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Abstract

Genome-wide analysis of gene expression or protein binding patterns using different array or sequencing based
technologies is now routinely performed to compare different populations, such as treatment and reference groups. It is
often necessary to normalize the data obtained to remove technical variation introduced in the course of conducting
experimental work, but standard normalization techniques are not capable of eliminating technical bias in cases where the
distribution of the truly altered variables is skewed, i.e. when a large fraction of the variables are either positively or
negatively affected by the treatment. However, several experiments are likely to generate such skewed distributions,
including ChIP-chip experiments for the study of chromatin, gene expression experiments for the study of apoptosis, and
SNP-studies of copy number variation in normal and tumour tissues. A preliminary study using spike-in array data
established that the capacity of an experiment to identify altered variables and generate unbiased estimates of the fold
change decreases as the fraction of altered variables and the skewness increases. We propose the following work-flow for
analyzing high-dimensional experiments with regions of altered variables: (1) Pre-process raw data using one of the
standard normalization techniques. (2) Investigate if the distribution of the altered variables is skewed. (3) If the distribution
is not believed to be skewed, no additional normalization is needed. Otherwise, re-normalize the data using a novel HMM-
assisted normalization procedure. (4) Perform downstream analysis. Here, ChIP-chip data and simulated data were used to
evaluate the performance of the work-flow. It was found that skewed distributions can be detected by using the novel DSE-
test (Detection of Skewed Experiments). Furthermore, applying the HMM-assisted normalization to experiments where the
distribution of the truly altered variables is skewed results in considerably higher sensitivity and lower bias than can be
attained using standard and invariant normalization methods.
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Introduction

Genome-wide analysis of gene expression or protein binding

patterns using different array or sequencing based technologies is

now routinely performed in many molecular biology laboratories.

Generally, biological replicates of treatment and control samples

are compared in order to separate biologically relevant informa-

tion from background variation. Before reference and treatment

can be compared, some type of normalization needs to be applied

because it is often the case that much of the observed variation

reflects differences in the amount of material loaded or other

technical variation. There are many well established procedures

that can be used to normalize data. Typically, standard

normalization methods, such as quantile normalization [1] and

MA-normalization [2], will fail if; (1) a significant fraction of the

variables are altered and (2) the distribution of the altered variables

is not symmetrical, i.e. the distribution of the true log-ratios is not

symmetrical around zero. The log-ratio is the logarithm of the

ratio between the treatment and the control values. Here, the true

log-ratios are the expected value of the log-ratios in the absence of

any technical variation (Figure 1A shows the distribution of the

true log-ratios in a symmetric and a skewed experiment). We say

that an experiment is skewed if the distribution of the true log-ratios

is not symmetrical around zero. For non-skewed experiments we

expect an equal amount of positively and negatively affected variables.

Here a positively affected variable is one for which the true log-ratio is

positive. Using the terminology employed to describe ChIP-chip

data and expression data, one would describe such a variable as

being ‘‘enriched’’ or ‘‘up-regulated’’.

For many experiments, the standard normalization methods

(like quantile and MA-normalization) are perfectly suitable.

However, in cases where the experiment is highly skewed, with

a large fraction of altered variables, standard methods will most

likely fail to remove the technical bias. As a result, the experiments’

ability to identify altered variables and predict their fold change

will be relatively low, leading to the loss of potentially relevant

biological information [3–9]. We here use the term ‘‘skewed

experiments’’ instead of ‘‘skewed data’’ to emphasise that we deal
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with data that is skewed because of the experimental setup and/or

the nature of the biological problem, not because of technical bias

and artefacts. It is hard to know how common such skewed

experiments are; for a given experiment, it may be difficult to

determine whether the assumption of symmetry is reasonable or

not. However, it is clear that some routinely-performed high-

dimensional experiments are likely to be skewed.

One experimental technique that is likely to generate highly

skewed experiments is ChIP (Chromatin immuno-precipitation)

followed by hybridization on tiling arrays (ChIP-chip) or followed

by next generation sequencing (ChIP-seq). ChIP-chip experiments

map a chromatin-bound protein or chromatin modification using

specific antibodies and tiling arrays with probes that cover a

large part of the genome. Antibodies specific for the protein or

modification are added to a chromatin extract and bound

chromatin is immuno-precipitated. The precipitated DNA is then

extracted, amplified, labelled and hybridized to the tiling arrays.

Typically, mock antibodies or input DNA are used as controls,

which are hybridized to the same arrays. One would therefore

expect numerous differences between the treated and control

samples, especially if the protein or chromatin modification covers

large parts of the genome. ChIP-chip and ChIP-seq experiments

can therefore be assumed to be skewed. In many gene expression

studies, only a small fraction of the genes are expected to be

differentially expressed and consequently asymmetry is not an

issue. However, it is likely to be relevant when studying cell death,

heat-shock or hormonal treatment, all of which affect a relatively

large fraction of the genome. If the fraction of up- and down-

regulated genes differ, the experiment will be skewed. Tumour

tissues and cell-lines commonly undergo extensive chromosomal

rearrangements (see e.g. [10,11]), and so skewness is to be expected

when studying things such as the differences in copy number

variation in tumorous and normal tissues. It should be noted that

although the above experiments are likely to be skewed, they are

commonly analyzed using standard normalization procedures; for

instance, ChIP-chip data are often normalized using quantile

normalization. Consequently, the normalization technique itself

may introduce bias and thus result in the potential loss of relevant

biological information. The skewness in these examples is a

consequence of the biological phenomena being studied, and is not

dependent on the technology used to acquire the data; it does not

disappear if the array technologies are replaced by an alternative

method such as a sequencing based technique. Normalization

approaches that deal with skewed data have previously been

proposed (see e.g. [3–9]), but to our knowledge there are no

normalization methods that handle skewed experiments and that

fully take advantage of the dependency structure (ordered

variables which are dependent) that is present in many high-

dimensional experiments.

We propose an approach that can be applied to any type of

replicated high-dimensional experiment where two populations

are compared. For all such experiments where normalization is

necessary, we suggest the following work-flow: (1) Pre-process

the raw data including some type of standard normalization.

