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Abstract

Hydroxysteroid (17beta) dehydrogenase 10 (HSD10) is a mitochondrial multifunctional enzyme encoded by the HSD17B10
gene. Missense mutations in this gene result in HSD10 deficiency, whereas a silent mutation results in mental retardation, X-
linked, syndromic 10 (MRXS10). Here we report a novel missense mutation found in the HSD17B10 gene, namely c.194T.C
transition (rs104886492), brought about by the loss of two forked methyl groups of valine 65 in the HSD10 active site. The
affected boy, who possesses mutant HSD10 (p.V65A), has a neurological syndrome with metabolic derangements,
choreoathetosis, refractory epilepsy and learning disability. He has no history of acute decompensation or metabolic
acidosis whereas his urine organic acid profile, showing elevated levels of 2-methyl-3-hydroxybutyrate and tiglylglycine, is
characteristic of HSD10 deficiency. His HSD10 activity was much lower than the normal control level, with normal b-
ketothiolase activity. The c.194T.C mutation in HSD17B10 can be identified by the restriction fragment polymorphism
analysis, thereby facilitating the screening of this novel mutation in individuals with intellectual disability of unknown
etiology and their family members much easier. The patient’s mother is an asymptomatic carrier, and has a mixed ancestry
(Hawaiian, Japanese and Chinese). This demonstrates that HSD10 deficiency patients are not confined to a particular
ethnicity although previously reported cases were either Spanish or German descendants.
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Introduction

The HSD17B10 gene maps to Xp11.2 and encodes the enzyme

hydroxysteroid (17beta) dehydrogenase 10 (HSD10) (see

OMIM300256 at http://www.ncbi.nlm.nih.gov/entrez/dispo-

mim.cgi?id=300256), which catalyzes the oxidation of steroids,

fatty acids, and xenobiotics [1,2]. In contrast to other types of

hydroxysteroid (17beta) dehydrogenases, HSD10 is localized in

mitochondria as a result of the non-cleavable targeting sequence at

its N-terminal [3,4]. This multifunctional enzyme is found in

various brain regions [5], and its levels are significantly elevated in

Alzheimer disease, Down syndrome, and multiple sclerosis [5,6].

Duplication of the HSD17B10 gene also promotes idiopathic

mental retardation [7]. Furthermore, missense mutations in this

gene result in an X-linked mental retardation, namely HSD10

deficiency [8] (OMIM#300438), formerly 2-methyl-3-hydroxy-

butyryl-CoA dehydrogenase deficiency [9].

Over the last decade, the phenotypic spectrum associated with

HSD10 deficiency has expanded to include cases associated with

early neonatal or infant death [10] and psychomotor retardation

without regression [11,12]. No case has been associated with

episodic metabolic decompensation although severe lactic

acidosis, reminiscent of mitochondrial disease, has been report-

ed [10]. The complex neurologic phenotype reported to date

has included developmental delay, hypotonia, dysarthria, ata-

xia, choreiform movement disorder, seizures (often reported to

be myoclonic), and progressive loss of vision and/or hear-

ing [10–14]. Hypertrophic cardiomyopathy is also reported

[10,11].

Results of magnetic resonance imaging (MRI) have also been

variable but several authors have noted frontotemporal atrophy

[10,12], basal ganglia abnormality, and periventricular white

matter disease [12]. Normal brain MRI has also been report-

ed in infancy and childhood [14] and in one adult male

[13].

A missense mutation in HSD10, namely p.R130C, has been

detected in at least half of unrelated individuals, including one

female with HSD10 deficiency [8–10]. Here we report a novel

mutation identified in the HSD17B10 gene responsible for a

neurological syndrome in a 10-year-old boy.
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Results

Case History
A 10-year-old boy of mixed ancestry (Portuguese, Hawaiian,

Japanese, and Chinese) was evaluated for medically refractory

epilepsy and previous diagnosis of pervasive developmental

disorder (PDD). Birth history revealed that he was born

appropriate for gestational age (AGA) at term to a 33-year-old

gravida 2 para 2 mother. He appropriately met his early motor

and language milestones. Developmental regression was noted at

age 2–3 years. Gait became unsteady at age 3–4 years, associated

with hyperkinetic involuntary movement disorder. Partial complex

seizures lasting about 10–30 seconds developed at 3 to 4 years of

age. Electroencephalography (EEG) at age 4 years showed diffuse

background slowing and multifocal spike or polyspike activity

without associated clinical seizures during the study. Treatment

with carbamazepine and then subsequently oxcarbazepine seemed

to lessen the frequency of seizures, but did not completely control

them. At 6 to 7 years of age, seizures also included brief myoclonic

jerks. EEG repeated at 7 years of age showed rare paroxysms of

bifrontal high amplitude spike and slow wave discharges.

