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Abstract
Although longitudinal designs are the only way in which age changes can be directly observed, a
recurrent criticism involves to what extent retest effects may downwardly bias estimates of true
age-related cognitive change. Considerable attention has been given to the problem of retest
effects within mixed effects models that include separate parameters for longitudinal change over
time (usually specified as a function of age) and for the impact of retest (specified as a function of
number of exposures). Because time (i.e., intervals between assessment) and number of exposures
are highly correlated (and are perfectly correlated in equal interval designs) in most longitudinal
designs, the separation of effects of within-person change from effects of retest gains is only
possible given certain assumptions (e.g., age convergence). To the extent that cross-sectional and
longitudinal effects of age differ, obtained estimates of aging and retest may not be informative.
The current simulation study investigated the recovery of within-person change (i.e., aging) and
retest effects from repeated cognitive testing as a function of number of waves, age range at
baseline, and size and direction of age-cohort differences on the intercept and age slope in age-
based models of change. Significant bias and Type I error rates in the estimated effects of retest
were observed when these convergence assumptions were not met. These simulation results
suggest that retest effects may not be distinguishable from effects of aging-related change and age-
cohort differences in typical long-term traditional longitudinal designs.
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The extent of changes in cognitive function with increasing age has been examined using
both cross-sectional and longitudinal designs. In cross-sectional designs, between-person
age differences are used as a proxy for within-person age changes, and the resulting
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inferences about aging are thus subject to many well-known biases, including cohort effects,
self-selection effects, mortality effects, and other inferential problems (Baltes, Cornelius, &
Nesselroade, 1979; Baltes & Nesselroade, 1979; Hofer & Sliwinski, 2006; and Schaie, 1965,
2008). In contrast, both cross-sectional age differences and longitudinal age changes can be
observed directly in longitudinal designs of persons varying in initial age, necessitating the
examination of additive and/or interactive effects of age-cohort differences (i.e., incremental
effects of cross-sectional age related to birth cohort and population selection effects) in
estimating aging-related change.

Despite their relative advantages, a recurrent criticism of longitudinal designs involves to
what extent retest or practice effects – performance gains due to repeated test exposure –
may bias estimates of true aging-related change. In discussing retest effects within the
context of cognitive testing specifically, we distinguish between practice effects, or
improvement due to repetition of the same or similar materials, and instead will refer more
generally to retest effects, or changes in performance due to previous exposure to the testing
materials, environment, and procedures. To the extent that performance is improved due to
familiarity with the testing material, reduction of anxiety, or general practice of the skills
involved, then the magnitude of age-related decline observed at subsequent occasions may
be reduced artificially, with the largest effect of retest gain typically observed between the
first two occasions. Although the problem of retest effects in longitudinal studies of aging
has long been identified (e.g., Baltes, 1968; Schaie 1965), it has been difficult to address in
practice. Given that most studies use widely-spaced measurement occasions (i.e., of
sufficient duration in which systematic change over time is expected to occur) that are
relatively constant across individuals, the effects of aging-related change and retest gains
within a given individual in such designs are inherently confounded.

One way to approach the problem of distinguishing retest from aging is with group-based
designs. For example, the Seattle Longitudinal Study (Schaie, 1996) includes a new age-
matched cohort at the second occasion for each age group, so that the extent to which retest
effects result in differential estimates of age differences between cohorts can be evaluated
explicitly. Although retest effects are partly responsible in such designs for group
differences between those for whom the second occasion is actually the second versus those
for whom it is only the first, group differences may also be due to selective attrition, in that
the returning participants may be higher functioning and healthier than the age cohort
initially sampled.

To combat such a problem, Thorvaldsson, Hofer, Berg, and Johansson (2006) report
analyses from a wait-list control design, in which performance of persons from age 85-99
who had previously been assessed from age 70-81 was compared to that of persons who
were not previously assessed. Thus, performance from age 85-99 would be primarily due to
aging in the first group, but would be a function of both aging and retest in the second
group. They found significant retest effects for level of performance in vocabulary and
spatial reasoning only, both of which may have resulted from repeated use of the same
stimulus materials. No differences between the retest groups were found for estimates of
aging-related change. Unfortunately, such group-based approaches cannot be informative for
examining the effect of retest at the individual level, leading to the development of other
methods for quantifying retest effects.

Statistical Control of Retest Effects
An alternative way in which researchers have attempted to distinguish retest from aging is
through statistical control in random effects models, in which separate parameters are
estimated for longitudinal change over time (specified as a function of age) and for the
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impact of retest (specified as a function of number of test exposures) (e.g., Ferrer, Salthouse,
Stewart, & Swartz, 2004; Ferrer, Salthouse, McArdle, Stewart, & Schwartz, 2005; McArdle,
Ferrer-Caja, Hamagami, & Woodcock, 2002; Rabbitt, Diggle, Smith, Holland, & McInnes,
2001; Rabbitt, Diggle, Smith, & McInnes, 2004; Rabbitt, Lunn, & Wong, 2008; Salthouse,
Schroeder, & Ferrer, 2004). A simple example of this type of age-based retest model is
shown in Equation 1:

(1)

in which yti is the outcome at time t for individual i. The level-1 model describes within-
person change over time as a function of an individual intercept and two individual
processes: time-varying age and time-varying retest, with a residual at each occasion for
each individual (eti). The level-2 model then describes the expected mean of each term in the
model for change (the fixed intercept γ00, the fixed age slope γ10, and the fixed retest slope
γ20,), also including terms that allow each individual to deviate randomly from those mean
values (the random intercept U0i and the random age slope U1i). Usually the retest slope is
modeled as fixed rather than random (i.e., assumed constant over persons, so without U2i),
though not always (e.g., Ferrer et al., 2005).