(2) Investigate if the experiment is skewed; by considering the

experimental design, using visual inspection and applying the

novel DSE-test (Detection of Skewed Experiments). (3a) If an

experiment is not found to be skewed, no additional normalization

is needed. (3b) If the experiment is found or believed to be skewed,

the data is re-normalized using the novel HMM-assisted

normalization. (4) Perform downstream analysis, e.g. identification

of altered variables, classification or cluster analysis (the approach

is summarized in Figure 1B).

Spike-in array data were used to study how skewness affects the

capacity of an experiment to identify altered variables (i.e. its

sensitivity) and generate unbiased estimates of the fold change of

individual variables. It is shown that asymmetry can have a

considerable negative effect on both bias and sensitivity. Simulated

data and three tiling-array data sets were used to study the

performance of our suggested work-flow; including the DSE-test

and the HMM-assisted normalization. The results suggest that

the DSE-test combined with visual inspection can be a powerful

approach to detect skewed experiments, even when applied to

relatively small experiments. The HMM-assisted normalization

uses a Hidden Markov Model (HMM) to identify regions that are

unaltered. Variables identified as unaltered are used to estimate

the normalization function and to normalize the entire data set

without introducing any bias. The performance of the HMM-

assisted normalization exceeded that of commonly used standard

and invariant approaches in terms of sensitivity and bias. For some

experiments, the HMM-assisted normalization had more than

twice as high sensitivity as the standard quantile normalization.

Figure 1. Skewed experiments and workflow. (A) The distribution
of the true log-ratios of the altered variables in a non-skewed (upper)
and a skewed (lower) experiment. Here an experiment with samples
from a treatment and a reference population is considered and the true
log-ratios are the expected value of the variables’ log-ratios in the
absence of any type of technical variation. (B) Our suggested workflow
when analyzing data from high-dimensional experiments. Here the raw
data is pre-processed and some kind of standard normalization is
applied (e.g. quantile or MA-normalization). The normalized data is used
to determine whether the experiment is skewed or not. For skewed
experiments, a hidden Markov model is used to identify altered
variables and then a standard normalization based on unaltered
variables is used to normalize the data.
doi:10.1371/journal.pone.0027942.g001

Normalization of Skewed Experiments
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Although we focus on one-colour tiling array data, our work-flow

can be applied to any data set with dependent variables,

irrespective of the platform or protocol with which it was

generated.

Results and Discussion

Standard normalizations are often able to remove technical

variation when two primary assumptions are valid, i.e. that only a

small fraction of the variables are affected by the treatment and

that the true log-ratios are approximately symmetrically distrib-

uted (see top graph in Figure 1A). If both assumptions are violated

most commonly used normalization algorithms will fail. In

principal, standard normalization methods involve two separate

steps: first, the sample data x is used to estimate a normalization

function f; second, the normalized data xnorm is obtained as

xnorm~f xð Þ. Importantly, the last step is not sensitive to the

primary assumptions. An ideal normalization would only use data

from non-altered variables when deriving the function f and obtain

the normalized data as xnorm~f xð Þ. Several invariant normaliza-

tion methods, aiming to identify a set of non-altered variables in

order to obtain an unbiased estimate of the normalization function

f, have been suggested; see e.g. [9]. There are also some alternative

methods that cannot be regarded as invariant, but still addresses

the problem of normalizing skewed experiments, e.g. the modified

loess [5]. However, to our knowledge none of them take advantage

of the dependency structure that is commonly present in e.g. ChIP-

chip and RNA-sequencing experiments. Here, we suggest an

HMM-based approach that can be applied on data with a

dependency structure. The approach is an invariant method that

uses a hidden Markov model to identify a set of non-altered

variables and that can be used in conjunction with almost any of

the standard normalization techniques.

Violating the primary normalization assumptions affects
bias and sensitivity

Spike-in data from an array experiment designed and

conducted in-house [12] using 16 samples were used to evaluate

how violations of the primary assumptions affect the experiment’s

bias (i.e. the ability to provide accurate estimates of fold change)

and its sensitivity (i.e. the ability to identify affected variables)

obtained at a reasonable false positive rate (0.5%). The arrays

contained ,7760 clones, of which 1920 were spiked so as to be

up- or down-regulated by a factor of three relative to the control;

see Materials and Methods for further details.

Five types of normalization procedures were evaluated: a) The

standard one-channel quantile normalization [1]. b) The cyclic

MA-loess normalization [1]. Both these methods are standard

normalizations where all genes affect the estimate of the

normalization function. c-d) The rank invariant normalization as

suggested by Pelz, et al. [9], combined with either one-channel

quantile or cyclic MA-loess normalization. e) The modified loess

normalization suggested by Risso et al. [5]. Henceforth, we will

refer to these methods as standard quantile, standard MA,

invariant quantile, invariant MA and modified loess normaliza-

tion. All methods were compared to ideal quantile normalization

where only non-regulated clones were used when estimating the

normalization function. The quantile normalization is frequently

used for normalizing one-channel data, e.g. microarray and ChIP-

chip data. An alternative to the ideal quantile normalization is the

ideal cyclic MA loess normalization. The reason for choosing the

ideal quantile normalization rather than the ideal cyclic MA loess

normalization as a reference is that the former had considerably

higher sensitivity; see Figure S1.

All five normalization procedures were applied on the spike-in

data and all clones were normalized. Here, the percentage of altered

clones was varied between 5 and 20% and the percentage of up-

regulated clones among the altered clones was varied between 50

and 100%. The procedures were evaluated by considering their

relative sensitivity and their relative bias, i.e. the procedures’ perfor-

mances relative the ideal quantile normalization; see Materials and

Methods for further details. We believe that sensitivity and bias are

important measures for evaluating the performance of different

normalizations. Sensitivity is important when e.g. identifying protein

targets or differentially expressed genes and bias may influence

further downstream analyses. For example, regulatory networks

inferred from expressional correlations, cluster analysis and

classification may be affected by bias [13].

