data (both temporally and
spatially) are critical both to accu-
rately estimate model parameters
(especially standard errors) and
to provide tools to address multi-
level questions about differential
vulnerability. Although most
studies focus on characteristics of

individuals that lead to increased
vulnerability, recent work points
to the need to examine landscapes
of risk,39 risk regulators,40 or the
exposome41 as geographic areas
beyond individual characteristics
that may be more appropriate
targets of policy research and in-
tervention. This approach requires
methods that can handle complex,
hierarchically nested data.

Hierarchical Mixed Models

One approach to these chal-
lenges is the hierarchical mixed
model.42---44 This broad class of
models can be useful for at least
3 classes of problems where mul-
tiple measurements of each out-
come are available for a individual
or where data are geographi-
cally clustered within 1 or more
levels. Hierarchical (or multilevel)
models allow us to identify vari-
ation in baseline health across
participants (via estimation of
random individual-level inter-
cepts) or differences in average
levels of an outcome by geo-
graphic area (via estimation of
random area-level intercepts). Of
equal importance is the ability to
determine variability in response
to exposure (via estimation of
random slopes) across either in-
dividuals or areas.

Most germane to this discussion
is the ability to examine which in-
dividual- or area-level factors mod-
ify baseline levels or responses.
That is, if some participants (e.g.,
residents of socioeconomically de-
prived areas) have higher blood
pressures than average, the re-
peated measurements of those
persons will all tend to be higher
(or lower) than predicted and
hence the residuals (measured �
predicted) will all tend to have
1 sign, rather than varying ran-
domly around zero as would be
predicted if measure-to-measure
variability were simply a matter of
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random measurement error arising
from many possible factors known
to clinicians. The correlation of
measured values within individuals
tends to bias standard error esti-
mates. Multilevel models correct
for the nesting of repeated mea-
sures of an outcome and allow for
partitioning variance within and
between individuals. By fitting
a random intercept to each person,
the models allow for the random
noise that arises with repeated
measures, while capturing the cor-
relations that arise across measures
from occupancy in an area with, in
this example, high levels of socio-
economic deprivation. This is im-
portant because outcome values on
participants who are nested within
some geographical area tend to be
more alike one another; hence
observations are correlated within
area (which could be defined by
political geography, distance from
an emission point source, or catch-
ment area of a health care system).
Multilevel models handle correct
estimation of regression coeffi-
cients and standard error in both
types of nesting separately and
simultaneously.

We may also have more com-
plex correlations over space. In
most cases, data are considered
clustered by discrete administra-
tive units that may or may not
correspond to the true geography
of risk. When we measure actual
geographic distance between in-
dividuals and exposures, we have
a host of powerful tools for
breaking out of the limits of ad-
ministrative geographies such as
census tracts or zip codes. This is
especially important for examining
spatial autocorrelation in risk.
Suppose the j th observation in
person i and person i9 depends on
the spatial distance between them.
The spatial patterning of risk re-
gimes by social status, ethnicity,
and so forth may induce such

a structure. In this case, empirical
Bayes estimation45,46 extensions
of multilevel models can be used
to account for complex patterns of
spatial autocorrelation and to
smooth over or fill in sparse data.

Hierarchical mixed models are
easily generalized to the case of
binomial outcomes such as health
events47 or rates or to survival
analyses for time-to-event data,46

but it is easiest to focus on con-
tinuous outcomes to illustrate the
point. That model assumes

ð1ÞYit ¼ b0 þ uið Þþ
covariatesþ
b1 þ mið ÞXit þ fit

ui ¼ g0 þ gZ
mi ¼ k0 þ kQ

where i denotes a level of aggre-
gation, usually participant (but
census tract or year are also com-
mon), and t denotes repeated
measures. Where present, ui is the
difference from the overall mean
in person i, and vi is the difference
from average response to pollu-
tion (X) for person i; Z and Q are
variables that explain some of the
susceptibility. If i represents an
individual, for example, then the
variables in Z and Q may be in-
dividual level, may be neighbor-
hood level (e.g., median household
income in a census block group),
or may represent periods.