Although the example model in Equation 1 includes only a linear effect of time-varying age,
other polynomial functions of age (e.g., quadratic effects) or nonlinear functions of age (e.g.,
exponential effects) can be specified instead as needed. Further, parameters for retest have
been included in a variety of ways, such as a single “boost” improvement after the first
occasion (i.e., using a function of 0-1-1-1…1 across occasions), distinct improvement at
each subsequent occasion (i.e., via a series of dummy codes that either contrast the baseline
occasion with each subsequent occasion or specify the incremental retest effect at each
subsequent occasion), continual improvement as a function of number of test occasions (i.e.,
1-2-3-4…), or as an estimated latent basis function across occasions (i.e., 0-?-?-?…1).
Critically, whereas age is specified as a function of exact time between occasions, retest is
not – only the number of test exposures is relevant for indexing retest (and not the exact time
elapsed between test exposures).

Retest models like that depicted in Equation 1 can only be estimated in studies in which age
and measurement occasion are not perfectly correlated, such as when there is a wide age
range at the beginning of the study, variable retest intervals (i.e., time is unbalanced), or
both. Studies employing such retest models have suggested that estimates of age-related
change are likely to have downward bias unless retest effects are controlled statistically, and
that retest effects can persist for many years. Positive gains attributed to retest effects have
been reported to persist even given a test interval of 7-8 years (Rabbitt et al., 2004; Rabbitt,
Lunn, Ibrahim, & McInnes, 2009; Salthouse et al., 2004), suggesting that efforts to minimize
retest effects by using widely-spaced measurement occasions may not be successful.

In addition to distorting average aging effects, an additional problem is to what extent
differential retest effects across persons can distort individual aging effects, such that
persons who benefit more from retest effects than others could appear to be differentially
spared by the effects of aging. Unfortunately, most of these studies have not had sufficient
data with which to estimate individual differences in retest effects. Further, the findings
from those studies that have examined predictors of retest effects have conflicted. While
some studies have found retest effects to be unrelated to age (Ferrer et al., 2004; Rabbitt et
al., 2001; 2004; Salthouse et al., 2004) or unrelated to attrition due to death or dropout
(Rabbitt et al., 2008), other studies have reported that retest gains were weaker in older
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persons (Ferrer et al., 2005; Rabbitt et al., 2008) or weaker in persons with the highest and
lowest levels of cognitive ability (Rabbitt et al., 2008). Further, some studies have found
retest effects to be only weakly related across domains (Salthouse & Tucker-Drob, 2008),
whereas other studies have found stronger relationships (e.g., Ferrer et al., 2005), but
controlling for these retest relationships does not always appear to significantly attenuate the
age slope correlations across domains (e.g., Ferrer et al., 2005).

Assumptions of Retest Models
Models for statistical control of retest effects typically rely on a number of assumptions
when applied in long-term longitudinal studies. The major aim of retest models is to
estimate the aging-related change that would have been obtained at subsequent occasions
without repeated testing. Because the quantity of “naive” performance cannot be observed
directly in any research design where there is reactivity to repeated testing, it is important to
recognize what is assumed in order to quantify retest effects within these models. The first
assumption when using occasion to operationalize retest is that the size of the retest effect
depends solely on the number of previous assessments, and does not depend on the time
interval between assessments (e.g., Ferrer et al., 2004; Ferrer et al., 2005; McArdle et al.,
2002; Salthouse et al., 2004). In other words, regardless of whether a second measurement
occasion occurs one month or seven years after the first (i.e., a variable time-lag between
occasions), it should be affected by the same degree of retest simply because it is the second
occasion (and the same is true for other occasions as well).

Second, both age-cohort differences and retest effects can potentially produce misfit to the
expected outcome at a given age. Age-based retest models (such as that shown in Equation
1) assume that cross-sectional age differences and longitudinal age changes have equivalent
effects on the outcome, or that the two effects of age show convergence after accounting for
retest effects (Bell, 1953; McArdle & Bell, 2000; Miyazaki & Raudenbush, 2000). That is,
in studies employing retest models, because age varies both between persons (i.e., persons
begin the study at different ages) and within persons (i.e., aging occurs in the study), the
time-varying predictor of age carries at least two potential effects corresponding to each
source of variation. Whether or not the cross-sectional and longitudinal age effects are
equivalent (i.e., show age convergence) can be tested empirically (see Sliwinski, Hoffman,
& Hofer, 2010), as shown in Equation 2:

(2)

in which a variable for age-cohort (such as age at baseline or birth year) is included as a
predictor of the intercept at level-2. If the cross-sectional and longitudinal effects of age are
the same, then the fixed age-cohort slope γ01 will be zero. In other words, if the outcome
depends only on current age, then age-cohort will not contribute incrementally to the model.
However, if it not only matters how old a given person is at each occasion, but also when
that age was reached (i.e., an incremental age-cohort effect), then the fixed age-cohort slope
γ01 will be different than zero. Given a negative age slope (γ10), a positive age-cohort slope
γ01 would indicate that the effect of cross-sectional age differences is smaller than the effect
of longitudinal age changes, whereas a negative age-cohort slope γ01 would indicate that the
effect of cross-sectional age differences is larger than the effect of longitudinal age changes.
Non-convergence of these two age effects can result from many other influences, including
cohort effects and mortality-based selection (which can affect initial sample selection in age-
heterogeneous samples as well as attrition in follow-up). Age-cohort effects may also be
observed on the age slope, further complicating matters.
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Testing for convergence of the cross-sectional and longitudinal effects of age (or of any
accelerated time metric) relates directly to any model that attempts to control for retest
effects statistically. Because age-cohort is almost never included in the retest model in
addition to current age, the statistical separation of changes due to retest from changes due
to aging is accomplished using between-person age differences to adjust the rate of observed
within-person change, the same as in the group-based retest approaches (e.g., Thorvaldsson
et al., 2006). Any observed non-convergence of the cross-sectional and longitudinal age
effects then contributes directly to the observed retest effect. In general, age convergence is
usually not tested formally as described in Equation 2. Instead, it is tested via less powerful
group comparisons of “younger” and “older” cohorts (i.e., by performing a median split on
cohort) after including retest effects, or is simply assumed (e.g., Ferrer et al., 2004, 2005;
McArdle et al., 2002; Rabbitt et al., 2001, 2004, 2008, 2009; Salthouse et al., 2004). Thus,
the extent to which the observed retest effects in these studies could be due to present but
unmodeled age-cohort effects is generally unknown.

Purpose of the Current Study
In summary, significant recent attention has been given to the problem of retest effects in
longitudinal studies of age-related change in cognition. Random effects models that attempt
to control for retest effects statistically have become common-place, but empirical evidence
as to their viability in this type of longitudinal data is still lacking. The current study aims to
fill this gap by examining via simulation the extent to which effects of aging, age-cohort,
and retest may be distinguished reliably given differing longitudinal design conditions and
statistical model formulations. Critically, in our simulation generation models, retest effects
were always specified as zero in order to permit a clear interpretation of any estimated retest
effect as a Type I error. Of particular interest, then, is the extent to which ignoring existing
age-cohort effects might create false estimates of retest, given how infrequently age-cohort
effects (including mortality selection and other factors) are considered in practice. As
detailed below, two kinds of retest effects were investigated: a single retest boost after the
first occasion and per-occasion incremental retest gains. Study 1 examined the effect of an
unmodeled age-cohort effect on the intercept in creating main effects of these two types of
retest, and Study 2 examined the effect of an unmodeled age-cohort effect on the age slope
in creating interactions of these two types of retest with age.

Study 1
Method

Simulation Design—The Study 1 simulation design included 500 replications of 500
hypothetical persons in a longitudinal study. The generation model is shown in Equation 3:

(3)

in which yti is the outcome at time t for individual i. The level-1 model describes the change
within persons over time as a function of an individual intercept and individual effects of
age and retest, and the level-2 model describes how each of those individual effects is
constructed. The data generation parameters and analysis models are described in Table 1.
Complete data were simulated to mimic variable annual observations, such that 99% of the
observations occurred within ± 2 weeks of the annual assessment (assuming a normal
distribution for the variation).
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Sixteen simulation conditions were created by crossing 3 dimensions. First, the data
included either 3 or 6 waves. Second, variation in age at baseline was manipulated to create
age-cohorts, such that 99% of the baseline ages fell within either a 20-year or a 40-year
range (given a normal distribution). These dimensions of waves and cohort age range will
permit an examination of how the relative amount of cross-sectional versus longitudinal
variation in age may influence estimation of the age and retest slopes. Third, an incremental
linear effect of age-cohort (as baseline age) on the intercept of γ01 = −0.25, 0, or 0.25 per
year was included to examine the deleterious effects an unmodeled age-cohort effect on the
estimated retest effects.

Analysis Models—The five analysis models estimated in Study 1 differed systematically
in their fixed effects, as shown in Table 1. Model 1a was the generating model and included
no fixed slopes for retest to serve as a baseline, while the other models included one of two
kinds of retest slopes. First, a single boost retest slope (i.e., γ20 only as a boost after
baseline) was included in Models 1b and 1c to represent the most simplistic option (i.e., a
single retest boost after the first testing). Second, a series of occasion-specific retest
increments (i.e., γ20 up to γ60 using degrees of freedom equal to the number of occasions
minus 1) was included in Models 1d and 1e to represent the most complex option (i.e., retest
effects that persist throughout the study). These two types of retest effects can logically be
viewed as the extremes between which many other specifications of retest effects (e.g.,
linear or quadratic occasion slopes, latent basis slopes) will fall. Critically, because the
generation model never included any retest effects, any obtained non-zero estimate of a
retest effect must result from the influence of the missing age-cohort effect on the intercept,
as seen by comparing Models 1c and 1e, which included an effect of age-cohort, to Models
1b and 1d, which did not include an effect of age-cohort.

Outcome Variables—Two outcome variables were analyzed. The first was mean bias,
calculated per replication as: mean bias = slope estimate – generation value. Second, to
assess the quality of the standard errors, power rates were examined for each slope as the
proportion of simulation replications in which the null hypothesis of no effect would have
been rejected at the .05 level. For retest effects, power rates are actually Type I error rates,
given that retest effects were never included in the generation model. Separate 3-way
analyses of variance were then conducted for each slope (age, age-cohort, and retest) within
each of the five analysis models for each outcome. Table 2 provides the mean bias and
power/Type I error rates for the estimated slopes for age, age-cohort, and retest across
simulation conditions and analysis models. Because of the large number of replications per
condition (N = 500), partial η2 effect size estimates were used to assess practical
significance, and only effects from simulation variables of partial η2 ≥ .05 (as calculated
from SSeffect / [SSeffect + SSerror] from the full model) are presented below.