The fraction of altered clones and the fraction of up-regulated

clones among the altered clones (i.e. the experiment’s skewness)

have negative and synergistic effects on both bias and sensitivity

(Figure 2 and Figure S2). This holds true for both the standard and

invariant normalizations, although the invariant methods performs

better than the standard methods when experiments are heavily

skewed (i.e. 80–100% of the altered clones are up-regulated).

Interestingly, the standard methods performed better than the

invariant methods when the experiments were symmetric (i.e. 50%

of the altered clones are up-regulated) (Figure 2 and Figure S2).

The result suggests that invariant methods should not be used in

cases where the regulated clones are symmetrically distributed

around zero.

The modified loess procedure failed to normalize the spike-in

data and the observed sensitivities were very low (,10%) for all

the considered parameter settings, despite the fact that the

modified loess was the only method making use of the fact that

the spike-in data was generated using two-channel arrays. The

modified loess assumes that there is a limited amount of systematic

technical variation (e.g. dye-bias) in the data [5]. This assumption is

not valid for the spike-in data and may explain the failure.

Moreover, we argue that for small one-channel experiments (e.g.

two-four biological replicates) there is a considerable risk that we

will have substantial systematic variation between the treatments.

We believe that the impact of experiments’ skewness has largely

been overlooked and, on the basis of our evaluation of the spike-in

data, that the biological interpretation of experimental data could

potentially be facilitated by adopting alternative normalization

procedures.

Investigating if an experiment is skewed
As discussed in the Introduction section several high-dimen-

sional experiments are likely to be skewed. Often it is relatively

easy to conclude that an experiment is skewed given the design

and the experimental setup. In such cases no further investigation

is necessary and the data is normalized using a technique that

handles skewed experiments, e.g. the HMM-assisted normalization

discussed in the next section. For other experiments it may be

difficult to determine whether the assumption of symmetry is

reasonable or not. For these experiments we suggest a two stage

approach for detecting skewed experiments including visual

inspection of the data and a novel test, called the DSE-test

(Detection of Skewed Experiments).

Visual Inspection
Initially, all samples are normalized using a standard normal-

ization technique of the user’s choosing. The averages of the

variables’ normalized values are calculated for the treatment and

the reference groups separately. The variables’ M-values (i.e. the

log-ratio of the groups’ averages) are then calculated for all

Normalization of Skewed Experiments
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variables. A visual inspection of the M-values estimated density

function can be used to investigate if the experiment is skewed or

not. For a non-skewed experiment we expect the distribution of

the M-values to be fairly symmetrical.

It should be noted that it may be difficult to see if a distribution

is skewed or not. In the case the visual inspection does not give any

clear indication of skewness the investigation will continue by

applying the DSE-test.

The DSE-test
We propose a novel test to detect skewed experiments. Briefly,

the idea behind the test is the following. Initially, all samples are

normalized using a normalization technique of the user’s choosing.

For any pair of samples the variables’ log-ratios can be calculated

and the skewness of their distribution can be estimated using the

quartile skewness coefficient (qs-coefficient) [14]. The test compares

qs-coefficients obtained from heterogeneous pairs (one treated and one

reference sample) against homogeneous pairs (either two treated

samples or two reference samples). If the heterogeneous qs-

coefficients deviate significantly from the homogeneous qs-

coefficients, then the experiment is said to be skewed; see Methods

for further details.

Here, we propose two variants of the DSE-test; the independent

variant (for which the constructed pairs are independent) and the

Figure 2. The effect of violating the primary assumptions. The sensitivity and bias for the standard quantile normalization and the rank
invariant quantile normalization compared to the ideal quantile normalization (i.e. a quantile normalization where only the non-regulated clones
influenced the normalization) for different percentages of altered clones (% altered) and different distributions of up- and down-regulated clones.
(A) The relative sensitivity of the standard quantile normalization observed at 0.5% false positive rate (i.e. the ratio between the sensitivity observed
when the standard and ideal quantile normalization was applied to the data). (B) The relative sensitivity of the invariant quantile normalization at
0.5% false positive rate. (C) The difference in bias between the standard and ideal quantile normalization (D). The difference in bias between the
invariant and ideal quantile normalization.
doi:10.1371/journal.pone.0027942.g002

Normalization of Skewed Experiments
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dependent variant (for which some of the pairs are dependent).

The independent test controls, in contrast to the dependent test,

the false positive rate, but has for small experiments considerably

lower power since fewer pairs can be constructed; see Methods for

further details. We argue that for small experiments (i.e. less than 8

control and 8 reference samples) the power gain using the

dependent DSE-test instead of the independent DSE-test may out-

weight the potentially increased risk of having false positives.

To make our tests readily available we have created a user

friendly web-application that can be used to test for skewness in

any type of experiment including expression data, SNP-data and

ChIP-chip data; see Materials and Methods for further details.

The performances of the independent and dependent DSE-tests

were evaluated in a simulation study were data from skewed

experiments with no negatively-affected variables were simulated.

The aim was to generate simulated data that closely resembled real

normalized data, but simulating realistic data is extremely difficult.

In our simulations, we assumed that the variables’ intensities were

independent and normally distributed. Furthermore, we assumed

that the effect sizes (i.e. the true ratios) of the altered variables were

all the same. None of these assumptions are realistic for high-

dimensional data sets that it would be most desirable to apply this

test to, and so it must be stressed that the test’s power (i.e. its

probability of detecting skewed experiments) when applied to real

data may be lower than was observed in this simulation study.

We simulated data for a wide range of experiments. The

percentage of positively affected variables varied between 0–25%,

the number of variables ranged between 10,000 and 100,000, the

number of biological replicates per treatment ranged from 2 to 16,

and the effect size was between 1.3 and 4. In total, 240 parameter

combinations were evaluated and the test’s power was estimated

for each combination; see Methods for further details.

The power of the tests increased with the number of samples,

variables, effect size, and the fraction of affected variables. For

small experiments the dependent DSE-test has considerably higher

power than the independent DSE-test (Tables S1 and S2).

Interestingly, the power of the dependent DSE-test was at least

90% when the fraction of affected variables was at least 10%, the

experiments had 100,000 variables, and the effect size was at least

2. This suggests that that the test may even be useful for very small

high dimensional experiments (with as few as two control and two

treatment samples), e.g. small experiments using tiling arrays or

next generation sequencing data, in which the number of variables

is normally very large (.1,000,000).