Levetiracetam was added to the oxcarbazepine therapy for a

period of time but was discontinued due to adverse effects at

higher doses. Valproic acid was later started as an adjunct therapy.

Over subsequent years, seizure activity and symptoms were

variable, including brief absence seizure, myoclonic seizure, and

other indeterminate seizure types including paroxysms of head

nodding, eye rolling/gaze deviation, rocking of the trunk, and

bilateral extremity posturing, all lasting on the order of 5 to

20 seconds in duration occurring from 2 to 5 times to up to 20

times per day. EEG repeated at 10 years of age showed

predominantly generalized frequent very high amplitude spike-

slow waves and polyspike-slow wave discharges during sedated

sleep (Fig. 1). Due to findings of more convincing generalized

discharges, oxcarbazepine was tapered off in favor of more broad

spectrum antiseizure medication. He was most recently starting on

lamotrigine in combination with valproic acid.

Based on the suspected diagnosis of 17-beta-hydroxysteroid

dehydrogenase X (HSD10) deficiency (formerly 2-methyl-3-

hydroxybutyryl-CoA dehydrogenase deficiency) treatment with

mild protein restriction (1.5–2.0 g/kg/day) and oral carnitine was

instituted. Compliance with diet has been difficult secondary to

poor appetite and eating habits.

Past medical history is significant for one previous hospitaliza-

tion for bronchiolitis during infancy. He has no history of acute

decompensation or metabolic acidosis. He exhibits moderate

cognitive impairment, repeated one year in school, is in a self-

contained special education classroom setting, and receives speech,

occupational and physical therapies.

Family history is negative for similarly affected individuals. He

has one 17-year-old sister who is healthy and well. His

nonconsanguinous parents are reportedly healthy. His mother

Figure 1. Electroencephalography of the affected boy at 10 years of age.
doi:10.1371/journal.pone.0027348.g001
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completed two years of college and works in the medical field. He

has one maternal aunt with two daughters, all reportedly healthy

and without neurologic symptoms. His mother has a maternal half

brother with Bell’s palsy but no movement disorder or seizures.

His maternal aunt and uncle both completed high school without

need for educational assistance.

Physical and Neurological Examination
When this boy was first evaluated at age 7 years, his height was

at the 10th–25th percentile, weight at the 10th percentile, and head

circumference ,the 5th percentile. Since then he has exhibited

poor weight gain such that weight is now ,the 3rd percentile (BMI

13.1). He has no significant dysmorphic features or organomegaly.

Ophthalmologic evaluation revealed bilateral optic nerve pallor

and significant myopia.

His neurologic examination is significant for cognitive delay and

mild impairment in social interactions. He has normal to mildly

decreased muscle tone, normal deep tendon reflexes, down-going

toes, dysarthria, ataxia, and near constant hyperkinetic choreo-

athetoid movements of the extremities and head. He does not

exhibit nystagmus. Computerized tomography (CT) of the brain at

age 3 K was normal. Magnetic resonance imaging (MRI) of the

brain at age 7 years and 10 years were normal. Brain magnetic

resonance spectroscopy (MRS) has not been approved by

insurance.

Biochemical Laboratory Evaluation
Normal data were obtained in the following tests: serum

ammonia, creatine kinase (CK), electrolytes, liver transaminases,

lipid profile (total cholesterol, triglycerides, LDL and HDL), serum

lactic acid, complete blood count, anti-nuclear antibody (ANA)

titer, anti-streptolysin O (ASO) titer, serum copper and cerulo-

plasmin, plasma amino acids, total and free carnitine, acylcarni-

tine/free carnitine ratio, acylcarnitine profile, plasma and urine

creatine and guanidinoacetic acid and biotinidase activity.

Qualitative urine organic acid screening revealed abnormal

elevations of 2-methyl-3-hydroxybutyric acid and tiglyglycine,

with no abnormal elevation of 2-methylacetoacetic acid. Serial

quantitative urine organic acids examinations revealed persistent

elevation of 2-methyl-3-hydroxybutyric acid and tiglylglycine

(Table 1), again with no 2-methylacetoacetic acid detected. Beta-

ketothiolase activity measured in skin fibroblasts was mildly low at

8.6 mU/mg protein (reference range 8.9–20.6) but its activity

stimulated normally in the presence of potassium. Succinyl CoA-3-

keto transferase (SCOT) activity, also measured in skin fibroblasts,

was normal (4.1 mU/mg protein with reference range 2.6–8.6).