Results and Discussion
Estimation of Age Slopes—As shown in the top of Table 2, no problems with the age
slopes were found in the correct Model 1a (age + age-cohort only). In Model 1b (age +
single boost retest), bias in the age slopes differed by the missing age-cohort effect (η2 =
0.78), age-cohort by waves (η2 = 0.30), and age-cohort by age range (η2 = 0.07), such that,
as expected, the age slopes were biased towards the missing age-cohort effect, more so for 3
than 6 waves and for a 40-year than 20-year age range. In Model 1d (age + incremental
retest), the age slopes were also biased towards the missing age-cohort effect (η2 = 0.83), but
uniformly so. Power to detect the age slopes was uniformly 100% in Models 1b and 1d (as
in the correct Model 1a).
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However, when slopes for both age-cohort and an extraneous single retest effect were
included (Model 1c), although no problems with bias were observed, power rates for the age
slopes differed by number of waves (η2 = 0.07), such that power was ≈ 88% for conditions
with 3 waves (instead of 100% for all conditions as in Model 1a). Finally, when slopes for
both age-cohort and extraneous incremental retest effects at each occasion were included
(Model 1e), although no simulation design effects were found for bias or power, this was
due to the overall poor quality of the age slope estimates. The age slopes were positively
biased in all conditions but one, and power to detect the age slope across conditions was
actually near the Type I error rate (4-7%), rather than 100% as it had been in Model 1a. In
sum, although including an extraneous single boost retest effect after the first occasion had
very little impact on the recovery of the age slopes (i.e., no bias and only small reductions in
power given 3 waves in Model 1c), including extraneous incremental retest effects at each
occasion had a much more deleterious impact, creating bias in the age slope estimates and
much higher standard errors (as indicated by the abysmal power rates to detect the age
slopes in Model 1e relative to Model 1a).

Estimation of Age-Cohort Slopes—As shown in the middle of Table 2, no simulation
design effects or problems with bias were observed in Model 1a, in which the age and age-
cohort slopes were specified correctly without extraneous retest slopes. As expected, in
Model 1a power rates to detect the age-cohort slopes differed by the size of the age-cohort
effect (η2 = 0.25), waves (η2 = 0.13), and age-cohort by waves (η2 = 0.07), such if an age-
cohort effect was present, power rates to detect it ranged from 25% to 92% across conditions
(with greater power for 6 than 3 waves). The power rates observed in Model 1a serve as a
baseline with which to evaluate the power to detect age-cohort slopes when including
extraneous retest effects (Models 1c and 1e).

First, when including slopes for both age-cohort and an extraneous single retest effect
(Model 1c), although no problems with bias were observed, power to detect the age-cohort
slopes differed significantly by waves (η2 = 0.19), the age-cohort effect (η2 = 0.17), and age-
cohort by waves (η2 = 0.11), such that power was greater for 6 than 3 waves, but was lower
overall (12-81% relative to 25-92% across conditions in Model 1a without retest effects).
Second, when including slopes for both age-cohort and extraneous incremental retest at each
occasion (Model 1e), although no simulation design effects were found for bias or power,
this was due to the poor quality of the age-cohort slope estimates (as was found for the age
slopes in Model 1e as well). The age-cohort slopes in Model 1e were negatively biased in all
conditions but one, almost perfectly off-setting the positive average bias found for the age
slopes in the same conditions in Model 1e. Power to detect the age-cohort slopes was also
near Type I error rate (4-7%) across conditions rather than 25-92% across conditions, as in
the correct Model 1a.

Thus, to summarize, the same pattern of results was found for recovery of the age-cohort
slopes as was found for recovery of the age slopes: whereas including an extraneous single
boost retest effect has very little effect on the recovery of the age or age-cohort slopes (no
bias and small reductions in power in Model 1c relative to Model 1a), including extraneous
incremental retest effects at each occasion (Model 1e) had a much more deleterious impact
on the recovery of the age and age-cohort slopes, creating bias in the estimates and inflated
standard errors (as indicated by the abysmal power rates to detect the age and age-cohort
slopes relative to Model 1a). However, the bias observed in the age and age-cohort slopes
appeared to be compensatory within each condition, such that the same model predictions
would be made in Model 1e as in Model 1a, although the inferences about the significance
of each effect would be very different (i.e., it would appear that neither age nor age-cohort
contributed in Model 1e, resulting from the additional collinearity created by including
extraneous retest effects at each occasion).
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Estimation of Single Boost Retest Slopes—We now turn to the estimated retest
slopes themselves, which were always zero in the generation models. When a single retest
effect was included without controlling for age-cohort (Model 1b), effects of the missing
age-cohort effect were found for bias (η2 = 0.47) and for Type I error rate (η2 = 0.06). As
shown in the bottom of Table 2, the single retest slope was biased away from any missing
age-cohort effect, with Type I error rates ranging from 11-40% across conditions. Thus, if a
negative age-cohort effect was missing, a positive retest effect was observed, and if a
positive age-cohort effect was missing, a negative retest effect was observed instead (even
thought negative retest effects are logically impossible in cognitive tests in which higher
scores indicate better performance). After including a slope for the age-cohort effect,
however (Model 1c), the single retest slopes were estimated near zero (bias ≤ .04 in absolute
value) with acceptable Type I error rates (ranging from 2-7%).