Similarly, X could be decom-
posed, where appropriate. An ex-
ample is

ð2Þ X it ¼ Zt þ X it � X
...

t

� �

þ X
...

t � Zt

� �
;

where Zt is the air pollution read-
ing from a central monitor, X

. . .
t
is the

average of the personal exposures
of all the participants on day t, and
Xit is the exposure of the ith par-
ticipant on day t. In this frame-
work, the single coefficient (b1 in

this example) is replaced with 3
coefficients––1 representing the
effect of area-level pollution, 1 the
effect of the difference of individ-
ual-level exposure from the mean
exposure of the population on that
day, and 1 the difference of pop-
ulation mean exposure from the
monitored exposure. The second
term is usually Berkson error,
which, although often large, in-
duces no bias. The last term usu-
ally includes some classical mea-
surement error, but the first 2 can
legitimately be different and tell
different stories about exposure at
different levels.

For example, Figure 1, taken
from a repeated-measures study of
air pollution and heart rate vari-
ability in an elderly panel in Bos-
ton,48 shows the distribution of
the random slopes (vi), which is
clearly skewed. Differential vul-
nerability is explored in Figure A
of the online appendix (available
a supplement to the online version
of this article at http://www.ajph.
org), showing that a past myocar-
dial infarction modified the asso-
ciation. The modifiers in multi-
level modeling can be derived
from area as well as individual
characteristics. For example, Zeka
et al. showed that birth weight was
influenced by SEP, by traffic expo-
sure, and by interactions between
the two.49 Glass et al. used multi-
level models to examine, among
community-dwelling older adults,
how the toxicity of lead is exacer-
bated by living in neighborhoods
high in psychosocial hazards.50

Figure 2 shows the use of partial
residual plots to graphically dis-
play a cross-level interaction. The
figure shows that the deleterious
impact of lead (as measured in
a tibia with 109Cd-induced K-shell
x-ray florescence) is seen only in
residents of neighborhoods with
high levels of psychosocial haz-
ards. This fits well with animal

models showing that stressful
environments exacerbate the del-
eterious impact of lead on the
brain.51---53 Researchers used mul-
tilevel models to formally test the
hypothesis of effect modification,
which was supported in 3 of 7
domains of cognitive function ex-
amined after adjustment for indi-
vidual-level confounders (age,
gender, race/ethnicity, education,
testing technician, and time of
day).

Risk Chaining

Although standard regression
methods are widely used to in-
vestigate both main and interac-
tion effects, they rely on standard
assumptions. One is that each
separate predictor variable is dis-
tinct in the sense of being able to
arise (or be experimentally set)
without regard to the other vari-
ables entered. As described in the
classic article by Gordon,54 this
property of distinctiveness derives
from the larger theory guiding
model building and is not simply
a property of the data or study
design. Risk chaining refers to the
connectedness of multiple risk
factors in time and space as a
function of the arrangements of
these variables in the world. For
example, if a factory releases mul-
tiple pollutants into the air, water,
and land, measurements of each
individual pollutant are not dis-
tinct from one another (because
they have a common source).
If the correlation among those
exposures is high enough, it will
not be possible to treat them all as
independent variables.

Similarly, areas that are socio-
economically deprived share
common risk characteristics that
are chained together by their
common higher-level causes (ra-
cial segregation, labor market
marginalization, globalization
of production). This is why
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area-based measures of poverty,
lack of education, large minority
populations, and other area char-
acteristics are highly correlated,
forming a linked risk regime. In
such cases, new metrics that
combine multiple exposures (e.g.,
exposures that operate through
a common biological pathway)
can be generated. Alternatively,
various clustering approaches can
be used to identify distinct
groupings of exposures, treating
them as either latent or manifest
constructs.55

Beyond regression approaches,
standard linear model constraints
can be relaxed and the data ex-
plored for both clustering and in-
teractions with fewer assumptions
through decision tree and machine
learning approaches,27 including
kernal machines.56 Finally, new
methods drawn from engineering
and computer science in systems
dynamics offer ways of analyzing
complex chains (or disease pro-
duction algorithms) that cannot be

seen because of the assumptions
imposed by standard regression
models.24,57,58

RISK INEQUITY

Risk assessment must become
better at understanding sources of
differential vulnerability that lead
to a spatially patterned distribu-
tion of risk.1Studies of lead and air
pollution demonstrate that social,
medical, and genetic factors can
modify risk.2 Well-established
methods quantify the inequality
of distribution of outcomes.

