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Abstract

Myxococcus xanthus DK1622 contains inner (IM) and outer membranes (OM) separated by a peptidoglycan layer. Integral
membrane, b-barrel proteins are found exclusively in the OM where they form pores allowing the passage of nutrients,
waste products and signals. One porin, Oar, is required for intercellular communication of the C-signal. An oar mutant
produces CsgA but is unable to ripple or stimulate csgA mutants to develop suggesting that it is the channel for C-signaling.
Six prediction programs were evaluated for their ability to identify b-barrel proteins. No program was reliable unless the
predicted proteins were first parsed using Signal P, Lipo P and TMHMM, after which TMBETA-SVM and TMBETADISC-RBF
identified b-barrel proteins most accurately. 228 b-barrel proteins were predicted from among 7331 protein coding regions,
representing 3.1% of total genes. Sucrose density gradients were used to separate vegetative cell IM and OM fractions, and
LC-MS/MS of OM proteins identified 54 b-barrel proteins. Another class of membrane proteins, the lipoproteins, are
anchored in the membrane via a lipid moiety at the N-terminus. 44 OM proteins identified by LC-MS/MS were predicted
lipoproteins. Lipoproteins are distributed between the IM, OM and ECM according to an N-terminal sorting sequence that
varies among species. Sequence analysis revealed conservation of alanine at the +7 position of mature ECM lipoproteins,
lysine at the +2 position of IM lipoproteins, and no noticable conservation within the OM lipoproteins. Site directed
mutagenesis and immuno transmission electron microscopy showed that alanine at the +7 position is essential for sorting
of the lipoprotein FibA into the ECM. FibA appears at normal levels in the ECM even when a +2 lysine is added to the signal
sequence. These results suggest that ECM proteins have a unique method of secretion. It is now possible to target
lipoproteins to specific IM, OM and ECM locations by manipulating the amino acid sequence near the +1 cysteine
processing site.
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Introduction

The life cycle of Myxococcus xanthus involves a vegetative stage, in

which cells feed on bacteria and organic detritus, and a

developmental stage in which thousands of cells aggregate to

form a multicellular fruiting body containing spores. Fruiting body

development involves intercellular communication with at least six

extracellular signals [1]. However, the receptors and sensory

pathways of these signaling pathways are largely unknown.

Identification of outer membrane (OM) proteins in M. xanthus

may reveal components of these signaling pathways that are used

to export or import signals.

The OM acts as a selective barrier that allows the passage of

nutrients, water and chemical signals through pores formed by

porin proteins. In porins, antiparallel b-strands are arranged to

form a cylindrical b-barrel structure lined with hydrophilic

residues that create a water-filled channel [2]. Some porins allow

passive diffusion of small solutes with molecular weights up to

600 Da [3]. Active diffusion of specific nutrients through porins is

carried out by TonB systems, which utilize energy provided by the

inner membrane (IM) to mediate solute passage through the OM

[4]. Some porins allow passage of specific substrates, such as fatty

acids in the case of FadL [5]. Porins are synthesized as precursors

with an N-terminal signal sequence that aids transport across the

IM via the general secretory (Sec) pathway [6]. The signal

sequences are hydrolyzed by signal peptidases present in the IM.

Chaperones in the periplasm facilitate protein folding and

insertion into the OM using the Omp85 machinery [7].

Databases such as Pfam can help identify OM proteins, but only

if the protein contains a domain with appreciable identity to a

domain of known function [8]. Unfortunately, most bacterial

genomes contain hypothetical proteins that are not represented in

the Pfam database. For example, the M. xanthus genome encodes

40% hypothetical proteins [9]. Thus, bioinformatic programs that

can predict the OM protein b-barrel structure would be useful

since this structure is unique to porins [10].

The IM and OM also contains lipoproteins that are anchored

by a lipid-modified N-terminal cysteine residue. Lipoproteins are

transported as precursors via the Sec pathway to the IM where

they are processed at the conserved N-terminal lipobox. The

lipobox consists of four amino acids (L23-[A/S/T]22-[G/A]21-

C+1) around the signal peptide cleavage site with the +1 cysteine

serving as the site of covalent modification [11]. Lipoprotein

maturation involves attachment of a diacylglycerol group to the +1
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cysteine sulfhydryl group via a thioester linkage, cleavage of the

signal peptide, and acylation of the +1 a-amino group. The lipid

moieties anchor the N-terminus of the proteins in lipid bilayers.

In Escherichia coli, localization of lipoproteins to the IM requires

aspartate at the +2 position of the mature lipoprotein [12].

Lipoproteins lacking this sorting signal are transported to the OM

via the Lol pathway, which is an ABC transport system located in

the IM [13]. The signal sequences directing Lol avoidance differ

among bacteria. In Pseudomonas aeruginosa, lysine and serine at

positions +3 and +4 lead to IM retention of lipoproteins [14].

Some bacteria secrete lipoproteins and may possess novel

mechanisms to sort lipoproteins to the external environment

[15]. M. xanthus secretes at least 11 lipoproteins to the extracellular

matrix (ECM) whose mechanism of targeting is unknown [16].

In this paper we identified OM proteins using bioinformatic and

proteomic tools. Two prediction programs TMBETA-SVM and

TMBETADISC-RBF identified 228 b-barrel OM proteins in the

genome, of which 54 were detected in DK1622 vegetative cells by

LC-MS/MS. We show that one of these proteins, Oar, is essential

for C-signal transmission during fruiting body development.

Lipoprotein sorting into IM, OM, and extracellular compartments

was also examined. Alanine at the +7 position mediates ECM

localization, even when a signal for IM localization is also present,

suggesting that there are at least two lipoprotein secretion

pathways.

Results

The first goal of this study was to identify M. xanthus OM porins

and lipoproteins using bioinformatic and proteomic approaches,

then examine one porin, Oar, for a role in fruiting body

development. The second goal of this study was to identify the

trafficking signals for IM, OM and ECM lipoproteins. Site directed

mutagenesis was then used to identify the ECM trafficking signal for

the major ECM lipoprotein FibA.

b-barrel prediction in M. xanthus proteome
Integral OM proteins are synthesized with an N-terminal signal

sequence. The signal sequence enables transport of proteins across

the IM by the Sec system, and can be predicted using the program

Signal P [17]. The M. xanthus proteome was examined for

candidates with a signal peptide, which generated 2493/7331

candidates (Figure 1). In the next step, predicted signal peptide

containing proteins were classified as lipoproteins or non-lipopro-

teins using the Lipo P program [13]. 425 out of 2493 signal peptide-

containing proteins were predicted to be lipoproteins (Figure 1). The

non-lipoproteins were further segregated into IM and non-IM

proteins. Integral IM proteins have transmembrane alpha helices

that are rich in hydrophobic amino acids. While some integral

membrane proteins have only a single transmembrane domain, we

felt that parsing out proteins with a single predicted transmembrane

domain was a bit risky. Therefore, proteins with at least two putative

transmembrane helices using the TMHMM program were

classified as IM proteins [13]. 560/2068 (27%) proteins with

putative signal peptides were identified as IM proteins.