Estimation of Incremental Retest Slopes—Models 1d and 1e included incremental
retest effects at each occasion. Because the results for the estimated retest effects were
nearly identical at the 2nd or 3rd occasions given 3 waves, and at the 4th, 5th, or 6th
occasions given 6 waves, results for the incremental retest effect at the 2nd occasion only
are presented in the bottom of Table 2. When incremental retest slopes were included
without age-cohort (Model 1d), effects of the missing age-cohort effect were found for bias
(η2 = 0.28), such that the incremental retest slope was biased away from any missing age-
cohort effect (i.e., a positive retest slope given a negative missing age-cohort effect; a
negative retest slope given a positive missing age-cohort effect). Type I error rates ranged
from 11-13% in those conditions. After controlling for age-cohort (Model 1e), the bias in the
estimated incremental retest slopes almost perfectly matched the bias in the age-cohort
slopes, but with acceptable Type I error rates (ranging from 4-6%).

Study 1: Summary—Study 1 examined the effects of longitudinal design characteristics
(number of waves, baseline age range, and age-cohort effects on the intercept) on estimation
of the slopes for age, age-cohort, and retest (a single effect or incremental effects at each
occasion), with three primary findings. First, correct inferences about retest can only be
obtained once the total effect of age is considered, including additive differential effects of
cross-sectional age differences. When an age-cohort effect was present but not modeled
(Models 1b and 1d), it was absorbed by the retest slopes, such that a negative missing age-
cohort slope became a positive retest slope, and vice-versa, with considerable Type I error
rates for the retest slopes. Only when the age-cohort slope was included were the Type I
error rates for the retest slopes acceptable.

The tradeoff between age-cohort and retest is illustrated in Figure 1, which plots the
predicted outcomes given 6 waves and a 20-year baseline age range with an age-cohort
effect of −0.25 (top) or 0.25 (bottom). The lines with squares represent 6-year predicted
trajectories for 4 age cohorts based on the correct Model 1a (age and age-cohort effects).
The dashed line is the “true” age slope predicted from Model 1d (omitting age-cohort but
with incremental retest). As shown in the top of Figure 1, the non-convergence of
trajectories due to the negative age-cohort effect is exactly compensated for by positive
retest effects. Consider the overlap between the 65- and 70-year-old cohorts at age 70.
Because the predicted outcome at age 70 is higher for persons who have been in the study
longer (but who come from younger cohorts), either a single negative age-cohort effect (that
holds across occasions) or positive incremental retest effects at each occasion will cover this
discrepancy. The bottom of Figure 1 shows the opposite, in which non-convergence of the
age trajectories can be described by either a single positive age-cohort effect or a set of
negative incremental retest effects (although negative retest effects should be impossible in
cognitive tests in which higher scores indicate better performance).
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The second finding from Study 1 is that including unnecessary retest effects compromises
the model’s ability to recover other related effects – those of age and age-cohort. Because
the predictor variables for age, age-cohort, and retest will usually be highly correlated, the
collinearity that arises from adding retest obliterates the power to detect each effect down to
Type I error rate levels (whether it actually exists or not). Finally, the third finding from
Study 1 is that not all retest effects are created equal: the problems for recovery of the age
and age-cohort effects arising from the inclusion of extraneous incremental retest effects
appeared much more severe than when including a single boost retest effect instead. This is
likely because the single boost retest variable has less collinearity with the age and age-
cohort variables, whereas the incremental retest variables have free reign to represent other
effects at each occasion (perhaps including retest, but more likely including other
unmodeled sources of variance as well). In sum, Study 1 illustrates that age-based retest
models will result in biased retest effects in the presence of unmodeled age-cohort
influences, given that both age-cohort and retest effects are created by the same non-
convergence of the age trajectory.

Study 2
Study 1 examined how the accurate estimation of retest effects is diminished by the presence
of an unmodeled age-cohort effect on the intercept. In addition to postulating retest effects
as main effects, however, several studies have investigated moderation of retest effects by
other variables, such as age. Study 2 thus expanded on Study 1 to demonstrate how
interactions of retest effects with age can result solely from unmodeled age-cohort by age
interactions.

Method
Simulation Design—The simulation design for Study 2 included 500 replications of 500
hypothetical persons as in Study 1. The model used to simulate data is shown in Equation 4:

(4)

in which yti is the outcome at time t for individual i. The level-1 model now describes the
change within persons over time as a function of an individual intercept, time-varying age
slope, retest slope(s), and interaction(s) of age with retest. The level-2 model then describes
how each of those individual effects is constructed. The data generation parameters and
analysis models are described in Table 1. In all generating models, the main effects and age
interactions for retest (either as a single effect or incremental effects at each occasion, as in
Study 1) were set to zero. Data were simulated to mimic annual observations ± 2 weeks.
Simulation conditions again included 3 or 6 waves and either 20 or 40 years of cohort age
range at baseline. The fixed effect of age-cohort on the age slope (age-cohort*age
interaction) was varied as γ11 = −0.05, 0, or 0.05 per year (rather than an age-cohort effect
on the intercept only as in Study 1) in order to examine the effect of unmodeled age-
cohort*age interactions on estimation of the retest*age interactions.