Visual inspection and the dependent DSE-test was applied to

three real ChIP data sets, two of which were originally reported by

Schwartz et al. [15] (E(z) and H3K27me3) and one by Nègre et al.

[16] (PolII). All three of these data sets feature two control

biological replicates generated using input DNA and two

treatment replicates generated by ChIP; all samples were

hybridized to Affymetrix Drosophila tiling arrays. The E(z) data

set is a ChIP-chip data set with localized peaks; the histone

modification H3K27me3 and PolII data sets span broad regions of

the genome. Here, all three data sets were generated using the

ChIP-chip technique, and we expect all of them to be skewed.

Visual inspections of the distributions of the M-values suggest

that the PolII-experiment and arguably the H3K27me3-experi-

ment are skewed, but that the E(z)-experiment is not particularly

skewed (see Figure 3A–C). The PolII data set was found to be

skewed according to the dependent DSE-test (p = 0.034), but the

skewness of the H3K27me3 (p = 0.289) and E(z) (p = 0.997)

experiments was found to be not-significant at the 5%-level.

Again, we stress that the experiments are based on only two

replicates and that the absence of a low p-value does not imply the

experiments are not skewed. In general, we recommend the

HMM-assisted normalization to be used on all experiments that

for some reason are suspected to be skewed.

HMM-assisted normalization of skewed data
We consider highly skewed experiments where a majority of the

altered variables are either positively or negatively affected and

where the fold changes of nearby variables are positively

correlated. Our suggested normalization approach (from here

referred to as HMM-normalization) is as follows: Initially, all

samples are normalized using some type of standard normaliza-

tion, e.g. quantile normalization. The averages of the variables’

normalized values are calculated for the treatment and the

reference groups separately. The variables’ M-values (i.e. the log-

ratio of the groups’ averages) are then calculated for all variables.

A hidden Markov model with two states is applied to the M-values

and the variables belonging to the state whose mean is closest to

zero are classified as unaltered variables. The samples are then re-

normalized as in the first step, with the difference that only

variables identified as being unaltered are allowed to influence the

normalization function (but all variables are normalized); see

Materials and Methods for further details. The application of

hidden Markov models to ChIP data to identify enriched regions has

previously been suggested [17–19]. We stress that our approach

focuses on normalization and can be combined with any type of

test for identification of altered variables.

The performance of the HMM-assisted normalization was

evaluated in a simulation study, using part of the simulated data

that was generated to evaluate the DSE-test. In total, data from

120 (we show the results where region length was set to 50, m = 50,

since the results was virtually identical for m = 100) different

experiments were simulated (see Materials and Methods for

further details). The HMM-normalization was compared to a

standard normalization (i.e. standard quantile normalization) and an

invariant normalization (i.e. invariant quantile normalization). The

methods were evaluated in terms of their utility in downstream

analysis, in which the objective was to identify altered variables;

the performance of the two methods was characterised in terms of

the experiments’ sensitivity, specificity, and bias. For each

experiment and normalization, these characteristics were estimat-

ed for a fixed cut-off; see Materials and Methods for further

details. The results generated using the evaluated approaches were

compared to those obtained using the ideal normalization (i.e. ideal

quantile normalization). Clearly, the ideal normalization cannot

be used on real data, but it serves as a useful positive control.

Both the HMM and the invariant normalization performed

considerably better than the standard normalization, with the

former methods having higher sensitivity (at a similar or higher

specificity) and lower bias than the standard normalization

(Figure 4 and Tables S3, S4, S5). The relative gain achieved

using the HMM-normalization compared to the standard

normalization was rather extreme in some cases. For example,

when 25% of the variables were positively altered, the relative

sensitivity attained using HMM-normalization was 1.5–8 times

higher than that achieved with the standard approach while the

corresponding specificities were similar (Tables S4 and S5).

The overall performance of the HMM-normalization was close

to that of the ideal normalization for all considered parameter

settings (Figure 4 and Tables S3, S4, S5). Although the invariant

normalization performed rather well, in particular for medium

and large size experiments (more than 4 replicates per treatment)

with a high effect size (d.1.5), it did not perform as well as the

HMM-normalization. For all considered parameter settings the

HMM-normalization did have higher (or equal) sensitivity and

Normalization of Skewed Experiments
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lower bias compared to the invariant normalization, while the

corresponding specificities were similar. The differences between

the two approaches increases as: the percentage of altered

variables increases, the effect size decreases and the size of the

experiment decreases (Figure 4 and Tables S3, S4, S5). For small

experiments (not more than 4 replicates per treatment) with a low

effect size (d = 1.3 and d = 1.5) and 25% altered variables, the

HMM-normalization had 1.1–1.4 times larger sensitivity than the

invariant normalization, while the observed specificities were

similar. For these experiments the HMM-normalization had

considerably lower bias.

The simulated data was obtained by simulating data from

normal distributions with variances estimated from a normalized

ChIP-chip data; see Materials and Methods. Arguably, real array

data are expected to have a considerably higher variability than

the simulated data, due to systematic differences between the

arrays. Hence, it is reasonable to expect a fairly low signal to noise

ratio in real array data. The simulation results suggest that the

HMM-normalization outperforms invariant normalization in

particular when the signal to noise ratio is low. It follows that

the HMM-normalization is expected to have higher sensitivity and

lower bias compared to the invariant normalization when applied

to real array data.

The above described HMM, invariant and standard normali-

zations were applied to the three ChIP-chip data sets: E(Z),

H3K27me3 and PolII. The normalized data were analysed

similarly as the simulated data; see Materials and Methods. Here,

the probes were said to be enriched if the log-ratio of their average

intensities were above 1.5. The number of probes that were found

to be enriched varied depending on which normalization was

applied; see Table 1. The HMM-normalization detected more

enriched probes than the invariant and standard normalizations.

The largest differences were observed in the H3K27me3 data set

were the HMM-normalization detected 88% more enriched

probes than the invariant normalization and 68% more enriched

probes than the standard normalization. The corresponding

numbers in the E(Z) and PolII data sets were (9%, 13%) and

(10%, 55%) respectively; see Table 1.