The remaining 1508 signal peptide containing proteins, com-

prising periplasmic, secreted, and OM proteins, were subjected to b-

barrel prediction programs to identify integral OM proteins. Six

prediction programs were evaluated, TMBETA-NET, PRED-

TMbb, TMBETA-SVM, TMBETADISC-RBF, BOMP, and

TMB-HUNT, using 40 M. xanthus protein sequences with predicted

b-barrel domains obtained from the Pfam database (Table 1). These

proteins are homologous to well-studied OM proteins from other

organisms as demonstrated by BLASTP. The 40 proteins represent

10 protein families including TonB dependent receptors, Omp85

and OmpH, secretins, efflux proteins, and organic solvent tolerance

Figure 1. Scheme to identify OM proteins utilizing bioinformatic programs. The Signal P program identified 2493 signal peptide containing
proteins among the putative 7331 member M. xanthus proteome. Of these 425 lipoproteins were identified using Lipo P. Of the 2068 proteins
without a lipoprotein signal 560 were integral IM proteins identified using TMHMM. The non-IM proteins include periplasmic proteins, secreted
proteins and OM proteins. Finally, integral OM proteins containing a b-barrel domain were identified using TMBETA-SVM plus TMBETADISC-RBF.
doi:10.1371/journal.pone.0027475.g001

Outer Membrane Proteome Analysis of M. xanthus
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proteins [18,19,20,21]. Except for BOMP (10%) and TMB-HUNT

(63%) all prediction programs identified .77% of the 40 OM

proteins (Table 1). PRED-TMbb identified the most b-barrel

proteins (38/40) (95%). TMBETADISC-RBF, TMBETA-SVM

and TMBETA-NET identified 34/40 (85%), 33/40 (83%) and 31/

40 (78%) b-barrel proteins, respectively.

TMBETA-NET, TMBETA-SVM, TMBETADISC-RBF and

PRED-TMbb were tested on 21 M. xanthus IM, periplasmic, and

ECM proteins to eliminate programs that generate false positives

(Table 2). The IM and periplasmic proteins were obtained from

the Pfam database while the ECM proteins were previously

identified from proteomic studies [16]. PRED-TMbb produced

11/20 (55%) false positives, TMBETA-NET and TMBETA-

DISC-RBF generated 2/20 (9.5%) false positives, and TMBETA-

SVM produced no false positives.

In the absence of a stand-alone program for TMBETA-NET, b-

barrel proteins were identified using TMBETA-SVM and

TMBETADISC-RBF, which predicted 240/1508 and 414/1508

proteins respectively. 228 proteins were identified by both

programs equivalent to ,3.1% of the genome (Table S1).

Analyses of several Gram-negative bacteria suggests that 2–3%

of the genome encodes porins [22].

Identification of OM proteins in M. Xanthus
The OM fraction was purified, then subjected to LC-MS/MS

[23]. Using the bioinformatic scheme shown in figure 1, 54 b-

barrel proteins (Table 3) were identified along with 44 lipoproteins

(Table 4). The bioinformatic scheme enabled the identification of

cytoplasmic, IM, and periplasmic contaminants in the OM

preparation (Table S2).

Oar is required for C-signaling
Porins form hydrophilic channels through which extracellular

signals may pass. oar mutants exhibit delayed aggregation and are

unable to sporulate [24]. Oar appears to be a TonB dependent

receptor. To determine whether an essential developmental signal

passes through the Oar pore, oar cells were mixed pair wise with

mutants unable to produce each of the essential developmental

signals A, B, C, D, E and S [1]. If the oar mutant is proficient in

producing an extracellular signal, it would be expected to rescue

development of a mutant unable to produce such a signal. oar cells

were mixed in 1:1 ratio with mutants from each signal-producing

class, and rescued development of all but csgA mutants (Figure 2A).

The csgA gene is required for the production of the C-signal

[25]. DcsgA cells can be rescued for development by mixing with

csgA+ cells even if those cells are also developmentally defective

[26]. 1:1 mixtures containing oar and DcsgA cells failed to undergo

fruiting body development suggesting that oar cells are unable to

provide C-signal to DcsgA cells. In contrast, the esg gene product is

required for the synthesis of a branched chain fatty acid required

for production of the E-signal [27]. esg mutations do not

completely eliminate synthesis of branched chain fatty acids

because there is a second pathway that can also produce them,

albeit at smaller concentrations, causing some fruiting body

development and sporulation as observed in Figure 2A. When oar

cells were mixed with esg mutant cells, fruiting body development

and sporulation was restored to wild type levels (Figure 2A).

oar cells produce CsgA at levels comparable to WT cells

(Figure 2B), suggesting that oar has difficulty transmitting the C-

signal. Another property suggestive of a defect in C-signaling is the

inability to ripple (data not shown). During early development cells

move in traveling waves known as ripples. Rippling requires C-

signaling to regulate the cellular reversal period [28,29]. The

absence of both rippling and extracellular complementation of csgA

Table 1. M. xanthus b-barrel domain proteins obtained from
the Pfam database.

MXAN
Number Function 1a 2b 3c 4d 5e 6f

AN0272 TonB dependent receptor + + + + + +

MXAN0518 TonB dependent receptor + + + 2 2 2

MXAN0562 Phosphate selective porin (PhoE) + + + + 2 +

MXAN0990 Outer membrane efflux protein + 2 + 2 2 2

MXAN1316 TonB dependent receptor + + + + + 2

MXAN1450 TonB dependent receptor (Oar) + + + + + 2

MXAN2514 Secretin (GspD) + + + + 2 2

MXAN2708 Organic solvent tolerance protein
(OstA)