The measurement of HSD10 (formerly MHBD) activity in

lymphoblastoid cells of normal controls was 4.362.0 mU/mg

protein (n = 4) similar to that previously reported 5.761.3 mU/

mg protein [12], whereas the HSD10 activity measured in the

patient’s lymphoblastoid cells was decreased at 2.17 mU/mg

protein. Mitochondrial electron transport chain enzymes mea-

sured in fibroblasts were normal (Table 2). Levels of organic acids

(tiglylglycine and 2-methyl-3-hydroxybutyrate ) in urine of the

patient’s mother and sister were also determined, and found to be no

greater than the normal adult level (tiglylglycine ,8 and 2-methyl-3-

hydroxybutyrate ,10 mmole/mole creatine, respectively).

Molecular Genetic Study
A novel mutation c.194T.C transition was identified in the

HSD17B10 gene of the patient (Fig. 2). In contrast, there is no

mutation found in the same gene of his sister. RFLP analysis

revealed that the patient’s mother is an asymptomatic carrier, and

also confirm that the patient’s sister is homozygous for wild-type

HSD17B10 (Fig. 3). A genetic pedigree of this family is shown in

the Fig. 3A. The patient suffers from an X-linked intellectual

disability although he is the only affected individual in this family.

Most female carriers are asymptomatic because of heterozygosity

in their two X chromosomes (M1–6 of Fig. 3B) and because the

mosaics of the HSD17B10 gene expression [15]. This novel

c.194T.C transition in the HSD17B10 gene results in a

substitution of alanine for valine at residue 65, which is located

in the active site of HSD10. This valine residue interacts with the

adenine ring of the coenzyme NAD+ (Fig. 4). Valine 65 is

extremely conserved in HSD10 and its othologs in various species

from mammals, fishes, insects to bacteria (Fig. 5).

Table 1. Concentrations of urine organic acids (mmole/mole
creatine) at different age.

Patient age:
2-Methyl-3-
hydroxybutyric acid Tiglylglycine

8 y 4 m 31 32

8 y 8 m 18 9

10 y 3 m 152 66

10 y 4 m 80 40

Normal children (age:
2 to 12-year-old)

,14 ,6

doi:10.1371/journal.pone.0027348.t001

Table 2. Activities of mitochondrial respiratory chain enzymes in fibroblasts.

Enzyme
Specific activity in patient’s cells
nmol/min/mg protein (% of mean)

Normal ranges
nmol/min/mg protein

ETC Complex I 499 (83) 602+/2316 (276–806)

ETC Complex I+III (Total)
Rotenone sensitive

249 (81)
76.5 (76)

307+/2120 (170–410)
100+/240 (50–136)

ETC Complex II 5.84 (77) 7.6+/25.9 (2.1–13.1)

ETC Complex II+III 13.4 (65) 20.6+/211.7 (8.2–28.6)

ETC Complex IV 23.3 (89) 26.2+/217.5 (8.2–42.4)

Citrate synthase (control) 13.9 (12.9–60.6)

doi:10.1371/journal.pone.0027348.t002
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Figure 2. Mutation on the HSD17B10 gene of patient with a clinical diagnosis of HSD10 deficiency. Chromatogram of the forward
sequence of the HSD17B10 gene from the patient showing c.194T.C transition. The nucleotide sequence of intron 2 is indicated by lower case. This
mutation resulted in mutant HSD10(p.V65A).
doi:10.1371/journal.pone.0027348.g002

Figure 3. Detection of the c.194T.C variant in the HSD17B10 gene by RFLP analysis. The pGEM-T Easy vectors harboring the HSD17B10
gene cloned from genomic DNA of a normal control [C1–3] (lanes 1–3), the patient’s sister [S1–6] (lanes 4–9), the patient [P1–3] (lanes10–12), and
the patient’s mother [M1–6] (lanes 13–18) were digested by BstEII and then separated on a 1% agarose gel. Amounts of DNA loaded were 1 mg on
lanes 1 and 2, 0.75 mg on lanes 3 and 6, and 0.5 mg on all the other lanes. A 2.2 kb fragment (indicated by an arrowhead) results from an allele
carrying this variant. For a wild-type allele, this fragment is chopped into two shorter fragments (1.3 kb and 0.9 kb) as indicated by arrows. The vector
is in the largest band indicated by an empty arrowhead.
doi:10.1371/journal.pone.0027348.g003
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Discussion