In order to study the methods’ relative sensitivities it is necessary

to know the methods’ specificities. An indirect observation of

experiments’ specificity can be obtained by considering the

number of probes with log-ratios below the negative cut-off value,

which was 21.5 in this case. Assuming that the normalized M-

values of the non-enriched probes are symmetrically distributed

around zero, one would expect that the number of non-enriched

probes below 21.5 would be approximately equal to that above

1.5; if 100 probes fall below 21.5, one would thus expect around

100 false positives. Clearly, the assumption of symmetry is not

reasonable when standard normalization techniques are applied to

data from skewed experiments, but it should be reasonable for

data being normalized with the HMM or invariant normaliza-

tions. In the E(z) and PolII experiments, very few probes with log-

ratios below 21.5 were detected, suggesting that the vast majority

of the probes identified as being enriched are true positives

(Table 1). Arguably, this implies that the HMM-normalization as

higher sensitivity than the invariant and standard normalizations.

Notably, all of the probes identified as being enriched using the

standard and invariant approaches were also identified as being

enriched when using HMM-assisted normalization. For the

H3K27me3 data, the HMM, invariant and standard normaliza-

tions had 650, 6687 and 5441 probes with log-ratios below 21.5

respectively; suggesting that the HMM-normalization has consid-

erably higher specificity, and also higher sensitivity, than the

invariant normalization. The corresponding specificity cannot be

Figure 3. Visual inspection and normalization of ChIP-chip experiments. Visual inspection of three ChIP-chip experiments; (A) E(z), (B)
H3K27me3 and (C) PolII. The estimated density functions (using the R-function density with the default bandwidth) of the observed M-values
obtained after standard quantile normalization are shown. Vertical lines indicate first quartile, median and third quartile. (D) HMM-assisted
normalization of H3K27me3 data. M-values after standard quantile normalization (grey) and HMM-assisted normalization (black). 10 Kb intervals are
marked on the x-axis.
doi:10.1371/journal.pone.0027942.g003
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estimated for the standard normalization. One can thus reason-

ably conclude that the HMM-assisted normalization has consid-

erably higher sensitivity than the standard method, although its

specificity may be lower for the H3K27me3 data. It should be

noted that the additional normalization step in the HMM-

normalization does not cause a linear shift of the M-values, as can

be seen in Figure 3D.

We have proposed a hidden Markov model based approach for

the identification of unaltered regions (i.e. a set of invariant

variables). Data from regions classified as unaltered are used to

estimate the normalization function. Here, we used the quantile

normalization to estimate the normalization function. In the next

step all variables are normalized using the estimated normalization

function. Our HMM-based method is not platform specific and

takes advantage of the dependency structure in datasets where

several variables belong to the same unit (e.g. a chromatin bound

region of a protein is represented by several probe enrichment

values on the tiling array; a gene will be represented by several

read counts in an RNA-seq experiment). Techniques that generate

dependent variables include tiling arrays and next generation

sequencing based methods. It should be noted that the

performance of a HMM is affected by the dependency structure

of the data. In particular, experiments with regions containing a

large number of altered variables are easily normalized using the

HMM-assisted approach. The HMM (or any other invariant

method) will generally have difficulties in identifying all altered

regions. However, it should be stressed that even if only some of

the altered regions are identified (and thus excluded when

constructing the normalization function), this will afford better

normalization than would be achieved by simply constructing a

normalization function based on all of the variables in the data.

Applying the HMM-normalization or any other invariant method

to an experiment that is not skewed will remove observations that

should be included in the estimation of the normalization function.

As seen in Figure 2B and Figure S2, the invariant methods can

perform considerably worse than the corresponding standard

methods when no skewness is present. Therefore, we recommend

that the HMM-normalization should be used only if the DSE-test

suggests that the experiment is skewed or if there are biological/

experimental reasons to assume that the experiment is skewed.

We have shown that the use of standard and previously

proposed invariant normalization techniques on skewed experi-

ments has negative effects on downstream interpretations. The

asymmetry and the fraction of altered variables have negative and

synergistic effects on both bias and sensitivity. To identify such

skewed experiments, we have recommended a workflow including

the novel DSE-test. The test can easily be used through a web-

service. We have also developed a HMM-assisted normalization

procedure for use with skewed experiments, which identifies

unaltered regions in the data. The entire data set can then be

normalized using a normalization function based exclusively on

these unaltered regions; we have shown that doing so greatly

facilitates the interpretation of simulated and real experimental

data.

Materials and Methods

All data used in this study is MIAME compliant and the raw

data is deposited in Gene Expression Omnibus (GEO, www.ncbi.

nlm.nih.gov/geo/, accession nrs: GSE29400, GSM454535,

GSM454536, GSM409077), a MIAME compliant database.

Spike-in data
Spike-in data from a two-channel cDNA-microarray experi-

ment with 8 arrays (16 samples) conducted in-house were analysed

[12] (GEO: GSE29400). In this work we investigated the

performance of skewed one-channel experiments and consequent-

Figure 4. The performance of the HMM-assisted normalization.
Comparison of the performance (sensitivity and bias) of the HMM, rank
invariant and standard quantile normalizations relative the ideal
quantile normalization evaluated on data simulated from skewed
experiments. Three different percentages of altered variables (%
altered) were considered (5, 15 and 25%). The experiments contained
data from two treated samples and two reference samples, each with
100,000 variables. The altered variables were positively affected, with an
effect size d = 1.5 and was distributed in homogeneous regions
including 50 altered probes (i.e. m = 50). A variable with an average
M-value above the cut-off was called altered. For each experiment, the
estimated sensitivity and bias was based on 10 simulated data sets.
(A) The relative sensitivity for the HMM, invariant and standard quantile
normalizations. Here, the relative specificity for the HMM, invariant and
standard quantile normalizations was close to 100% for all considered
parameter settings. (B) The difference in bias between the HMM,
invariant and standard quantile normalization compared to the ideal
quantile normalization.
doi:10.1371/journal.pone.0027942.g004
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ly treated the spike-in data as if it was generated by 16 one-channel

arrays. We considered 7760 of the clones on the array, of which

5760 were not regulated and 1920 were up- or down-regulated by

a factor of three. Clones with missing values (non-identified spots)

were removed from the study. Different data sets were generated

from the original data. All sets included all of the non-regulated

clones and a set of regulated clones that varied between the sets as

described below. All simulated data were analyzed by five

normalization methods; a) The standard one-channel quantile

normalization [1]. b) The cyclic MA-loess normalization [1]. Both

these methods are standard normalizations where all genes affect

the estimate of the normalization function. c-d) The rank invariant

normalization as suggested by Pelz, et al. [9], combined with either

one-channel quantile or cyclic MA-loess normalization. e) The

modified loess normalization suggested by Risso et al. [5]. In

methods a, b and e all clones were used when estimating the

normalization function. For the invariant normalizations (c and d)

a subset of clones was used to estimate the normalization function.