+ + + + + 2

MXAN3106 Secretin (GspE) + + + + + 2

MXAN3431 Outer membrane efflux protein + + + 2 2 2

MXAN3883 Fimbrial usher protein (FUP) + + + + + 2

MXAN3905 Outer membrane efflux protein + + + + + 2

MXAN4176 Outer membrane efflux protein + + + + + 2

MXAN4198 Outer membrane efflux protein + + + + + 2

MXAN4559 TonB dependent receptor + + + + + 2

MXAN4727 Structural protein (OmpH) + + 2 2 + 2

MXAN4728 Omp85 protein + + + 2 2 2

MXAN4746 TonB dependent receptor + + + + + 2

MXAN4772 OmpA protein 2 + 2 2 + 2

MXAN5023 TonB dependent receptor + + + + 2 2

MXAN5030 Outer membrane efflux transporter + + + + + 2

MXAN5042 OmpA protein + 2 2 2 2 2

MXAN5069 Aquaporin Z (ApqZ) + 2 2 2 + 2

MXAN5772 Secretin (PilQ) + + + + + 2

MXAN5956 Major intrinsic protein + 2 + 2 2 2

MXAN6044 TonB dependent receptor + + + + + 2

MXAN6176 Outer membrane efflux protein + + + + + 2

MXAN6246 OmpA + 2 2 2 2 2

MXAN6487 Outer membrane efflux protein + + + + + 2

MXAN6547 TonB dependent receptor + + + + 2 2

MXAN6579 TonB dependent receptor + + + + + 2

MXAN6716 TonB dependent receptor + + + + 2 2

MXAN6845 TonB dependent receptor + + + + + 2

MXAN6911 TonB dependent receptor + + + + + +

MXAN7037 OmpA + + + + + 2

MXAN7040 Fatty acid transport (FadL) + + + + + +

MXAN7238 Outer membrane efflux protein + + 2 + + 2

MXAN7331 TonB dependent receptor + + + + 2 2

MXAN7397 OmpA 2 2 2 2 + 2

MXAN7436 Outer membrane efflux protein + + + + 2 2

Programs that correctly predicted a b-barrel protein are indicated by a positive
sign (+) while failing to do so is indicated by a negative sign (2).
aPRED-TMbb.
bTMBETADISC-RBF.
cTMBETA-SVM.
dTMBETA-NET.
eTMB-HUNT.
fBOMP.
doi:10.1371/journal.pone.0027475.t001
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mutants suggests a defect in C-signal transmission. However, the oar

phenotype does not entirely phenocopy csgA. When the oar mutant

was mixed 1:1 with WT cells, 99% of the spores that germinated

were of WT origin suggesting that the oar sporulation defect cannot

be bypassed with an extracellular signal. csgA mutants, in contrast,

typically form 30–50% of the spores when mixed with WT.

Examination of oar cells revealed a striking and novel defect.

While 100% of 24 h developing WT cells show rod-shaped

morphology, 62% of the oar cells were bent into horseshoe shapes

that eventually circularize. The outer membrane appears to pull

away from the rest of the cell to form spheroplasts (Figure 2c).

These defects were not observed in oar vegetative cells (data not

shown). In a csgA oar double mutant, only 8% of cells had oar-like,

morphology. These results suggested that C-signal accumulation

causes deformation of the cell envelop with lethal consequences.

ECM and IM lipoproteins utilize different sorting signals
in M. xanthus

In other Proteobacteria, lipoproteins are sorted into the IM and

OM using amino acid residues near the lipid modification site. Since

E. coli does not secrete lipoproteins, the mechansim by which they

make their way to the ECM are largely unknown. To investigate

lipoprotein targeting to the ECM, the lipobox and the first eight

amino acids of the mature ECM and IM lipoproteins were

examined by multiple sequence alignment using WebLogo [30]. 7/

10 ECM proteins, including by far the most abundant ECM protein

FibA, possess alanine at the +7 position (Figure 3A). No amino

acid conservation was observed in OM lipoproteins identified by

LC-MS/MS (data not shown). This result suggests that +7 alanine

may have a role in targeting lipoproteins to the ECM.

Because the mechanism of inner membrane targeting is also

unknown in M. xanthus, and highly variable among the

Proteobacteria, 12 putative IM lipoproteins were identified by

LC-MS/MS from purified inner membranes (Table 5). 8/12 IM

lipoproteins have lysine at the second position suggesting that

lysine at the +2 position may be be essential for inner membrane

targeting, as it is in E. coli (Figure 3B). The signal sequence of

MXAN1176, a lipoprotein with lysine at the +2 position, localized

mCherry in the IM [31].

Site directed mutagenesis of fibA was carried out to determine

whether alanine at the +7 position is essential for ECM

localization. Since no amino acid conservation was observed in

the N-terminus of OM lipoproteins, alanine (GCC) was changed

to aspartate (GAC) at the 27th position (+7 in mature FibA) as this

substitution involved minimal nucleotide modification. The

modified fibA gene was expressed in plasmid pZJY156 under

control of the constitutive pilA promoter then introduced into

DfibA strain LS2208. As a positive control, WT fibA, was

introduced into LS2208 with the same vector system. Both strains

produced comparable amounts of FibA as revealed by Western

analysis of whole cells (Figure 3C). Immuno transmission electron

microscopy was carried out to quantify FibA localization in the

ECM. Cells were allowed to form biofilms on formvar coated

nickel grids in submerged culture [32]. FibA secretion was then

induced by incubating the grids in cohesion buffer. The cells were

probed with anti-FibA (Mab2105) followed by anti-mouse

Table 2. M. xanthus IM, periplasmic and ECM proteins1.

MXAN Number Function Predicted localization 1a 2b 3c 4d

MXAN0468 peptidylprolyl cis-trans isomerase Periplasm + 2 2 2

MXAN0977 di-haem cytochrome-c peroxidase Periplasm 2 2 2 2

MXAN1066 PTS system, IIA component Periplasm + 2 2 2

MXAN1389 alkaline phosphatase Periplasm + 2 2 2

MXAN2832 permease Periplasm 2 2 2 2

MXAN2951 ABC transporter, periplasmic substrate binding protein Periplasm 2 2 2 2

MXAN3420 multicopper oxidase (CumA) Periplasm 2 2 2 2

MXAN0274 biopolymer transport protein, ExbD/TolR family IM 2 2 2 2

MXAN0559 ABC transporter,ATP-binding protein (Mac1) IM + 2 2 2

MXAN2505 general secretory pathway protein K (GspK) IM 2 2 2 +

MXAN2570 acetate–CoA ligase IM 2 2 2 2

MXAN3182 Serine threonine kinase IM + 2 2 2

MXAN4829 isoquinoline 1-oxidoreductase, beta subunit (IorB) IM + 2 2 2

MXAN5123 sensor histidine kinase MrpA (MrpA) IM + + 2 2

MXAN0075 amidohydrolase ECM 2 2 2 2

MXAN1424 unknown ECM + + 2 2

MXAN1493 unknown ECM + 2 2 2

MXAN2375 unknown ECM 2 2 2 2

MXAN3885 Spore coat U ECM + 2 2 +

MXAN5686 unknown ECM + 2 2 2

1IM and periplasmic proteins were obtained from the Pfam database while ECM proteins were previously identified by Curtis et al [16].
aPRED-TMbb.
bTMBETADISC-RBF.
cTMBETA-SVM.
dTMBETA-NET.
doi:10.1371/journal.pone.0027475.t002
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Table 3. OM b-barrel proteins identified by LC-MS/MS.