Analysis Models and Outcomes—The five analysis models estimated in Study 2 are
shown in the bottom of Table 1. Model 2a was the generating model and contained no retest
main effects or retest*age interactions to serve as a baseline. Models 2b and 2c included a
single boost effect of retest after the first occasion as well as its interaction with age. Models
2d and 2e instead included incremental effects of retest at each occasion as well as their
interactions with age. Models 2c and 2e also included effects of age-cohort on the intercept
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and age slope, whereas Models 2b and 2d did not. The outcomes were again mean bias and
power rates (or Type I error rates for retest effects) per condition (with 16 total conditions),
and partial η2 effect size estimates were again used to assess practical significance.

Results and Discussion
Estimation of Age Slopes—The top of Table 3 lists the mean bias and power rates for
the age slopes per condition across models. No problems with bias or power rates were
found in the correct Model 2a (age, age-cohort, and age-cohort*age only). When a single
retest and retest*age effects were included instead of age-cohort and age-cohort*age effects
(Model 2b), although no problems with power were found, bias in the age slopes differed by
the missing age-cohort*age effect (η2 = 0.08) and age-cohort by waves (η2 = 0.07), such that
the age slopes were slightly biased away from the missing age-cohort*age effect, with
greater bias for 6 than 3 waves.

After slopes for the age-cohort, age-cohort*age, single boost retest, and retest*age effects
were all included (Model 2c), no problems with bias were found, although power to detect
the age slopes was higher for 6 than 3 waves (η2 = 0.07; for which ≈ 88% power was
observed, in contrast to 100% across conditions in Model 2a). When incremental retest and
retest*age effects were included instead of age-cohort and age-cohort*age effects (Model
2d), no problems with bias or power for the age slopes were found. Finally, after slopes for
age-cohort, age-cohort*age, incremental retest, and retest*age effects were all included
(Model 2e), although no simulation design effects were significant, considerable but
idiosyncratic bias in the age slopes were observed, coupled with power rates that
approximated Type I error rates instead (4-7%). Thus, as in Study 1, the extraneous
incremental retest and retest*age effects at each occasion severely compromised the power
to detect the age slopes that were actually present.

Estimation of Age-Cohort and Age-Cohort*Age Slopes—Table 3 also provides the
mean bias and power/Type I error rates for the age-cohort and age-cohort*age slopes per
condition across models. Age-cohort effects on the intercept were never included in the
generation model, and so power rates approximated Type I error rates in all models as
expected. Although significant bias in the age-cohort effects was observed in Model 2e
(with incremental retest effects), the bias appeared to off-set that for the age slopes in the
same conditions.

With regard to the age-cohort*age interaction, no problems with bias were found in the
correct Model 2a. As expected, in Model 2a power rates to detect the age-cohort*age slopes
differed by the size of the age-cohort*age effect (η2 = 0.75) and age range (η2 = 0.15), such
that power rates ranged from 66% to 100% when present (with greater power for 40 than 20
years cohort age range). No problems with bias were observed given extraneous single retest
and retest*age effects (Model 2c), although power again differed by the size of the age-
cohort*age effect (η2 = 0.71) and age range (η2 = 0.08), such that power rates to detect the
age-cohort*age slopes were lower by ≈ 5% in the 20-year conditions in Model 2c relative to
Model 2a. Finally, no problems with bias were observed when adding extraneous
incremental retest and retest*age effects at each occasion (Model 2e), although power to
detect the age-cohort*age slopes differed by age-cohort (η2 = 0.59), cohort age range (η2 =
0.13), and age-cohort by age range (η2 = 0.07), such that power rates were noticeably lower
for the 6 waves, 20 year conditions in Model 2e than in Model 2a. Thus, extraneous
incremental retest*age parameters appear particularly problematic for detecting existing
cohort*age interactions when less of the age variance was cross-sectional.
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Estimation of Single Boost Retest and Retest*Age Slopes—Table 4 provides the
mean bias and Type I error rates for the single retest and retest*age slopes per condition
across models. When not controlling for age-cohort and age-cohort*age (Model 2b), effects
for the missing age-cohort*age effect were found for bias in both the retest slopes (η2 =
0.07) and the retest*age slopes (η2 = 0.59) as well as for age-cohort*waves in the retest*age
slopes (η2 = 0.12). As shown in Table 4, if a negative age-cohort*age effect was missing, the
retest slope was positively biased and the retest*age slope was negatively biased, more so
for 6 than 3 waves (with the opposite pattern for a positive missing age-cohort*age effect).
Although no simulation design effects were found for Type I error in the retest slopes,
significant design effects were found for Type I error in the retest*age slopes for age-cohort
(η2 = 0.17), waves (η2 = 0.12), and age-cohort*waves (η2 = 0.06), such that Type I error
rates for the retest*age slopes (if an age-cohort*age effect was missing) were greater for 6
than 3 waves, with Type I error rates of 14-78% in those conditions. After controlling for
age-cohort and age-cohort*age, however (Model 2c), the single retest and retest*age effects
were estimated near zero with acceptable Type I error rates (3-6%) instead.