The pathogenetic mechanism of HSD10 deficiency remains

largely unknown. HSD10 deficiency was originally described as a

defect in isoleucine metabolism, although attempts at treatment with

isoleucine and protein restriction did not clearly alter or improve the

course of the disease despite reduction in the excretion of 2-methyl-3-

hydroxybutyrate and tiglylglycine [11–14]. With the finding that a

silent mutation in HSD17B10 (previously denoted HADH2) [16] was

associated with normal isoleucine metabolism in a family with

nonprogressive, syndromic form of X-linked mental retardation

(MRXS10) (OMIM#300220), the possibility of other disease

mechanisms was suggested [2,17]. MRXS10 was described in a

single family with mild mental retardation syndrome associated with

choreoathetosis and behavioral disturbance with normal carrier

females [18]. Imbalance in neurosteroid metabolism has also been

suggested as a pathogenic mechanism of HSD17B10 mutations [8].

Compared with previously reported HSD10 deficiency patients,

whose HSD17B10 gene bears a c.388C.T variant [8–10], the

current patient has much milder neurological symptoms that are

somewhat similar to patients with MRXS10 caused by a silent

mutation in the HSD17B10 gene [17,18]. Available data have not

yet convincingly demonstrated that the levels of HSD10 protein or

activity are substantially reduced in lymphoblastoid cells from

MRXS10 patients [2]. Although it remains to be seen how a

mutation in the HSD17B10 gene or a deficiency of the HSD10

enzyme leads to any pathology, some have pointed to pathologies

arising from defects in neurosteroid metabolism [19] or in the

formation of protein complex as the core of mitochondrial RNase P

[20]. Our recent study supports the theory that a pathological

Figure 4. Van der Waals interactions between the adenine ring of NAD+ and the side chain of residue 65 of HSD10. The wild type
HSD10 and mutant HSD10 were shown in part (A) and (B), respectively. Different colors represent different atoms: carbon (white), hydrogen (blue),
nitrogen (purple), phosphorous (yellow) and oxygen (red). For clarity, all other amino acid residues in the protein, other than the neighboring
aspartate 64 have been rendered invisible. Small dots represent the extent of the van der Waals radii for atoms in amino acid residue 65 in the protein
and in the NAD+.
doi:10.1371/journal.pone.0027348.g004

HSD10 Deficiency

PLoS ONE | www.plosone.org 5 November 2011 | Volume 6 | Issue 11 | e27348



imbalance in neurosteroid metabolism could be a major cause of the

neurological abnormalities associated with HSD10 deficiency [8].

Significantly elevated levels of 2-methyl-3-hydroxybutyric acid

and tiglylglycine in the patient’s urine (Table 1) unequivocally

indicated that there is a block in isoleucine degradation at the fourth

or fifth step of this catabolic pathway (Fig. 6). A diagnosis of b-

ketothiolase deficiency (OMIM#203750) was not supported in this

patient based on the following observations: (1) the patient has no

history of metabolic acidosis, (2) the patient’s HSD10 rather than b-

ketothiolase activity was much lower than the normal control level,

and (3) no 2-methylacetoacetic acid was detected in his organic acid

profile. The accumulation of isoleucine metabolites in this patient

points to HSD10 deficiency (OMIM#300438) instead. HSD10

catalyzes the fourth reaction of the isoleucine catabolic pathway

(Fig. 6) and was first isolated by Schulz group [21]. The human

HSD17B10 gene, encoding HSD10, formerly also known as short

chain 3-hydroxyacyl-CoA dehydrogenase (SCHAD) [22], was then

cloned and mapped to Xp2.11 by Yang and co-workers [23]. It is

well established that HSD10 deficiency, formerly MHBD deficien-

cy, resulted from a missense mutation in the HSD17B10 gene [8–

10]. Identification of a missense mutation in the HSD17B10 gene of

the patient and his mother is necessary for diagnosing HSD10

deficiency, an X-linked intellectual disability (Figs. 2 and 3). Since

the reference DNA sequence of the HSD17B10 and its surrounding

genes had been corroborated in more than 2,500 X chromosomes

of normal control subjects [17] and the variant detected in this study

was not found in the YH Genome of the Beijing Genome Institute

(http://yh.genomics.org.cn) and the database of JSNP (http://snp.