MXAN Number1 Function No. of peptides

MXAN0219a Hypothetical protein 1

MXAN0518a TonB-dependent receptor 1

MXAN0659b Putative lipoprotein 5

MXAN0662b Hypothetical protein 3

MXAN0751b Conserved domain protein 4

MXAN0855b Putative chemotaxis MotB protein 5

MXAN0924a Hypothetical protein 2

MXAN1426b Hypothetical protein 2

MXAN1450a TonB-dependent receptor (Oar) 40

MXAN1689 Conserved hypothetical protein 1

MXAN2417b Conserved hypothetical protein 1

MXAN2462b Hypothetical protein 1

MXAN2514a General secretion pathway protein D 4

MXAN2536 Putative long-chain-fatty-acid-CoA ligase 6

MXAN2659a Hypothetical protein 17

MXAN2906b Penicillin acylase family protein 8

MXAN3106a Bacterial membrane secretin (secretin) family 10

MXAN3160b Peptidase, M13 (neprilysin) family 22

MXAN3774b Conserved Hypothetical protein 11

MXAN3780 Patatin-like phospholipase family protein 3

MXAN3953b Hypothetical protein 2

MXAN4085 Peptidylprolyl cis-trans isomerase, FKBP-type 1

MXAN4293b Hypothetical protein 4

MXAN4295 Patatin-like phospholipase family protein 6

MXAN4365 Outer membrane receptor family 1

MXAN4652 Putative Flp pilus assembly protein CpaB 1

MXAN4728a OMP85 family protein 4

MXAN4746a TonB-dependent receptor 5

MXAN5023a TonB dependent receptor 5

MXAN5152b OmpA family protein 3

MXAN5194 OmpA domain protein 2

MXAN5453b Hypothetical protein 6

MXAN5685b Hypothetical protein 2

MXAN5743b Hypothetical protein 11

MXAN5756b TolB protein 2

MXAN5931a Hypothetical protein 7

MXAN6079b Putative molybdopterin oxidoreductase, iron-sulfur binding subunit 15

MXAN6090b Hypothetical protein 10

MXAN6196a Hypothetical protein 3

MXAN6487a Outer membrane efflux protein domain protein 11

MXAN6521b Putative lipoprotein 1

MXAN6829 Hypothetical protein 4

MXAN6891b Hypothetical protein 2

MXAN6911a TonB-dependent receptor 8

MXAN7037 Putative chemotaxis MotB protein 1

MXAN7039b Putative lipoprotein 34

MXAN7040a FadL 13

MXAN7104b M3 (thimet oligopeptidase) family peptidase 10

MXAN7112b Conserved Hypothetical protein 3

MXAN7196b Hypothetical protein 1

Outer Membrane Proteome Analysis of M. xanthus
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MXAN Number1 Function No. of peptides

MXAN7203a Putative 28 kDa outer membrane protein 5

MXAN7407a Hypothetical protein 6

MXAN7436a Outer membrane efflux protein 4

MXAN7513 Hypothetical protein 1

1All proteins labeled with an ‘a’ or ‘b’, were identified in both this study and the Kahnt et al. study using proteomic approaches. Proteins identified by proteomics and
classified as b-barrel proteins in the Kahnt et al. study, are identified with an ‘a’ superscript. Proteins identified by proteomics in the Kahnt et al. study and likely
misclassified by them, are denoted with a ‘b’. Proteins with no superscript are b-barrel proteins unique to this study.

doi:10.1371/journal.pone.0027475.t003

Table 3. Cont.

Table 4. OM lipoproteins identified by LC-MS/MS.

MXAN Number Function No. of peptides

MXAN0283 Putative lipoprotein 1

MXAN0522 Putative lipoprotein 2

MXAN0533 NAD dependent epimerase/dehydratase family 1

MXAN0662 Hypothetical protein 3

MXAN0751 Conserved domain protein 4

MXAN0934 Protease DO family protein 14

MXAN1063 Putative lipoprotein 1

MXAN1162 Putative lipoprotein 5

MXAN1176 Peptidylprolyl cis-trans isomerase, cyclophilin-type 1

MXAN1342 Putative lipoprotein 1

MXAN1451 Putative lipoprotein MlpA 4

MXAN1623 peptidase, M16 (pitrilysin) family 8

MXAN1689 Conserved hypothetical protein 1

MXAN2091 Peptidase, M16 (pitrilysin) family 3

MXAN2286 Peptidyl-dipeptidase Dcp 4

MXAN2417 Conserved hypothetical protein 1

MXAN2470 59-nucleotidase family protein 1

MXAN2660 Putative lipoprotein 6

MXAN2968 Efflux transporter, RND family, MFP subunit 4

MXAN3060 Adventurous gliding motility protein CglB 4

MXAN3084 Social gliding motility protein Tgl 2

MXAN3103 Putative lipoprotein 3

MXAN3440 Peptidase, M13 (neprilysin) family 4

MXAN3581 Peptidyl-dipeptidase A 4

MXAN4641 Hypothetical protein 1

MXAN4747 Putative lipoprotein 1

MXAN4900 Putative lipoprotein 15

MXAN4966 Putative lipoprotein 10

MXAN5331 Putative lipoprotein 2

MXAN5361 Putative 59-nucleotidase 1

MXAN5390 Putative lipoprotein 1

MXAN5684 Putative lipoprotein 5

MXAN5933 Peptidase, M48 (Ste24 endopeptidase) family 5

MXAN6381 Hypothetical protein 1

MXAN6521 Putative lipoprotein 1

MXAN6660 Hypothetical protein 3

MXAN6720 Putative lipoprotein 2

MXAN6978 Putative lipoprotein 2

Outer Membrane Proteome Analysis of M. xanthus
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antibody conjugated to 10 nm gold particles, and then examined

by transmission electron microscopy. Gold particles on or around

10–12 cells were enumerated.

Approximately 70 gold particles cell21 are associated with the

ECM and the cell surface of strain LS2760, which produces WT

FibA (Figure 4A). In contrast only a few gold particles were attached

to the surfaces of LS2208 (DfibA) or LS2764 (A27D) (3.1 and 6.1

particles cell21, respectively). Clearly, the +7 alanine is essential for

localizing FibA to the ECM. Membrane separation of 7 h

developing cells was performed in order to examine the localization

of FibA to IM and OM locations. WT FibA is distributed almost

equally in IM and OM during starvation suggesting that transport

MXAN Number Function No. of peptides

MXAN6985 Hypothetical protein 1

MXAN7108 Putative lipoprotein 1

MXAN7110 Peptidyl-prolyl cis-trans isomerase, FKBP-type 8

MXAN7220 Putative lipoprotein 1

MXAN7333 Putative lipoprotein 4

MXAN7438 Putative cobalt-zinc-cadmium resistance protein 3

doi:10.1371/journal.pone.0027475.t004

Table 4. Cont.

Figure 2. Role of oar in cell signaling. (A) Extracellular complementation of oar (LS2453) cells with DcsgA (LS2441) and esg (JD300). WT (DK1622)
cells were used as a control. Bar is 1 mm (B) Western blot analysis of vegetative cells and 24 h developing cells using anti-CsgA primary antibody. (C)
Morphology of oar cells during development. The first panel represents 24 h developing WT cells while the subsequent panels represent various oar
cell shapes as they ultimately transform into spheroplast (extreme right panel). Bar is 1 mm.
doi:10.1371/journal.pone.0027475.g002

Outer Membrane Proteome Analysis of M. xanthus
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Figure 3. Bioinformatic analysis of first eight amino acids of N-terminus of M. xanthus lipoproteins. (A) Multiple sequence alignment of
ECM proteins using WebLogo. The lipobox (highlighted by a box made of dashed lines) and the following seven amino acids of the N-terminal region
of mature lipoproteins were aligned using WebLogo. Seven ECM lipoproteins have alanine at the 7th position (highlighted by a solid box). (B) 8/12
predicted IM lipoproteins have lysine at the 2nd position (highlighted by a solid box). (C) Western blot analysis of 18 h developing cells using
Mab2105 primary antibody. Strains used include LS2760 (WT FibA), LS2208 (DfibA), LS2761 (N22K FibA), LS2764 (A27D FibA).
doi:10.1371/journal.pone.0027475.g003
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of FibA to the ECM occurs stepwise (Figure 4B). Conversely, the

A27D change led to exclusively OM localization.