Conceptual Issues

Levy et al. quantified the risk
reduction and equity consider-
ations of alternative methods
for reducing mortality risk asso-
ciated with coal-burning power
plants.59,60 They showed alterna-
tive control strategies on 2 di-
mensions: efficiency (essentially
risk divided by cost) and equity.
They quantified equity with the

Atkinson index, a measure of in-
equality in the distribution of risk.
This presupposes no judgment
about what an acceptable inequal-
ity is; it merely quantifies the level.
By plotting multiple alternative
policies on the 2-dimensional scale
of efficiency and equity, this ap-
proach provides decision-makers
with the necessary information to
base their actions on their judg-
ments of appropriate societal trade-
offs. Moreover, by making the
trade-offs explicit rather than im-
plicit, this approach encourages
public discussion during rulemak-
ing so that decisions reflect societal
values.

In another approach, Su et al.
adapted the concentration index
from social science as a measure of
inequality.37 They used small geo-
graphic-scale units to quantify the
inequality in the distribution of risk
from 3 pollutants, aggregated on
either a multiplicative or additive
scale, and applied it to a real-world
scenario in Los Angeles. Although

their metric was not risk per se, but
rather the ratio of risk to, for ex-
ample, an ambient standard, the
approach could be adopted to an
absolute-risk scale, and it clearly
demonstrates that distributional
issues can be examined in the
context of assessing cumulative
exposure in the sense of multiple
exposures. Other dimensions may
be necessary as well. A quantif-
ication of the inequity in the dis-
tribution of risks among individuals
may be insufficient if the risks are
also inequitably distributed among
groups those individuals belong
to. These groupings could be geo-
graphic, racial/ethnic, persons with
special diets, and so on.

Examples

We constructed a hypotheti-
cal––but reasonable––scenario
from the literature. The underly-
ing risk of having a heart attack
varies by income; we took strati-
fied risk estimates from Banks
et al.61 From the same source, we
obtained estimates of how diabe-
tes prevalence varies by income.
Finally, from a recent article from
Denmark,62 we took the relative
risk for heart attack among per-
sons with diabetes to be 2.4. We
then simulated the distribution of
the probability of a heart attack in
a hypothetical population of 1
million. We further assumed that
diabetes doubles the PM (particu-
late matter < 2.5 lm aerody-
namic diameter)---associated risk of
heart attack (plausible because of
the interactions between diabetes
and at least short-term effects of
particles); that 20% of the popu-
lation have genetic factors, inde-
pendent of diabetes, that also
double the particle-associated risk;
and that the risk for a 10-micro-
gram per cubic meter increase in
annual average PM2.5 is 1.2, en-
abling us to examine the distribu-
tion of incremental risk.

Source. Schwartz et al.48

FIGURE 1—Relationship between black carbon and high frequency heart rate variability in a study of

elderly subjects in Boston.
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Figure B in the online appendix
shows the baseline risk of heart
attack in the population in the
simulated scenario. Figure 3 shows
the distribution of incremental risk.
Although the average incremental
risk is only a few per hundred (still
vast compared with the risk that
the Environmental Protection
Agency tolerates for cancer), for
a small portion of the population
the incremental risk is about 0.7. Is
it acceptable to impose a 70% risk
of heart attack on a subset of the
population? Furthermore, a single
summary metric of heart attack risk
overall that ignores these inter-
locking facets of differential vul-
nerability would vastly underesti-
mate the true risk in pockets of

more vulnerable subsets. These
simulation results only posit additive
risk accumulation. Under condi-
tions of multiplicative or other
nonlinear interactions, the results
could be more extreme.

Geographic concentration of
risk is also a key concern. The next
figures, derived from real, not
simulated, data, illustrate how this
can affect equity concerns. Reid
et al. examined the geographic
distribution of factors shown to
modify the effects of high temper-
atures on mortality, to produce
a map of temperature vulnerabil-
ity on a census tract scale.63 Figure
C of the online appendix demon-
strates that geographic vulnerabil-
ity varies substantially within a

small area. Such neighborhood-
scale variations in vulnerability
cause particular equity concerns.
A similar pattern is illustrated in
Worcester County, Massachusetts,
where Tonne et al. found a factor-
of-3 range of variation in heart
attack risk by census tract, again
with clustering of the tracts at
highest risk.64 Figure 4, derived
from their data, shows the inci-
dence rate of heart attack in each
census tract for the county as
a whole and for the central area,
relative to the community average
rate, after adjustment for age, race,
and gender.

