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Abstract
In this paper we construct an atlas that captures functional characteristics of a cognitive process
from a population of individuals. The functional connectivity is encoded in a low-dimensional
embedding space derived from a diffusion process on a graph that represents correlations of fMRI
time courses. The atlas is represented by a common prior distribution for the embedded fMRI
signals of all subjects. The atlas is not directly coupled to the anatomical space, and can represent
functional networks that are variable in their spatial distribution. We derive an algorithm for fitting
this generative model to the observed data in a population. Our results in a language fMRI study
demonstrate that the method identifies coherent and functionally equivalent regions across
subjects.

1 Introduction
The functional architecture of the cerebral cortex consists of regions and networks of regions
that become active during specific tasks or at rest when the brain is suspected to engage in
activities such as memory encoding [1]. The functional networks vary spatially across
individuals due to natural variability [15], developmental processes in early childhood [9] or
adulthood [4], or pathology [5]. Reorganization can appear over remarkably short periods of
even few days [4]. The relationship between the structure of functional networks and their
spatial distribution is not well understood.

The traditional brain imaging paradigm in most functional MRI (fMRI) studies treats
functional activity as a feature of a position within the anatomical coordinate frame. The
anatomical variability in a population is typically mitigated by smoothing and non-rigid
registration of the anatomical data, and the corresponding normalization of functional
signals into a stereotactic space. The remaining spatial variability of functional regions is
ignored. An alternative approach is to localize functional regions of interest (fROIs) in
individuals or groups [15] as a precursor to analysis, and subsequently study the responses in
the resulting small number of fROIs.
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Both approaches limit the range of questions that can be formulated on the fMRI
observations. For example, the spatial normalization framework cannot express or account
for spatial variability within the population since it assumes perfect spatial correspondences
when detecting networks by averaging over multiple subjects. In contrast, the fROI
approach is based on detection results for each subject, which can be infeasible if the
activation is weak and cannot be distinguished from noise in individual subjects without
averaging over the group.

We propose a different approach to characterize functional networks in a population of
individuals. We do not assume a tight coupling between anatomical location and function,
but view functional signals as the basis of a descriptive map that represents the global
connectivity pattern during a specific cognitive process. We develop a representation of
those networks based on manifold learning techniques and show how we can learn an atlas
from a population of subjects performing the same task. Our main assumption is that the
connectivity pattern associated with a functional process is consistent across individuals.
Accordingly, we construct a generative model (the atlas) for these connectivity patterns that
describes the common structures within the population.

The clinical goal of this work is to provide additional evidence for localization of functional
areas. A robust localization approach is important for neurosurgical planning if individual
activations are weak or reorganization has happened due to pathologies such as tumor
growth. Furthermore the method provides a basis for understanding the mechanisms
underlying formation and reorganization in the cerebral system.

Related work
A spectral embedding [18] represents data points in a map that reflects a large set of pair-
wise affnity values in the Euclidean space. Diffusion maps establish a metric based on the
concept of diffusion processes on a graph [2]. A probabilistic interpretation of diffusion
maps has recently been proposed [13]. Previously demonstrated spectral methods in
application to fMRI analysis mapped voxels into a space that captured joint functional
characteristics of brain regions [10]. This approach represents the magnitude of co-
activation by the density in the embedding. Functionally homogeneous units have been
shown to form clusters in the embedding in a study of parceled resting-state fMRI data [17].
In [7] multidimensional scaling was employed to retrieve a low dimensional representation
of positron emission tomography (PET) signals in a set of activated regions. In an approach
closely related to the method proposed in this paper [11], an embedding of fMRI signals was
used to match corresponding functional regions across different subjects. Recently a
probabilistic generative model that connects the embedding coordinates with a similarity
matrix has been demonstrated in [14].

2 Generative Model of Functional Connectivity
We start by reviewing the original diffusion maps formulation. We then derive a
probabilistic likelihood model for the data based on this mapping and use the model to link
diffusion maps of functional connectivity across subjects.

2.1 Diffusion Distances, Diffusion Maps, and fMRI Time Courses
Given an fMRI sequence  that contains N voxels, each characterized by an fMRI
signal over T time points, we calculate matrix  that assigns a non-negative
symmetric weight to each pair of voxels (i, j)
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(1)

where 〈·, ·〉 is the correlation coeffcient of the time courses Ii and Ij, and is ε the weight
decay. We define a graph whose vertices correspond to voxels and whose edge weights are
determined by W [2,10]. In practice, we discard all edges that have a weight below a chosen
threshold. This construction yields a sparse graph which is then transformed into a Markov
chain. We define the Markov transition matrix P = D−1W, where D is a diagonal matrix
such that di = D(i, i) = ∑j w(i, j) is the degree of node i. By interpreting the entries P(i, j) as
transition probabilities, we can define the diffusion distance

(2)

The distance is determined by the probability of traveling between vertices i andj by taking
all paths of at most t steps. The transition probabilities are based on the functional
connectivity of node pairs; the diffusion distance integrates the connectivity values over
possible paths that connect two points and defines a geometry that captures the entirety of
the connectivity structure. This distance is characterized by the operator Pt, the tth power of
the transition matrix. The value of the distance Dt(i, j) is low if there is a large number of
paths of at most length t steps with high transition probabilities between the nodes i and j.