Because +2 lysine mediates retention of IM proteins (Figure 3B,

[31]) we wondered whether FibA with +2 lysine would be retained

in the IM. Site directed mutagenesis was used to replace an

asparagine (AAC) codon with a lysine (AAG) codon at the 22nd

position (+2 in mature FibA). The modified fibA gene was also

expressed in pZJY156 under control of the constitutive pilA

promoter and introduced into LS2208. The strain produced

comparable amounts of FibA to the WT (Figure 4A). Immuno

transmission electron microscopy of this strain revealed large

numbers of gold particles associated with the ECM (112 particles

cell21) suggesting that the N22K substitution does not abort ECM

localization of FibA. Furthermore, N22K FibA showed similar

distribution to the WT in IM and OM further confirming that

lysine at the +2 position does not exclusively target FibA to the IM

(Figure 4B). These results suggest that ECM lipoproteins are sorted

differently than those retained in the IM.

Discussion

A stepwise approach was used to identify OM porin proteins from

the 7331 member M. xanthus proteome because no single program

was successful. Our approach involved parsing the proteome with

existing software, Signal P, Lipo P and TMHMM, to generate a

smaller pool of candidates. Those proteins that possessed a type I

signal sequence, but were devoid of transmembrane helices and a

lipobox were examined using TMBETA-SVM and TMBETA-

DISC-RBF. This approach identified 228 putative b-barrel proteins

and dramatically reduced the number of false positives. When

TMBETADISC-RBF was used on the whole M. xanthus proteome, it

identified 915 b-barrel proteins (12% of the genome), which is far

greater than is typical of Gram-negative bacteria.

Out of 228 putative b-barrel proteins, 54 were identified by LC-

MS/MS in the vegetative cell OM fraction. In a complementary

approach, Kahnt et al used biotinlyation of M. xanthus whole cells

and OM vesicles to identify b-barrel proteins [9]. Kahnt et al used

PRED-TMbb to identify b-barrel proteins from among the

biotinylated proteins, which we found to generate over 50% false

positives. Furthermore, 22/298 biotinylated proteins that were not

predicted to be b-barrel proteins in the Kahnt et al study are

predicted by our work to be b-barrel proteins. All in all, 43

proteins were identified by LC-MS/MS in both studies (Table 3).

Because most membrane protein enrichment methods cannot

avoid protein contamination from other cellular compartments,

use of a robust bioinformatic approach can help accurately identify

integral OM proteins from a pool of enriched candidates.

The majority (,60%) of the predicted OM proteins have no

known functions (Figure 5). Many putative b-barrel proteins are

predicted to be involved in transport. M. xanthus potentially

encodes 17 TonB dependent receptors of which only five were

detected in vegetative cells. TonB dependent receptors are

involved in energy dependent uptake of specific substrates, such

as iron, which may be poorly permeable across the membrane or

may be present in very low concentrations in the environment.

The energy for transport is derived from the proton motive force

across the IM and is delivered by a protein complex consisting of

TonB, ExbB and ExbD [33,34].

The C-signal is a developmental signal produced by the csgA

gene. One M. xanthus TonB dependent receptor, Oar, appears to

be essential for C-signal transmission since an oar mutant fails to

rescue sporulation of csgA cells in mixture. Contact and cell

alignment is essential for C-signaling [35,36]. While the inability of

oar cells to rescue DcsgA development could arise due to improper

alignment of cells caused by their abnormal shapes, another

possibility is that oar is the OM channel used to export the C-

signal. The latter possibility is suggested by the fact that oar is also

required for the periodic movement of cells in traveling waves,

sometimes referred to as ripples because of their visual similarity

with ripples on the surface of water. The C-signal is the only signal

known to be required for rippling. Rippling begins early in

development, long before oar cells begin to bend. Thus it remains

an intriguing possibility that oar is the porin for the C-signal.

Unlike csgA mutants, which retain their long, thin shape during

their defective attempt at development, oar mutants become

deformed in a novel manner. oar cells begin to bend in a central

location, eventually forming circular cells whose outer membrane

begins to pull away from the cell. At 24 hours, nearly 2/3 of oar

cells are deformed. Loss of csgA restores normal cell morphology to

oar cells suggesting that the morphological defect is due to

accumulation of the C-signal. Curiously, the morphological

problem appears to begin at the center of the cells and might

suggest that C-signaling is mediated by side-to-side contact rather

than polar contact as previously hypothesized [35]. While some

evidence suggests that the C-signal is the CsgA protein [37],

indirect evidence suggests that CsgA is an enzyme that acts on

Table 5. Putative lipoproteins identified by LC-MS/MS from IM fraction.

MXAN Function No. of peptides

MXAN 0530 Putative lipoprotein 1

MXAN 0962 Putative lipoprotein 2

MXAN 0984 Heavy metal efflux transporter, RND family, MFP subunit 3

MXAN 1176 Peptidylprolyl cis-trans isomerase, cyclophilin-type 5

MXAN 1397 PBS lyase HEAT-like repeat protein 3

MXAN 1539 Putative lipoprotein 6

MXAN 2417 Conserved hypothetical protein 8

MXAN 3008 Adventurous gliding motility protein AglU 5

MXAN 5036 Conserved domain protein 4

MXAN 5562 Putative lipoprotein 3

MXAN 5773 Putative lipoprotein 3

MXAN 7089 Putative lipoprotein 1

doi:10.1371/journal.pone.0027475.t005
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lipid molecules [38]. It is possible that the product of this enzyme

reaction may destabilize the cell membrane.

The most abundant ECM lipoprotein is FibA [16,39]. Alanine

at the +7 position appears to be conserved in most ECM proteins

[16]. An amino acid change from alanine to aspartate at the +7

position (A27D) in FibA leads to OM retention, suggesting that the

+7 alanine is crucial for export to the ECM. In WT cells FibA is

found in equal amounts in IM and OM suggesting stepwise

passage through the cell envelope. If secretion occurs in a stepwise

manner substitution of asparagine with lysine at the +2 position

might be expected to cause FibA to accumulate in the IM, the first

transit point in a temporal sequence. However, this substitution

did not block export to the OM and ECM. These results suggest

the M. xanthus secretion system for ECM proteins differs from the

one for membrane proteins.