The subset was identified using the method of Pelz et al. [9] with

default settings and where the size of the subset was set to 50% of

the total number of clones. In addition, ideal normalizations where

the normalization function was based only on data from the non-

regulated clones were calculated using both MA-loess and quantile

normalization algorithms (ideal MA and ideal quantile). Independent

of method the normalization was applied to all 16 samples. The

set of regulated clones was selected to mimic different types of

skewed experiments. Two parameters were varied: the fraction of

regulated clones, and the percentage of up-regulated clones in the

set of regulated clones. Four values for the percentage of regulated

clones were examined: 5, 10, 15 and 20%. Six values for the

percentage of up-regulated clones were examined: 50, 60, 70, 80,

90 and 100%. The normalizations were applied to all experiments

defined by the parameter settings above. For each experiment, one

hundred sets of regulated clones were randomly selected. The

sensitivity of the experiments (at a false positive rate of 0.5%) was

estimated as described in [12]; the bias of the regulated clones was

estimated as

b̂b~

P
i[vup

M
up
i {log2 3ð Þ

� ������
�����z

P
i[vdown

Mdown
i {log2

1=3

� �� ������
�����

nupzndown

where M denotes the log-ratio of a clone’s average intensities, v
the set of regulated clones and n the number of regulated clones.

The indices up and down refer to up- and down regulated clones.

To minimize sampling error, the average bias and sensitivity

(taken over the 100 simulated data sets), were used to estimate the

experiment’s bias and sensitivity. The relative sensitivity of a

normalization method was calculated as the ratio between the

method’s sensitivity and the sensitivity achieved using the ideal

quantile normalization. The relative bias was defined as the increase

in bias using the normalization studied compared to the bias

observed using the ideal quantile normalization.

Simulation of data
The simulated data used when evaluating the DSE-test and the

HMM-assisted normalization was generated as described below.

We aimed to simulate normalized data (data undertaken some

form of standard normalization, e.g. quantile normalization) from

skewed experiments where the positively altered variables are

gathered in some regions.

Experiments with k treated and reference samples were

considered, each with n variables. The samples’ normalized

intensities were simulated as follows: first, the reference intensity

Rij for variable i and sample j was simulated using a normal

distribution with mean mi and standard deviation si, i.e.

xij*N mi,sið Þ, i~1, . . . ,n, where the parameters mi and si were

estimated using data from a ChIP-chip experiment as described

below. The corresponding treated intensity Tij , was simulated as

yij*
N dmi,dsið Þ i [ regulated region

N mi,sið Þ i 6[ regulated region

�
, i~1,:::,n

where d is the ratio of the intensity of the treatment channel to

that of the reference. Henceforth, we will refer to d as the effect

size. The regions all contained m altered variables and were

equally spaced so that the distance between any consecutive

regions was constant. The number of regions was determined

by the percentage of variables that were altered (a) in the

experiment.

Data from the two reference samples of the H3K27me3 ChIP-

chip experiment [15] were used to estimate the parameters mi and

si, i = 1,…,n. The variables with average intensities above median

intensity were selected. For each variable, the mean m was

estimated by the intensity average and s was estimated using the

variable’s modified standard deviation as described in [20].

Simulated data were generated by altering the percentage of

affected variables (a), the number of variables (n), the number of

samples/group (k), the effect size (d) and the lengths of the

regions (m). Individual experiments were defined by specific com-

binations of parameter settings; each experiment was simulated

1000 times.

Table 1. Normalization of three ChIP-chip data sets.

Experiment
Standard
Normalization

Invariant
normalization

HMM-assisted
normalization

H3K27me3 Enriched (M.1.5) 27004 24110 45317

M,21.5 5441 6687 650

E(z) Enriched (M.1.5) 3927 4057 4440

M,21.5 0 0 0

PolII Enriched (M.1.5) 14435 20392 22395

M,21.5 3 0 0

The number of probes identified as being enriched (i.e. having an M-value.1.5) and the number of probes with M-values below 21.5 for the H3K27me3, E(z) and PolII
experiments. Arguably, the number of false positives in analyses using the HMM and invariant normalizations can be estimated as the number of probes below 21.5.
doi:10.1371/journal.pone.0027942.t001
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The algorithm used in the dependent DSE-test
Consider an experiment with nT treated and nR reference

samples. The algorithm can be summarized in four steps:

1. All samples are normalized using some standard normalization,

e.g. the quantile normalization.

2. A heterogeneous set of pairs is created by considering all non-

overlapping pairs of treated and reference samples (i.e. each

sample is only used in one pair). In total, min(nT, nR) non-

overlapping heterogeneous pairs can be constructed. For each

pair:

a. The log-ratios are calculated.

b. The skewness of the distribution of the log-ratios is

estimated by the qs-coefficient,

qs~
Q3zQ1{2median

Q3{Q1
,

where Q1 and Q3 are the first and third quartiles of the

observed log-ratios.

3. A homogeneous set of pairs is created by considering all non-

overlapping pairs of treated samples and reference samples.

The number of homogenous non-overlapping pairs that can be

constructed from one experiment is floor(nT/2) + floor(nR/2).