The diffusion map coordinates Γ = [γ1, γ2, · · · , γN]T yield a low dimensional embedding of
the signal such that the resulting pairwise distances approximate diffusion distances, i.e.,
∥γi−γj∥2 ≈ Dt(i, j) [13]. They are derived from the right eigenvectors of the transition matrix.
In Appendix A we show that a diffusion map can be viewed as a solution to a least-squares
problem. Specifically, we define a symmetric matrix A = D−1/2WD−1/2, and let L be the
normalized graph Laplacian

(3)

The embedding coordinates are then found as follows:

(4)

where L is the dimensionality of the embedding. To simplify notation, we omit t for L and Γ
in the derivations, assuming that all the results are derived for a fixed, known diffusion time.

2.2 A Generative Model for Diffusion Maps across Subjects
The goal of the generative model is to explain jointly the distribution of pairwise functional
affnities of voxels across all subjects. We use latent variables  to represent the
diffusion map coordinates for S subjects indexed by s ∈ {1, . . . , S}. We can interpret Eq. (4)
as maximization of a Gaussian likelihood model. We let γsi denote the embedding
coordinates of voxel i in subject s and let Ls be the normalized graph Laplacian for subject s.
We further assume that elements of Ls are conditionally independent given the embedding
coordinates:
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(5)

where N (·; μ, σ2) is a Gaussian distribution with mean μ and variance σ2.

Note that the variance depends on the degrees di, dj, which is technically a problem since
these quantities depend on the data W. We find that in practice, the method works well and
leave the development of rigorous probability models for diffusion maps as an interesting
future direction.

In the absence of a prior distribution on Γs, fitting this model to the data yields results
similar to the conventional diffusion maps for each subject independently from the rest of
the population.

The goal of this paper is to define an atlas that represents a population-wide structure of
functional connectivities in the space of diffusion maps. To capture this common structure,
we define a shared prior distribution on the embedding coordinates Γs for all subjects, and
expect the embedded vectors to be in correspondence across subjects [11]. Here, we assume
that the common distribution in the embedding space is a mixture of K Gaussian
components. We let zsi ∈ {1, · · · , K} be the component assignment for voxel i in subject s
and obtain the prior on the embedding coordinates of voxel i in subject s:

(6)

where μk and Θk are the center and covariance matrices for component k. We let the
component assignments be independently distributed according to the weights of different
components, i.e.,

(7)

Together, Eqs. 5 to Eqs. 7 the joint distribution of the embeddings Γ , the component
assignments z, and the observed affnities . The distribution is parameterized by
component centers {μk}, covariance matrices {Θk}, and weights {πk}.

By adding the group prior over diffusion maps, we constrain the resulting subject maps to be
aligned across subjects and further encourage them to resemble the population-wide
structures characterized by the mixture model (Fig. 1). The mixture model acts as a
population atlas in the embedding space.

3 Atlas Learning and Inference
We employ the variational EM algorithm [8] to estimate the parameters of our model from
the observed data. We approximate the posterior distribution of latent variables p(Γ , z|L)
with a product distribution of the form

(8)

The problem is then formulated as the minimization of the Gibbs free energy
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(9)

where  indicates the expected value operator with respect to distribution q(·). We derive
coordinate descent update rules that, given an initialization of all latent variables and
parameters, find a local minimum of the cost function in Eq. (9). Appendix B presents the
derivation of the update rules.

3.1 Initialization
The algorithm requires initial estimates of the latent variables and model parameters.
Initialization affects convergence and the quality of the final solution. Here, we describe a
simple initialization scheme that matches closely the structure of our model and enhances
the performance of the algorithm.