Klebsiella oxytoca also possesses two mechanisms for lipoprotein

transport, a Lol system that moves proteins to the OM, and a type

II secretion system for the export of the cell surface exposed

lipoprotein PulA [40,41]. K. oxytoca uses +2 Asp as a LolA

avoidance tag such that proteins with +2 Asp are retained in the

inner membrane while those without it move to the OM. The

work presented in this paper suggests that M. xanthus has a similar

system. However, the PulA secretion pathway requires +2 Asp to

retain PulA in the IM temporarily until the type II secretion system

transports it outside the cell. FibA does not have a +2 Asp so the

mechanism of secretion is fundamentally different from K. oxytoca.

Whether FibA secretion depends on a type II secretion system

remains unknown. The M. xanthus genome predicts the presence of

two type II secretion systems and future studies should reveal

whether these are utilized for lipoprotein export. While, the

Figure 4. Identification of M. xanthus lipoprotein sorting signals. (A) Immuno transmission electron microscopy of developing cells using
monoclonal antibody Mab2105. M. xanthus cells were allowed to form a biofilm on a formvar-carbon-coated nickel grid for 3 h. The cells were probed
with Mab2105, which reacts primarily with FibA followed by anti-mouse antibodies conjugated with 10 nm colloidal gold particles. Bar is 500 nm. (B)
Western blot analysis of membrane fractions purified from 7–8 h developing cells.
doi:10.1371/journal.pone.0027475.g004
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mechanism of ECM lipoprotein trafficking remains unknown, our

study provides a valuable tool to identify subcellular location of

various lipoproteins based on sequence information, and a method

to target specific proteins to IM, OM or ECM.

Materials and Methods

Bioinformatic analysis
M. xanthus protein sequences were obtained from NCBI

(ftp://ftp.ncbi.nih.gov/genomes/Bacteria/Myxococcus_xanthus_

DK_1622/NC_008095.faa). Prediction of signal peptide, lipopro-

tein, and transmembrane helices in protein sequences were made

using Signal P (http://www.cbs.dtu.dk/services/SignalP/), Lipo P

(http://www.cbs.dtu.dk/services/LipoP/) and TMHMM (http://

www.cbs.dtu.dk/services/TMHMM/) respectively[10,17,42]. M.

xanthus b-barrel domain proteins were obtained from the Pfam

database (http://pfam.janelia.org/). The majority of the b-barrel

domain proteins belong to the OM b-barrel protein (MBB)

superfamily.

Six b-barrel prediction methods were evaluated for their ability

to discriminate M. xanthus b-barrel proteins including TMB-

HUNT (http://bmbpcu36.leeds.ac.uk/,andy/betaBarrel/AA

CompPred/aaTMB_Hunt.cgi), TMBETA-SVM (http://tmbeta-

svm.cbrc.jp/), TMBETA-NET (http://psfs.cbrc.jp/tmbeta-net/),

TMBETADISC-RBF (http://rbf.bioinfo.tw/,sachen/OMPpre

dict/TMBETADISC-RBF.php), PRED-TMBB (http://bioinfor

matics.biol.uoa.gr/PRED-TMBB/input.jsp) and BOMP (http://

services.cbu.uib.no/tools/bomp) [42,43,44,45,46,47].

Bacterial strains and growth condition
Table 6 lists the bacterial strains, plasmids and primers used in

this study. M. xanthus DK1622 cells were grown in CYE broth [1%

Bacto casitone (Difco), 0.5% yeast extract (Difco), 10 mM 4-

morpholinepropanesulfonic acid (MOPS) buffer (pH 7.6), and

0.1% MgSO4)] at 32uC with vigorous shaking. To solidify the

media, Bacto agar (Difco) was added at a concentration of 1.5%. E.

coli cells were grown in Luria-Bertani (LB) medium. Kanamycin was

added to CYE or LB media at a final concentration of 50 mg ml21.

Membrane separation
Membrane separation was carried out as described by

Simunovic et al with a few modifications [48]. A 1 L culture of

M. xanthus DK1622 cells was grown to a density of 26108 cells

ml21. Cells were harvested by centrifugation, washed with chilled

distilled water, and resuspended in 40 to 50 ml of 23.5% sucrose in

20 mM N-2-hydroxyethylpiperazine-N9-2-ethanesulfonic acid

(HEPES), pH 7.6. Freshly prepared chicken egg white lysozyme

(300 mg ml21) (Sigma Chemical Co., St. Louis, Mo.) and EDTA

(pH 7.6) (1 mM) were added, and incubated overnight at 4uC with

gentle stirring. The cells were resuspended in 6 ml of ice-cold

double-distilled water with vigorous pipetting to induce sphero-

plast formation, and stirred for 30 min at 4uC. Spheroplasts were

collected by centrifugation at 12,0006 g for 10 min at 4uC.

Following centrifugation the supernatant was collected and saved

while the pellet was resuspended in 3 volumes of 5 mM EDTA

(pH 7.6). One tablet of complete EDTA-free protease inhibitor

(Roche, Indianapolis, Ind.) was added, and the suspension stirred

for 1 h. The supernatant was added back to the suspension and

stirred for an additional 30 min. 1 ml of RNase A (10 mg ml21,

Sigma Chemical Co.) and 1 ml of DNase type II (10 mg ml21,

Sigma Chemical Co.) were added, and stirred for 30 min. Rod-

shaped cells were pelleted by centrifugation at 50006g for 10 min

at 4uC. Spheroplasts were collected by ultracentrifugation at

100,0006 g for 3 h at 4uC in a 70.1 Ti rotor (Beckman Coulter).

Membrane pellets were resuspended in 23.5% sucrose in 20 mM

HEPES, 5 mM EDTA, pH 7.6 using a Dual 21 tissue homoge-

nizer (Kimble Kontes, Vineland, N.J.), and incubated overnight

with gentle stirring at 4uC. The membrane suspension was loaded

on top of a three-step gradient consisting of 10 ml of 60% sucrose,

10 ml of 48% sucrose, 10 ml of 35% sucrose in 20 mM HEPES,

5 mM EDTA, pH 7.6. The membrane fractions were separated

by ultracentrifugation at 120,0006 g for 4 h at 4uC in a Beckman

swinging bucket rotor (SW28). The OM fraction migrated to the

middle of the 35% sucrose layer. It was collected, diluted with

HE0.1 buffer [20 mM HEPES, 0.1 mM EDTA, pH 7.6],

concentrated by ultracentrifugation at 120,0006 g for 3 h at

4uC in a 70.1 Ti rotor, then stored at 220uC.

The membrane enrichments were collected as described by

Simunovic et al [23]. The membrane enrichment that migrated at

the 48/60% sucrose layer interface consisted of IM and hybrid

membrane (HM) fraction, which were collected and concentrated

by ultracentrifugation using a SW28 rotor at 120,0006g for 4 h at

4uC. Concentrated enrichments were layered on top of a

discontinuous sucrose gradient consisting of 4 ml 70% sucrose,

4 ml 60% sucrose, 15 ml 55% sucrose, 3 ml 40% sucrose, and

3 ml 30% sucrose in 20 mM HEPES, 5 mM EDTA, pH 7.6. The

gradients were centrifuged using SW28 rotor at 70,0006 g for

20 h. The membrane enrichment that migrated between the 60

and 70% sucrose layers consisted of IM fraction. This fraction was

collected, concentrated by ultracentrifugation, then stored at

220uC for proteomic analysis.