Note, that these pairs can be constructed in several ways. For

an experiment with 3 replicates for both treatment (A) and

reference (B) it is possible to construct two homogenous non-

overlapping pairs, where the pairs can be constructed in nine

ways: {A1,A2} and {B1,B2}, {A1,A3} and {B1,B2},…,

{A2,A3} and {B2,B3}. Here we only use one of these

alternatives.

a. The log-ratios are calculated for each pair.

b. The skewness of the distribution of the log-ratios is

estimated using the qs-coefficient.

4. Welch’s t-test is used to determine whether the mean values

of the qs-coefficients are the same for the heterogeneous and

homogeneous groups. If there is a significant difference

between the groups, then the experiment is said to be

skewed.

Here, the Welch t-test can be replaced some other test, e.g. some

non-parametric alternative. Note that some of the pairs are

dependent since the data from each sample is used in both a

heterogeneous and a homogeneous set of pairs. It follows that the

qs-coefficients are dependent. The independent DSE-test produces

independent qs-coefficients, by applying the restriction that a

sample is only allowed to be used in one set. The drawback with

the independent DSE-test is that it only generates half as many

observations as the dependent DSE-test.

Evaluation of the DSE-tests
Both the independent and the dependent DSE-tests were

evaluated similarly. For each experiment, 1000 data sets were

simulated. For each data set, a p-value was calculated and the

experiment was said to be skewed if its p-value was below 0.05.

The experiment’s power was estimated by the fraction of sets

identified as being skewed. The following parameter settings were

considered: a: 0, 1, … , 25%, n: 10,000, 100,000, k: 2 (only the

dependent test), 4, 8, 16 and d:1.3, 1.5, 1.8, 2, 4. Note that the

length of the regions (m) has no influence on the DSE-test.

Implementation of the DSE-tests
A web application that implements the independent and

dependent DSE-tests is available at http://clic-umu.se/Skewness_

handling. Users can conduct the asymmetry test on the fly by

uploading a tab-delimited text format file containing the log-

transformed values for all of their samples. If the data is not

normalized, quantile normalization can be applied by the

application. The web application will output a p-value for both

the dependent and independent DSE-tests and a plot of the

distribution of the M-values. More detailed instructions can be

obtained from the above web-page. R scripts for performing the

DSE-test and the HMM-assisted normalization, together with

instructions concerning their use, can also be obtained at this

website.

The algorithm used in the HMM-assisted normalization
procedure

Consider an experiment in which the data is skewed in such a

way that a large majority of the altered variables are either

positively or negatively affected by the treatment and where the

fold changes of nearby variables are positively correlated. The

HMM-assisted normalization procedure involves four steps:

1. The raw data are normalized using some standard normali-

zation, e.g. the quantile normalization.

2. For each variable, the average treated and reference intensities

are calculated, together with the M-value (i.e. the logarithm of

the ratio of the average intensities).

3. An HMM with two states is applied to the M-values. Variables

belonging to the state whose mean is closest to zero are

classified as unaltered variables.

4. The raw data is normalized as in step 1, with the difference that

that only variables identified as being unaltered are allowed to

influence the normalization; the resulting normalization

function is applied to all of the variables.

This HMM method uses a two state model (non-altered, altered)

with normally distributed emission probabilities. The HMM

estimates were obtained using the R-package HiddenMarkov [21]

with starting parameters r, m1, m2, s1 and s2. The value of the

parameter r (i.e. the fraction of altered variables) was guessed. The

remaining parameters were estimated under the assumption that

the log-ratios were generated by a mixture of two normal

distributions with r% altered variables, equal variances and mean

zero.

Evaluation of the HMM-assisted normalization procedure
In the downstream analysis, normalized data were used to

calculate the M-values. The M-values were smoothed using a

moving median of length 21. Variables with smoothed log-ratios

above the cut-off were classified as being altered; the cut-off in this

case was set to 0.7log2(d). The fraction of true positives and true

negatives were used to estimate the experiment’s sensitivity and

specificity, respectively. The bias was estimated as the difference

between the non-smoothed M-value and the logarithm (base 2) of

the effect size.

Here 120 experiments were considered (for a detailed

description see below) and 10 data sets were simulated for each

experiment. For each simulated data set, the sensitivity, specificity

and bias were estimated for three normalization methods (HMM,

invariant quantile and standard quantile) and the ideal quantile

normalization. To minimize simulation error, the average of the

estimated measurements (taken over the 10 simulated data sets),
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were used to estimate the experiments’ sensitivity, specificity and

bias. The relative sensitivity and the relative bias were calculated

as described in; Spike-in data. The relative specificity was calculated

similarly as the relative sensitivity.

The parameters settings considered in the 120 experiments

were: a: 5, 15, 25%, n: 100,000, m: 50, 100, k: 2, 4, 8, 16 and d:

1.3, 1.5, 2, varied. In addition, an experiment with three different

effect sizes (here d was 1.5, 2 and 4) was considered. Here the

effect size within each altered region was constant and the

proportion of regions with each effect size was approximately one

third.

Description of the ChIP-chip data
The raw data of E(Z) and H3K27me3 (GEO accession nrs:

GSM454535, GSM454536) from Schwartz et al. [15] and the

polII data (GEO: GSM409077) from Nègre et al. [16] was

mapped to the Drosophila reference genome using the Tiling

Analysis Software v.1.1 (Affymetrix Inc.). In order to compare the

three experiments we removed one replicate of the polII data so

that all experiments contained two control and two treatment

arrays. The Affymetrix Drosophila Genome Tiling Arrays

(Affymetrix Inc.) contains 6.4 million oligonucleotides, of which

about half are perfect match probes (PM) and half are mismatch

probes (MM). In this study, we only considered the PM probes.

On average, there is one PM probe per 35 bp of genomic

sequence. All normalizations were performed using the same

methods and R-scripts as were used with the simulated data. After

normalization, the ChIP vs input ratio data was smoothed using a

700 bp window (on average containing 21 probes), where the

value of the centre probe was defined as the median of all probes

in the window. Windows containing less than 10 probes were

discarded.