Estimation of Incremental Retest and Retest*Age Slopes—Table 5 provides the
mean bias and Type I error rates for the incremental retest and retest*age slopes per wave
and per condition across models. When not controlling for age-cohort and age-cohort*age
(Model 2d), design effects on the bias due to the missing age-cohort*age effect were found
in the incremental retest slopes per wave, such that the size of the effect on the bias
increased across waves (η2 = .01, .07, .17, .23, and .32 for the incremental retest slopes in
waves 2-6, respectively). As seen in the left columns of Table 5, the retest slopes were
biased in the opposite direction as the missing age-cohort*age effect, with the size of this
bias increasing across waves, and with higher than acceptable Type I error rates that also
increased across waves, ranging up to 16% in those conditions. For the incremental
retest*age slopes from the same Model 2d (without age-cohort), significant design effects of
the missing age-cohort*age effect were found for bias (η2 = 0.20, equivalent across the
retest*age slopes from each wave), such that the retest*age slope was biased towards from
the missing age-cohort*age effect. Type I error rates for the retest*age slopes were higher
than acceptable (up to 15%) but constant across waves. Finally, after controlling for age-
cohort and age-cohort*age (Model 2e), the retest slopes were estimated with considerable
yet idiosyncratic bias across conditions but with acceptable Type I error rates, while the
retest*age slopes were estimated with no bias and with acceptable Type I error rates.

Study 2: Summary—Study 2 examined the effects of longitudinal design characteristics
(number of waves, baseline age range, and age-cohort effect on the age slope) on estimation
of the slopes for age, age-cohort, age-cohort*age, retest (single or incremental at each
occasion), and retest*age, with two primary findings. First, correct inferences about retest
effects can only be obtained once the total effect of age is considered, this time including
potential effects of age-cohort on the age slope rather than on the intercept (i.e., an effect of
age-cohort that changes over time). When an effect of age-cohort*age was present but not
modeled (Models 2b and 2d), it was absorbed by the retest and retest*age slopes, such that a
negative missing age-cohort*age effect became a positive retest slope paired with a negative
retest*age slope, while a positive missing age-cohort*age effect became a negative retest
slope paired with a positive age-cohort*age slope, with Type I error rates for both that were
higher than acceptable (particularly the single retest*age slopes). Only when the age-cohort
and age-cohort*age effects were included were the Type I error rates acceptable for the
retest and retest*age slopes (single and incremental).

This tradeoff between age-cohort*age and retest*age is illustrated in Figure 2, which plots
the predicted outcomes given 6 waves and a 20-year age range with an effect of age-
cohort*age of −0.05 (top) or 0.05 (bottom). The lines with squares represent 6-year
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predicted trajectories for 4 age cohorts based on the correct model without retest (Model 2a).
The dashed line is the “true” age slope predicted from Model 2d (omitting age-cohort and
age-cohort*age but including incremental retest and retest*age at each occasion). As shown
in the top of Figure 2, the non-convergence of the trajectories due to the negative age-
cohort*age effect can be closely compensated for by positive incremental retest effects that
increase across waves paired with negative retest*age effects that are constant across waves.
That is, the widening distance between the cohorts as age increases can be explained by an
age-cohort effect that becomes more negative as age increases (the generation model) or by
increasingly positive incremental retest effects at each occasion that are dampened by
negative retest*age interactions (of equal magnitude across occasions). The opposite is seen
in the bottom of Figure 2, in which an age-cohort effect that becomes more positive as age
increases can be represented by increasingly negative incremental retest effects at each
occasion that are dampened by positive retest*age interactions of equal magnitude across
occasions (even though negative retest effects should still be impossible in cognitive tests in
which higher scores indicate better performance).

The second finding from Study 2 is that including unnecessary retest*age effects also
compromises the model’s ability to recover other related effects, but the extent to which this
occurs depends on the kind of retest effect. In Study 2, the two kinds of retest*age effects
(single versus incremental) were comparable in the small power problems they caused in
detecting the age-cohort*age interaction, but the incremental retest and retest*age effects
were again much more problematic for detecting the age slope (which was estimated with
significant bias and power rates that approximated Type I error rates instead). Thus, it
appears that retest effects that change over time can be distinguished from age-cohort effects
that change over time given a enough age-cohort variability, although not without also
causing problems for the age slopes.

General Discussion
In longitudinal studies with widely-spaced occasions, although effects of retest are
confounded with other sources of within-person change, the aim of age-based retest models
is to estimate aging-related change as if individuals had not been repeatedly tested. The
current study explored the viability of these models by examining estimation of slopes for
age, age-cohort, age-cohort by age, retest, and retest by age for two kinds of retest effects
varying in parsimony (either a single boost after the first occasion or incremental
improvements at each subsequent occasion). In these simulations, retest effects were always
zero in the generation models so that any estimated retest effect could be readily interpreted
as a Type I error. Although likely an over-simplification given that retest effects likely do
exist to some degree, this simple model allowed a clear examination of how model
misspecification (i.e., omission of age-cohort effects) can result in non-zero estimates of
retest effects even when retest effects do not exist in the data.

The primary result of these simulation studies is that between-person age differences that do
not align with within-person age change will masquerade as retest effects, even if there are
no retest effects to be found. In these models, estimation of age-cohort differences and retest
gains is based on the same lack of age convergence information, which is insufficient to
independently identify these different effects. That is, a missing age-cohort effect will create
a retest effect in the opposite direction for both single boost and incremental per-occasion
retest effects. The fact that significant negative retest effects were nevertheless found in a
context in which they were created simply by positive missing age-cohort effects is further
evidence that what one might interpret as “retest” cannot be distinguished from “cohort” or
other reasonable possibilities. As such, unmodeled age-cohort effects may be responsible (at
least in part) for reported anomalies such as retest effects that were maximal at the third
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occasion (Ferrer et al., 2004), that did not depend on the size of the test-retest interval
(Rabbitt et al., 2004; Salthouse, 2009; Salthouse & Tucker-Drob, 2008), or that were
significantly negative – a decline due to test exposure (Rabbitt et al., 2004; Rabbit, Lunn, &
Wong, 2008).