Membrane separation of developing cells was carried out by

growing a 500 ml culture to a final density of 56108 cell ml21.

The cells were harvested by centrifugation and resuspended in

10 ml water. The cells were spread on two 33- by 22-cm trays

containing TPM agar [10 mM Tris HCl, pH 7.6, 1 mM

KH(H2)PO4, pH 7.6, 10 mM MgSO4, 1.5% agar (Difco)] and

incubated at 32uC for 7 h. Developing cells were harvested with a

razor blade and resuspended in 40 to 50 ml of 23.5% sucrose in

20 mM HEPES, pH 7.6. The membrane separation was carried

out as described above.

Phenol extraction of OM proteins
Phenol extraction of OM proteins was carried out as described

in Hancock and Nikaido [49]. An equal volume of 88% phenol,

pH 6.8, was added to the OM protein sample that was prepared

Figure 5. Pie chart classifying 228 OM b-barrel proteins
according to function. Most M. xanthus OM proteins have no known
function. The second major class of proteins includes TonBs, which are
required for transport of a specific substrate. Transport of small
molecules are carried out by transporters and OmpA, membrane efflux
proteins are required for export of toxins and secretins form a large OM
pore that allow export by Type II secretion system.
doi:10.1371/journal.pone.0027475.g005
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and frozen as mentioned above. The OM sample was incubated at

70uC for 10 min. The mixture was immediately cooled on ice for

10 min, and then centrifuged for 10 min at 50006 g. The upper,

aqueous layer was discarded. To the interface and the phenol

phase an equal volume of distilled water was added, incubated at

70uC for 10 min, cooled on ice, and centrifuged at 50006 g for

10 min. After the aqueous phase was discarded, protein was

extracted from the phenol phase using two volumes of acetone

each time. The acetone fractions were combined and the acetone

was removed by air-drying. The pellet was resuspended in 100 ml

of 16 PBS buffer [137 mM NaCl, 2.7 mM KCl, 4.3 mM

Na2HPO4, 1.47 mM KH2PO4, pH 7.4].

In-gel trypsin digestion
150 mg protein was boiled in loading buffer [52.5 mM Tris-

HCl, pH 6.8, 2% SDS, 25% glycerol, 0.01% bromophenol blue,

100 mM dithiothreitol (DTT)] for 10 min and cooled on ice for

10 min. The sample was loaded on a 4–20% gradient polyacryl-

amide gel. The gel was run at 70 V until the dye entered the gel.

Protein detection was performed using Bio-safe Coomassie Stain

(Bio-Rad). The portion of the gel containing protein was cut into

small pieces, and destained with 100 ml of water for 15 min. The

gel pieces were washed sequentially for 15 minutes each with 50%

acetonitrile, 100% acetonitrile, and 100 mM ammonium bicar-

bonate containing 50% acetonitrile (vol/vol). The gel pieces were

dried under vacuum, treated with 100 ml of 10 mM DTT in

40 mM ammonium bicarbonate at 56uC for 45 min, alkylated

with 100 ml of 55 mM iodoacetamide, 40 mM ammonium

bicarbonate, and incubated for 30 min at room temperature in

the dark. The gel pieces were washed with acetonitrile for 15 min,

and then dried under vacuum. The gel pieces were rehydrated

with 2 mg ml21 proteomics-grade trypsin (Promega) in 40 mM

ammonium bicarbonate and incubated at 37uC overnight.

Solutions from multiple trypsin digestions were pooled. The gel

Table 6. Bacterial strains, plasmids and primers used in this study.

M. xanthus
strains Genotype

Reference or
source

DK1622 Wild type [56]

LS2208 DfibA Lawrence Shimkets

LS2441 DcsgA Lawrence Shimkets

LS2453 oar, Kmr Lawrence Shimkets

LS2456 oar csgA, Kmr Lawrence Shimkets

LS2760 LS2208 containing plasmid pSTB31, Kmr This study

LS2761 LS2208 containing plasmid pSTB27, Kmr This study

LS2764 LS2208 containing plasmid pSTB28.1, Kmr This study

JD300 esg, Kmr [57]

Plasmids

pCR2.1-TOPO Cloning vector Invitrogen

pZJY156 Shuttle vector [52]

pUC19 Cloning vector [58]

pSTB20 pCR2.1-TOPO carrying pilA promoter and fibA gene This study

pSTB21 pCR2.1-TOPO carrying full length fibA This study

pSTB22 pUC19 carrying 500 bp, XbaI-SalI fragment from pSTB20 This study

pSTB23 pSTB22 with N22K substitution in the FibA This study

pSTB24.1 pSTB22 with A27D substitution in the FibA This study

pSTB25 500 bp, XbaI-SalI from pSTB23 cloned into pSTB21 This study

pSTB26.1 500 bp, XbaI-SalI from pSTB24.1 cloned into pSTB21 This study

pSTB27 pZJY156 carrying pilA promoter and modified fibA from pSTB25 This study

pSTB28.1 pZJY156 carrying pilA promoter and modified fibA from pSTB26.1 This study

pSTB31 pZJY156 carrying pilA promoter and WT fibA from pSTB20 This study

Primers1

A 59TCTAGAGGGAGCGCTTCGGATGCGTAGGCTGATCG 39

B 59CTTCTGCACGAGCATGGGGGTCCTCAGAGAAGGTTGCAACGG 39

C 59 ACCCCCATGCTCGTGCAGAAGAGAGTTCGCGGAGCG 39

D 59 GGTACCCCTCGAGCCGCTGCCCAAGTAG 39

FibA2DF 59 GAGTCCACCCCTGACCCCGAGGCCGAC 39

FibA2DR 59 GTCGGCCTCGGGGTCAGGGGTGGACTC39

FibAKF 59 GTTGTCGGTTGCAAGGAGTCCACCCCTGCC 39

FibAKR 59 GGCAGGGGTGGACTCCTTGCAACCGACAAC 39

1Underline indicates an overlap of 21 nucleotides.
doi:10.1371/journal.pone.0027475.t006
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slices were washed once with 50% acetonitrile in 25 mM

ammonium bicarbonate, twice with 5% formic acid, and twice

with acetonitrile for 15 min each. The washes were combined with

the solutions from the previous step and dried under vacuum.