In general, the relationship between the diffusion map coordinates Γ and the corresponding
symmetric matrix L is defined up to an arbitrary orthonormal matrix Q since (ΓQ)(ΓQ)T =
ΓQQTΓT = ΓΓT = L. In order to define an atlas of the functional connectivity across all
subjects, we seek matrix Qs for each subject s such that the maps  are aligned in a
common coordinate frame. Consider aligning the diffusion map Γs of subject s to the
diffusion map Γr of reference subject r. Similar to the construction of the diffusion map, we
compute the inter-subject affnities between the fMRI signals of subjects s and r using Eq.
(1) and only keep those with a correlation above the threshold. This step produces a set of M
node pairs , characterized by affnities . The initialization should ensure
that nodes with similar fMRI signals are close in the common embedding space. Therefore,
we choose matrix Q that minimizes the weighted Euclidean distance between pairs of
corresponding embedding coordinates

(10)

We define matrices Γsm = [γsi1 , . . . , γsiM]T and Γrm = [γrj1, . . . , γrjM]T . It can be shown

that , where we use the singular value decomposition  diag(wm)Γrm
[16].

We find initial estimates of  by fitting a K component Gaussian mixture model

to the initial estimates of the atlas embedding coordinates  for a randomly chosen
reference subject r.

4 Experiments and Results
Data

We demonstrate the method on a set of six healthy control subjects. The fMRI data was
acquired using a 3T GE Signa system (TR=2s, TE=40ms, flip angle=90°, slice gap=0mm,
FOV=25.6cm, volume size of 128 × 128 × 27 voxels, voxel size of 2 × 2 × 4 mm3). The
language task (antonym generation) block design was 5min 10s long, starting with a 10s pre-
stimulus period. Eight task and seven rest blocks, 20s each, alternated in the design. For
each subject, an anatomical T1 MRI scan was acquired and registered to the functional data.
Grey matter was segmented with FSL [19] on the T1 data. The grey matter labels were
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transferred to the co-registered fMRI volumes, and computation was restricted to grey
matter.

Evaluation
We construct a joint functional diffusion map for all six subjects. For the results presented in
this paper, we set the dimensionality of the diffusion map to be L = 20 and choose a
diffusion time t = 2 that satisfies (λL/λ1)t < 0.2 for all subjects. To facilitate computation we
only keep nodes for which the degree is above a certain threshold. In the experiments
reported here we choose a threshold of 100. For the EM algorithm, we fix a value of

 for the first 10 iterations, then allow this parameter to update for the
remaining iterations according to the rule defined in Appendix B. In our experiments, an
initial value of σs specifically proportional to 102 allows the algorithm to achieve the lowest
Gibbs free energy.

We hypothesize that working in the embedding space should allow us to more robustly
capture the functional structure common to all subjects. In order to validate this, we compare
the consistency of clustering structures found in the space of fMRI time courses (Signal), a
low-dimensional (L=20) PCA embedding of these time courses (PCA-Signal), and the low-
dimensional (L=20) embedding proposed in this paper. We report results for the initial
alignment (Linear-Atlas) and the result of learning the joint atlas (Atlas).

We first apply clustering to signals from individual subjects separately to find subject-
specific cluster assignments. We then apply clustering to signals combined from all subjects
to construct the corresponding group-wise cluster assignments. Since our group atlas for the
lower-dimensional space is based on a mixture model, we also choose a mixture-model for
clustering in the Signal and PCA-Signal spaces. In both cases, each component in the
mixture is an isotropic von Mises-Fisher distribution, defined on a hyper-sphere after
centering and normalization of the fMRI signals to unit variance [12].

Likewise, we cluster the diffusion map coordinates Γs separately in each subject to obtain
subject-specific assignments. We cluster the diffusion map coordinates of all subjects
aligned to the first subject, {ΓsQ(s,1)}s for the Linear-Atlas and in  for Atlas to obtain
group-wise clustering assignments. Analyzing the consistency of clustering labels across
methods evaluates how the population structure captures the individual embeddings. For the
diffusion maps, Euclidean distance is a meaningful metric; we therefore use a mixture model
with Gaussian components that share the same isotropic variance.

Since clusters are labeled arbitrarily in each result, we match group and subject-specific
cluster labels by solving a bipartite graph matching problem. Here, we find a one-to-one
label correspondence that maximizes voxel overlap between pairs of clusters, similar to the
method used in [12]. After matching the labels, we use the Dice score [3] to measure the
consistency between group and subject-specific assignments for each cluster.

4.1 Results
Fig. 2 reports the consistency of clusters between group-level and subject-specific
assignments, measured in terms of Dice score averaged across subjects. To illustrate the
temporal nature of the clusters, the colors of the bars indicate the correlation of the average
fMRI signal in the cluster with the fMRI language paradigm convolved with the
hemodynamic response function. Note that the paradigm was not used at any point during
the generation of the maps or clusters. The cluster with the highest paradigm correlation is
the most consistent cluster over a large range of cluster numbers. The highest Dice score
(0.725) for Signal clustering is achieved, with similar values for larger numbers of clusters.
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Although the plot is not shown here, clustering in the PCA-Signal space exhibits no
noticeable improvement. Initial alignment of the diffusion maps into the Linear-Atlas
substantially increases the Dice score of the highest ranked clusters for all K, with a
maximum value of 0.876. The variational EM algorithm performed using a range of
reasonable cluster numbers and further improves the cluster agreement for the top ranked
clusters (0.905).