Supporting Information

Figure S1 Comparison of ideal cyclic MA loess and ideal
quantile normalizations. The sensitivity and bias for the ideal

cyclic MA loess normalization compared to the ideal quantile

normalization for different percentages of altered clones (%

altered) and different distributions of up- and down-regulated

clones. (A) The relative sensitivity of the ideal cyclic MA loess

normalization compared to the ideal quantile normalization

observed at 0.5% false positive rate. (B) The difference in bias

between the ideal cyclic MA loess normalization and ideal quantile

normalization.

(TIF)

Figure S2 The effect of violating the primary assump-
tions. The sensitivity and bias for the standard cyclic MA-loess

normalization and the rank invariant cyclic MA-loess normaliza-

tion compared to the ideal quantile normalization (i.e. a quantile

normalization where only the non-regulated clones influenced the

normalization) for different percentages of altered clones (%

altered) and different distributions of up- and down-regulated

clones. (A) The relative sensitivity of the standard cyclic MA-loess

normalization observed at 0.5% false positive rate (i.e. the ratio

between the sensitivity observed when the standard cyclic MA-

loess and ideal quantile normalization was applied to the data). (B)

The relative sensitivity of the invariant cyclic MA-loess normal-

ization at 0.5% false positive rate. (C) The difference in bias

between the standard cyclic MA-loess and ideal quantile

normalization (D). The difference in bias between the invariant

cyclic MA-loess and ideal quantile normalization.

(TIF)

Table S1 The power of the dependent DSE-test. The

estimated power (at a 5%-significance level) of the dependent

DSE-test for different simulated experimental data sets. All

estimates were based on 1000 simulated experiments. The power

was estimated by the fraction of experiments called skewed.

Several experiments were considered. Five different percentages of

altered variables (Percent altered) were considered (0, 5, 15, 20

and 25%). Note that the ‘‘power’’ observed when 0% of the

variables were altered is an estimate of the false positive rate. The

experiments contained data from balanced experiments with k

biological replicates per treatment; k = 2, 4, 8 and 16. Each

experiment contained either 10,000 or 100,000 variables, where

the altered variables were distributed in regions of length 50 (i.e.

m = 50). The altered variables were positively affected, with an

effect size d = 1.3, 1.5, 1.8, 2 and 4.

(DOCX)

Table S2 The power of the independent DSE-test. The

estimated power (at a 5%-significance level) of the independent

DSE-test for different simulated experimental data sets. All

estimates were based on 1000 simulated experiments. The power

was estimated by the fraction of experiments called skewed.

Several experiments were considered. Five different percentages of

altered variables (Percent altered) were considered (0, 5, 15, 20

and 25%). Note that the ‘‘power’’ observed when 0% of the

variables were altered is an estimate of the false positive rate. The

experiments contained data from balanced experiments with k

biological replicates per treatment; k = 2, 4, 8 and 16. Each

experiment contained either 10,000 or 100,000 variables, where

the altered variables were distributed in regions of length 50 (i.e.

m = 50). The altered variables were positively affected, with an

effect size d = 1.3, 1.5, 1.8, 2 and 4.

(DOCX)

Table S3 The relative bias of the HMM, invariant and
standard quantile normalizations. Comparison of the bias

of the HMM, invariant and standard quantile normalizations

compared to the performance of the ideal quantile normalization.

A method’s relative bias is the difference between its observed bias

and the bias observed using the ideal quantile normalization. The

methods were evaluated using data simulated from skewed

experiments. Three different percentages of altered variables

(% altered) were considered (5, 15 and 25%). The experiments

contained data from balanced experiments with k biological

replicates per treatment; k = 2, 4, 8 and 16. Each experiment

contained 100,000 variables, where the altered variables were

distributed in regions of length 50 (i.e. m = 50). The altered

variables were positively affected, with an effect size d = 1.3, 1.5, 2

and 4. In addition, an experiment with three different effect sizes

(denoted varied) was considered. Here, approximately one third of

the altered variables had an effect size equal to 1.5, 2 and 4

respectively. For each experiment, the estimated relative bias was

based on 10 simulated data sets.

(DOCX)

Table S4 The relative sensitivity of the HMM, invariant
and standard quantile normalizations. Comparison of

the sensitivity of the HMM, invariant and standard quantile

normalizations relative to the performance of the ideal quantile

normalization. A method’s relative sensitivity is the ratio between its

observed sensitivity and the sensitivity observed using the ideal

normalization. The methods were evaluated using data simulated

from skewed experiments. Three different percentages of altered

variables (% altered) were considered (5, 15 and 25%). The

experiments contained data from balanced experiments with k

biological replicates per treatment; k = 2, 4, 8 and 16. Each
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experiment contained 100,000 variables, where the altered

variables were distributed in regions of length 50 (i.e. m = 50).

The altered variables were positively affected, with an effect size

d = 1.3, 1.5, 2 and 4. In addition, an experiment with three

different effect sizes (denoted varied) was considered. Here,

approximately one third of the altered variables had an effect

size equal to 1.5, 2 and 4 respectively. A variable with an average

M-value above the cut-off (i.e. 0.7log2(d)) was called altered. For

each experiment, the estimated relative sensitivity was based on 10

simulated data sets.

(DOCX)

Table S5 The relative specificity of the HMM, invariant
and standard quantile normalizations. Comparison of the

specificity of the HMM, invariant and standard quantile

normalizations relative to the performance of the ideal quantile

normalization. A method’s relative specificity is the ratio between its

observed specificity and the specificity observed using the ideal

normalization. The methods were evaluated using data simulated

from skewed experiments. Three different percentages of altered

variables (% altered) were considered (5, 15 and 25%). The

experiments contained data from balanced experiments with k

biological replicates per treatment; k = 2, 4, 8 and 16. Each

experiment contained 100,000 variables, where the altered

variables were distributed in regions of length 50 (i.e. m = 50).

The altered variables were positively affected, with an effect size

d = 1.3, 1.5, 2 and 4. In addition, an experiment with three

different effect sizes (denoted varied) was considered. Here,

approximately one third of the altered variables had an effect

size equal to 1.5, 2 and 4 respectively. A variable with an average

M-value above the cut-off (i.e. 0.7log2(d)) was called altered. For

each experiment, the estimated relative specificity was based on 10

simulated data sets.

(DOCX)
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