Identification of OM proteins by LC/MS-MS
The peptides obtained from trypsin digestion were loaded on a

PicoFrit C18 column (8-cm by 50-mm) (New Objective, Woburn,

MA), and separated on an Agilent 1100 capillary LC (Palo Alto,

CA), which interfaced directly to a LTQ linear ion trap mass

spectrometer (Thermo Electron, San Jose, CA). The mobile

phases consisted of A (H2O and 0.1% formic acid) and B

(acetonitrile and 0.1% formic acid). The peptides were eluted

from the column during a 90 min linear gradient from 5 to 60%

of total solution composed of mobile phase B into the mass

spectrometer at a flow rate of 200 gl min21. MS/MS spectra

were acquired on the nine most abundant precursor ions from

each MS scan with a repeat count and duration of 1 and 5 s each.

Dynamic exclusion was enabled for 200 s. The MS/MS spectra

were converted into peak lists by mzMXL2Other and ReAdW

software [50].

Database searches were performed using Mascot 1.9 software

(Matrix Science, Boston, MA) against a M. xanthus protein

database obtained from NCBI. The search parameters included

full tryptic enzymatic cleavage, up to three missed cleavages,

peptide tolerance of 1000 ppm, fragment ion tolerance of 0.6 Da.

Fixed modification was set as carbamidomethyl due to carbox-

yamidomethylation of cysteine residues (+57 Da) while variable

modification was set as oxidation of methionine residues (+16 Da)

and deamidation of asparagines residues (+1 Da). The proteins

identified were statistically validated using ProValT algorithm as

implemented in ProteoIQ (BioInquire, Athens, GA) [51]. Only

proteins with a false-discovery rate of less than 1% were

considered to be statistically significant.

Extracellular complementation
M. xanthus cells were grown to a cell density of 56108 cells ml21,

harvested and resuspended to a final concentration of 56109 cells

ml21. oar cells were mixed with various strains in 1:1 ratio and

10 ml of the cell mixture was spotted on TPM agar plates. The

plates were incubated at 32uC and after five days digital images

were acquired.

Microscopic analysis
56108 M. xanthus cells were spotted on TPM agar plates and

incubated for 24 h. Cells were resuspended in a drop of TPMF

buffer [TPM containing 10% ficoll], and examined with a phase

contrast microscope (Leica Microsystems, DM55008). Digital

images were obtained at 10006magnification using a QIQICAM

FAST 1394 camera (Compix Inc).

Site directed mutagenesis and cloning of fibA
The fibA gene was expressed from pZJY156 [52]. The fibA

gene was fused with the pilA promoter using the gene splicing by

overlap extension (SOEing PCR) method [53]. The primers are

listed in Table 6. Primers A and B were used for amplification of

the pilA promoter including the ribosomal binding site and the

start codon [54]. Primers C and D were used for the

amplification of full length fibA. Primers B and C were designed

to have an overlap of 21 nucleotides (underlined region). M.

xanthus DK1622 genomic DNA was used as a template. The two

PCR products and primer pair A and D were then used for

SOEing PCR. PCR products were separated on 0.8% agarose,

excised, extracted using the Gel Extraction kit (Qiagen), and

cloned into pCR2.1-TOPO (Invitrogen) to create pSTB20. Full

length fibA was cloned into pCR2.1-TOPO to create pSTB21. A

500 bp, XbaI-SalI fragment containing the pilA promoter and

the N-terminal region of FibA from pSTB20 was cloned into

pUC19 to create pSTB22, which was used as the template for

site directed mutagenesis. The primers used for the site directed

mutagenesis are listed in Table 6. Primers FibA2DF and

FibA2DR were used for replacing alanine with aspartate at

27th position while FibAKF and FibAKR were used for replacing

asparagine with lysine at the 22nd position (Table 6). PCR was

carried out using a high fidelity DNA polymerase I (Expand

High Fidelity PCR system, Roche). The PCR products obtained

were treated with DpnI to eliminate the methylated template,

and then transformed into E. coli Top10 cells. Plasmids were

isolated from transformants and sequenced. The plasmids

encoding FibA with N22K or A27D amino acid substitutions

were called pSTB23 and pSTB24.1 respectively. The 500 bp,

XbaI-SalI from pSTB23 and pSTB24.1 were cloned at the same

site in pSTB21 to create pSTB25 and pSTB26.1, respectively.

The new plasmids contained full length fibA encoding the N22K

or A27D substitutions expressed from the pilA promoter. The

plasmids, pSTB25 and pSTB26.1 were digested with XbaI and

EcoRI, and the 2800 bp fragment containing the pilA promoter

and fibA gene was cloned into pZJY156 to create pSTB27 and

pSTB28.1 plasmids. These plasmids were then transformed into

M. xanthus LS2208 to create LS2761 and LS2764. Full length

fibA expressed from the pilA promoter was cloned into pZJY156

to create pSTB31 and also transformed into M. xanthus LS2208

to create LS2760. Expression of fibA from the pilA promoter was

verified by western blotting using monoclonal antibody

Mab2105 [55].

Western blot analysis
5 mg of cell lysate or 10 mg of membrane fractions, were

separated on a 4–20% SDS-PAGE gradient gel (Bio Rad).

Proteins were transferred to an Immobilin-P, PVDF membrane

(Milipore). The membrane was blocked with 3% bovine serum

albumin (BSA) in PBST (16 PBS containing 0.1% Tween 20).

The proteins were probed with the Mab2105 (1:500 dilution) or

anti-CsgA (1:5000) that was prepared in PBST containing 0.1%

BSA [55]. This was followed by washing three times with PBST.

The membrane blot was then probed with horseradish peroxidase-

conjugated goat anti-mouse IgG or anti-rabbit IgG, which were

diluted to 1:10,000 in PBST containing 0.1% BSA. The

membrane was washed three times with PBST and developed

with the ECL luminescence detection kit (Amersham).

Electron microscopy
M. xanthus cells were grown to a density of 56108 cells ml21 and

diluted to 3.36106 cells ml21in CYE or CYEK (CYE containing

50 mg ml21 kanamycin) broth. 4 ml of the cell suspension and a

formvar-carbon-coated nickel grid (Electron Microscope Sciences)

was transferred to a petri plate (60615 mm). The plate was

incubated at 32uC for 12 h. A thin biofilm on the surface of the

grid was allowed to form. Starvation was induced by replacing the

CYE or CYEK broth with cohesion buffer [10 mM MOPS,

pH 6.8, 1 mM MgCl2, 1 mM CaCl2] and incubated for 3 h at

32uC. The grid was treated with 2% glutaraldehyde for 15 min at

room temperature followed by washing five times with the

cohesion buffer. The grid was blocked with 5% bovine serum

albumin (BSA) in cohesion buffer for 45 min at room temperature.

The grid was treated with Mab2105 antibody (1:20 dilution)

prepared in cohesion buffer containing 5% BSA for 45 min at
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room temperature followed by washing three times with cohesion

buffer [55]. The grid was then treated with anti-mouse antibody

(1:100 dilutions) conjugated to 10 nm colloidal gold particles

(Sigma-Aldrich), and incubated for 30 min at room temperature.

The grid was washed three times with the cohesion buffer. The

grid was washed three times with water, allowed to air dry, and

observed under a FEI Technal transmission electron microscope

operated at 200 kV.
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