ims.u-tokyo.ac.jp), c.194T.C is a clinically associated mutation

rather than a single nucleotide polymorphism of the HSD17B10

gene in the Far East population. The highly conserved valine

residue (Fig. 5) is replaced by alanine in the mutant HSD10. Since

the side chain of valine 65 is so close to the adenine ring of the co-

enzyme, the missense mutation p.V65A results in a loss of two

forked methyl groups that weakens interactions between residue 65

of HSD10 and NAD+ (Fig. 4).

It was observed that the HSD10 activity in the patient’s cells is

only about half of that in normal controls under experimental

conditions of this study. The reduction of HSD10 activity due to

the mutation may account for the accumulation of isoleucine

metabolites in the patient’s blood, reflected in increased excretion

in the urine, while his beta-ketothiolase (b-KT) activity was found

to be almost in the normal level. Of course, damage to this enzyme

would affect not only its catalytic versatility but also its non-

enzymatic functions, e.g., its binding capacities as reviewed

recently [24]. To elucidate the pathogenic mechanism of

HSD10 deficiency, much more research needs to be done in the

future.

Finally, although previously reported HSD10 deficiency cases

who were either of Spanish or German descent, the results of this

study demonstrate that HSD10 deficiency may affect other

ethnicities.

Materials and Methods

Ethics Statement
This study has been approved by the Internal Review Board of

NYS Institute for Basic Research in Developmental Disabilities,

and the written Consent for Publication was acquired from the

patient’s parent.

Gene Cloning and Sequencing
Human chromosome DNA was isolated from 100 ml of blood

by use of the DNeasy Blood & Tissue kit (QIAGEN, Valencia, CA)

according to instructions of the manufacturer. The HSD17B10

gene at X chromosome was amplified with a pair of primers,

HSDF and HSDR (Table 1S of [8]), by PCR (94uC 3 min; 35

cycles: 94uC 15 s, 68uC 4 min; 68uC 4 min). A 3.7 kb DNA

fragment was purified from the PCR product using the QIAquick

Gel Extraction kit according to instructions of the manufacturer.

After the PCR product was cloned into the pGEM-T Easy vector

(Promega, Madison, WI), JM109 High Efficiency Competent cells

were transformed by the pGEM-T Easy- HSD17B10 according to

instructions of the manufacturer. Amplified pGEM-T Easy-

HSD17B10 was isolated from transformants employing the

QIAprep Spin Miniprep kit, and then used as the DNA

sequencing template. The DNA nucleotide sequence was deter-

mined by the dideoxy method with ten different sequencing

primers [8]. Raw DNA sequence data from the DNA Analysis

Facility at Yale University were aligned and analyzed with the

SDSC Biology WorkBench Version 3.2, and compared with the

normal X chromosome DNA sequence (accession #Z97054) to

identify a mutation(s) present in the HSD17B10 gene.

Restriction Fragment Length Polymorphism (RFLP)
Analysis

The pGEM-T Easy-HSD17B10 isolated from 18 different

colonies of the transformants was digested as 18 individual samples

by BstEII at 60uC for 1 h, and then the restriction products from

each sample were separated at 1% agarose gel.

Protein and HSD10 Assay
Protein concentrations were determined by use of the Micro

BCA protein assay kit (Pierce, Rockland, IL) according to the

instruction of the manufacturer. Measurements of HSD10 activity

in lymphoblastoid cells were performed as described previously

[12].

Quantification of Urine Organic Acids
The organic acid profiles were determined by gas chromatog-

raphy-mass spectrometry [25].

Figure 5. Comparison of amino acid sequence around valine 65
of HSD10 with those of its othologs in different species.
Residues conserved in all species were bolded. The asterisk * indicates
an extremely conserved residue of this NAD+-dependent dehydroge-
nase.
doi:10.1371/journal.pone.0027348.g005
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Analysis of the three dimensional structural relationship
of Residue 65 of HSD10 and NAD+

The crystal structure of human HSD10 complexed with NAD+

was used as the template structure [26]. The 1U7T.pdb file was

obtained from the Protein Data Bank (www.resb.org) and

visualized using DeepView/Swiss-pdb Viewer 3.7 [27]. Hydrogen

atomes were added to the X-ray-derived pdb file using What If

[28].
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