Finally, Levy et al. examined
the geographic distribution of risk
of emissions from coal-burning
power plants in Washington, DC.
They assumed uniform risk and
accounted for modification by
diabetes.65 The annual reduction
in cardiovascular hospital admis-
sions is shown in Figure D as
a rate per million, assuming

uniform risk in the population,
then stratifying by diabetes
and taking into account the
differential numbers of patients
with diabetes in different census
tracts in Washington. Figure E is
the ratio of the 2 risks. This in-
dicates that accounting for the
differential spatial patterning of
diabetes and the differential vul-
nerability reveals substantial in-
equity by geography in particle-
associated risk.

CONCLUSIONS AND
RECOMMENDATIONS

If continued progress is to be
made in explicating these complex
phenomena, future studies of tox-
icant exposure---risk relationships
must invest the resources neces-
sary to measure individual and
contextual factors that might
modify these relationships, as well
as adopting methods that allow
them to estimate those impacts.

Source. Glass et al.50

FIGURE 2—Partial residuals of cognitive function versus lead, with

differing patterns by neighborhood level of psychosocial hazards.

Note. There is a high incremental risk in a small fraction of the population.

Source. Based on data for lifetime risk of myocardial infarction and income from Banks

et al.61 and for lifetime risk of diabetes from Schramm et al.62

FIGURE 3—Simulated incremental risk of having a heart attack in

the US population from exposure to PM2.5 assuming a basic

relative risk of 1.2, a 2-fold modification of risk by diabetes, and

a 2-fold modification by genetic factors unrelated to diabetes.
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Risk assessments need to move
from an RfD approach to estimat-
ing attributable risk and the dis-
tribution of that risk, to allow
assessment of inequity and to al-
low risk mangers to have quanti-
tative measures of both overall
risk and distributional aspects to
inform decisions.

Environmental rulemaking is
often supposed to provide pro-
tection to the population sub-
group most vulnerable to a toxi-
cant (and thus, by extension, be
protective for all others). In re-
ality, it is seldom known which
subgroups are the most vulnera-
ble or, when evidence exists,
subgroup is defined very broadly,
such as the fetus in the case of

methylmercury or young children
in the case of lead. Available
evidence suggests, however, that
not all fetuses are equally sensi-
tive to methylmercury, nor are all
young children equally sensitive
to lead. If the perspective that we
advocate were incorporated into
epidemiology studies and subse-
quent risk assessments, the defi-
nition of the most vulnerable
subgroup would become much
more specific and therefore much
more useful in targeting preven-
tive strategies for reducing toxi-
cant-associated morbidities. But
first, more studies must be con-
ducted to provide the necessary
data on factors that modify vul-
nerability.

In most risk assessments seek-
ing to establish an acceptable level
of exposure, various uncertainty
factors are applied to effect levels
derived from empirical studies.
These are necessary to address
interspecies extrapolation (if the
critical effect level is based on
a nonhuman model), human vari-
ability in vulnerability (which is
usually interpreted as pertaining
to toxicokinetic or toxicodynamic
variability), absence of data on
long-term sequelae, or other gaps
in the available database. The
specific value assumed for an un-
certainty factor varies, but often
a generic default value of 10 is
used. Most models regard this
variability as stochastic and not
explainable by the data. Studies
should begin modeling those
sources of variability with data.