Fig. 3 shows the networks of the subjects that correspond to the top ranked atlas cluster
(K=10), together with the corresponding average fMRI signal. The paradigm is recovered
very well, and for most subjects the cluster network plausibly spans visual, motor, and
language areas.

Fig. 4 compares the location and average signal of the top ranked of 10 clusters for Signal
and Atlas clustering in a single subject. While both recover parts of the paradigm, the
clustering in the diffusion map atlas exhibits more consistency between the group and the
subject levels. Additionally, the Signal clusters suffer from a relatively high dispersion
across the entire cortex. This is not the case for the diffusion map atlas. In summary, these
results demonstrate that the representation of fMRI time courses in the low dimensional
space of diffusion maps better captures the functional connectivity structure across subjects.
Not only are clustering assignments more consistent, but the anatomical characteristics of
these clusters also are also more plausible. Furthermore, our results using the variational EM
algorithm suggest that the probabilistic population model further improves the consistency
across the population, and consolidates the distribution in the embedding space.

5 Conclusion
We propose a method to learn an atlas of the functional connectivity structure that emerges
during a cognitive process from a group of individuals. The atlas is a group-wise generative
model that describes the fMRI responses of all subjects in the embedding space. The
embedding space is a low dimensional representation of fMRI time courses that encodes the
functional connectivity patterns within each subject. Results from a fMRI language
experiment indicate that the diffusion map framework captures the connectivity structure
reliably, and leads to valid correspondences across subjects. Future work will focus on the
application of the framework to the study of reorganization processes.
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A Diffusion Map Coordinates
In the standard diffusion map analysis, the embedding coordinates Γ for a L-dimensional
space are obtained via the first L eigenvectors of matrix A = D−1/2WD−1/2 [13]. Here we
show that we can represent the embedding as a solution of a least-squares problem
formulated directly on the similarity matrix W.

Formally, , where A = VΛVT is the eigenvector decomposition of matrix A, t
s the diffusion time, and subscripts indicate that we select the first L eigenvectors. Matrix

 is a low-rank approximation of matrix A that is quite accurate if the remaining
eigenvalues are much smaller than the sum of the first L eigenvalues. We define
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(11)

and use a generalization of the Eckart-Young theorem [6] to formulate the eigen
decomposition as an optimization problem:

(12)

where ∥·∥F denotes the Frobenius norm.

B Variational EM Update Rules
We use a natural choice of a multinomial distribution for cluster membership q(zsi = k) for s
∈ {1, . . . , S}, i ∈ {1, . . . , Ns}, and a Gaussian distribution for the embedding coordinates

, parameterized by its mean  and component-wise
variance .

E-Step
We determine the parameter values of the approximating probability distribution q(·) that
minimize the Gibbs free energy in Eq. (9) by evaluating the expectation, differentiating with
respect to each parameter and setting the derivatives to zero. This yields

Rather than solve the coupled system of equations above, we iteratively update each
parameter of the distribution q(·) while fixing all the other parameters.
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M-Step
We now find the parameter values similar to the standard EM algorithm, but using the
approximating distribution q(·) to evaluate the expectation. Specifically, we find

(13)

(14)

(15)
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Fig. 1.
Joint functional geometry scheme
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Fig. 2.
Mean cluster Dice scores for clustering in Signal, Linear Atlas, and Atlas. For each number
of clusters K, we report the mean Dice score across subjects for each cluster. Color
illustrates correlation of the cluster average fMRI signal with the paradigm signal.
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Fig. 3.
A cluster in the joint map corresponds to a network in each subject. Here we illustrate a
network in 6 subjects that corresponds to one cluster in the atlas, and the mean fMRI signal
of this cluster. The 8 block stimulus in this language study was not used by the analysis, but
was recovered by the algorithm and corresponding networks were identified across all
subjects. They typically span the visual cortex, the language areas (Wernicke and Broca),
and the motor areas in some cases.
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Fig. 4.
Most consistent cluster in the Signal space and the Atlas shown in the anatomical space. For
each method, we show the group-wise (left) and subject-specific (right) assignment. Also
shown is the average and standard deviation of the cluster fMRI signal. Results for subject 2.
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