Our proposal is a strategy for
understanding, at a more precise
quantitative level, human (or in-
terindividual) variability in vul-
nerability. Considerable progress
has been made in understanding
the myriad factors that influence
the magnitude of an individual’s
external dose of a toxicant, the
association between the external
dose and the internal (or absorbed)
dose (i.e., toxicokinetics), and the
biological response at the critical
target organs to the internal dose
(i.e., toxicodynamics). Epidemio-
logical studies designed to identify
susceptibility often succeed––the
goal is quite achievable. The Envi-
ronmental Protection Agency
should incorporate those findings
into quantitative risk assessment
now and encourage research that
will allow the approach to be
extended to more pollutants. The
distribution of these important
factors is not random within the
population. Rather, they co-occur
in patterns that result in some
subgroups of the population bear-
ing a disproportionate burden of

the morbidities caused by toxi-
cants. j
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Drinking Water Infrastructure and Environmental Disparities:
Evidence and Methodological Considerations

Potable drinking water is

essential to public health;

however, few studies have

investigated income or ra-

cial disparities in water

infrastructure or drinking

water quality.

There were many case

reports documenting a lack

of piped water or serious

water quality problems in

low income and minority

communities, including trib-

al lands, Alaskan Native vil-

lages, colonias along the

United States–Mexico bor-

der, and small communities

in agricultural areas.

Only 3 studies compared

the demographic character-

istics of communities by the

quality of their drinking wa-

ter, and the results were

mixed in these studies. Fur-

ther assessmentswere ham-

pered by difficulties linking

specific water systems

to the sociodemographic

characteristics of commu-

nities, as well as little in-

formation about how well

water systems operated

and the effectiveness of

governmental oversight.

(Am J Public Health. 2011;

101:S109–S114. doi:10.2105/

AJPH.2011.300189)

James VanDerslice, PhD

WATER SUPPLY INFRASTRUC-

ture in the United States ranges
from large systems serving mil-
lions of people to private wells
serving a single family. In all, this
infrastructure provides piped
water to the homes of over 99% of
the US population. Despite such
high levels of access, there were
reports from several parts of the
country suggesting race and in-
come driven disparities in access
to piped and/or potable water.1---6

The extent of disparities in the US
drinking water infrastructure and
drinking water quality, particu-
larly as related to race and income,
has not been well examined. An
earlier review of the evidence
linking income and race to health
risk and drinking water quality
identified only a few case studies,
concluding ‘‘. . .inequities in expo-
sure to contaminants in water may
exist.’’7 Seventeen years after this
review, only a handful of pub-
lished studies addressed this issue.

Racial and income disparities in
drinking water infrastructure were
reviewed with the goal of identi-
fying disparity prone aspects of
this infrastructure. As a first step,
a framework was proposed that
depicted key elements of the
drinking water infrastructure in
the United States. This framework

took a systems approach, thus
facilitating identification of aspects
of the system that could trigger or
enabled disparities, or even lim-
ited the mitigation of known dis-
parities. Evidence of infrastructure
and concomitant water quality
disparities were reviewed using
this framework, and the meth-
odological issues that limited the
assessment of disparities in water
infrastructure were discussed.

FRAMEWORK FOR
ASSESSING DISPARITIES

There are many dimensions to
the value that consumers ascribe
to their water supply: good taste
and freedom from odor, low or
acceptable health risks, low
monetary cost and high conve-
nience, adequate amounts and
pressure, high reliability, and re-
liable information about the
quality.8---11 Disparities in these
beneficial characteristics ulti-
mately reflect disparities in the
underlying infrastructure. Efforts
to reduce these disparities re-
quire in-depth understanding of
what is disparity prone about this
infrastructure; thus, a clear un-
derstanding of the elements of a
drinking water infrastructure is
needed.

The infrastructure that pro-
duces water is conceptualized as
4 components: (1) available
water sources, (2) the physical
infrastructure (e.g., treatment
facilities, transmission, and stor-
age), (3) operational/managerial
capacity, and (4) government
policies and agencies that
regulate, assist, and financially
support system operators
(Figure 1).

Source water quality, location,
and reserves drive the technical
requirements for water treat-
ment, transmission, and storage.
Operation of this system to re-
liably produce drinking water
that meets public health stan-
dards at reasonable cost requires
adequately trained operators and
sufficient administrative capacity
to ensure sustainable financial
and operational performance.
Government serves many roles
in this infrastructure: setting poli-
cies for water quality regulations
and access to sources of water;
providing oversight to assure
that systems meet water quality,
treatment, and monitoring
requirements; offering tech-
nical assistance and training;
and allocating resources to
repair and upgrade physical infra-
structure.
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