The fact that significant retest effects can be observed when they do not exist is only part of
the problem – incremental retest effects at each occasion in particular will also greatly limit
or destroy the power to detect existing, related effects of aging or age-cohort. Practically
speaking, this implies that if one adds age-cohort to a model that already includes age and
incremental retest, then age-cohort is not likely to have a significant addition, and thus those
reasons for age non-convergence would be attributed to retest effects rather than age-cohort
effects. While age-cohort effects and retest effects may be equally plausible explanations for
a negative age-cohort effect (and thus a positive retest effect), it is harder to argue that a
positive age-cohort effect is actually a negative retest effect (at least in cognitive tests in
which higher scores indicate better outcomes; negative retest effects may be expected when
they occur for other reasons, such as perceived experimenter demand characteristics in self-
reported ratings of stress, health, etc.).

The intractable problem of distinguishing age, cohort, and time is certainly not new (e.g.,
Schaie, 1965), but the analog to this problem does not appear to have been recognized as it
applies in distinguishing the effects of age, cohort, and retest via statistical models (in which
retest can be thought of as “time”). When aging and retest effects are observed
simultaneously within-persons, one can only estimate two out of the three effects (age,
cohort, and retest); the third must be assumed absent or to be controlled by some other
means. For instance, if one believes that retest effects are negligible after the second
occasion, a reasonable (but unpopular) solution may be to remove the first occasion from the
analysis, under the assumption that the effect of retest after the second occasion should be
minimized. Alternatively, one could provide a pre-test occasion in which more extensive
practice is given prior to the baseline observation, although this approach would be less
useful for tests that do not require learning a new procedure (e.g., vocabulary tests, for
which alternative forms may be more useful to reduce retest instead).

In the current study, including a single boost retest effect was less problematic than
including incremental retest effects at each occasion, and we would expect similar results for
other kinds of retest effects (e.g., retest posited as a linear slope or latent basis across waves)
to the extent that the retest variables are less correlated with the age variable. However, we
do not feel that the fundamental confound of the retest and aging processes occurring
simultaneously within persons can be solved by the boost retest model. One reason is that
the boost retest effect can account for any unexplained deviation between time 1 and 2,
assuming a particular model for change (e.g., linear change here). Practically speaking, any
unmodeled nonlinearity in the rate of change can create a boost that would be interpreted as
retest. Although careful data exploration and model testing would reveal any systematic
misfit of the model of change, to the extent that the selected model doesn’t fit perfectly, a
boost retest parameter can capture these non-retest deviations. Further, after inclusion of the
boost, the estimated rate of change reflects only the change after time 2 – functionally the
same result as removing the first occasion.

A related issue is to what extent controlling for age-cohort effects can also be seen as a
solution. Although age-cohort was represented by baseline age in our simulation data, in
reality cohort effects are likely to be multifaceted and reflective of many sources that can
result in different expectations for the outcome at a given age. Thus, such cohort effects may
not be sufficiently captured simply by baseline age or birth year. One should also consider
other relevant sources of individual differences (e.g., education, computer use, greater
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exposure to taking tests) resulting from generational experiences that may be related to
cohort effects (i.e., aspects of cohort that are not defined exclusively by a linear effect of
baseline age), as well as the likely inferential problems created by the influence of cohort
and other related forces on the process of selective attrition. Thus, controlling for age-cohort
may not be a panacea, either.

An example of this can be found in the work of Wilson and colleagues (Wilson et al., 2002;
Wilson, Li, Bienias, & Bennett, 2006). The models examined in the current simulations
included the most common retest model specification in which age is used as the basis of
time in the level-1 model (i.e., as in grand-mean-centering), such that the effect of age-
cohort in the level-2 model is specified as incremental to the effect of age (i.e., age-cohort as
a contextual effect). In contrast, Wilson et al. (2002, 2006) used an alternative model using
time instead of age at level 1 (i.e., as in group- or person-mean-centering), and in which the
total effects (rather than the incremental effects) of age-cohort are specified at level 2.
Without some minimal variability in the timing of the assessments, this model would not
estimable. But Wilson et al. (2006) were able to estimate fixed and random effects of retest
in their models, thus effectively modeling effects of aging, age-cohort (as indicated by
baseline age), and retest at the same time.

Although significant retest effects were reported for several of their cognitive tests even
after controlling for age-cohort effects, inspection of Wilson et al.’s (2006) results suggests
some of the same problems observed in the current study – namely, highly inflated standard
errors for the effects of age in their models with retest parameters (relative to their models
without retest). Further, the pattern of the estimated retest effects was unpredictable, with
improvements due to retest found for semantic memory but not for episodic memory, for
word knowledge but not for word generation, for word retention but not for story retention,
and for visuospatial ability but not for perceptual speed. In addition, in constructing 95%
random effects confidence intervals (Snijders & Bosker, 1999, p.48-50) using their reported
estimates, their results suggest that the individual retest effects observed were actually
predicted to range from negative to positive (although positive on average in most
outcomes), which complicates the interpretation of these parameters as simply retest effects.
Finally, given the large amount of individual data (up to nine occasions per person), the
retest effects at each occasion could also reflect simple misfit of the time trajectory, which
they modeled using a quadratic trend. Thus, while the approach utilized by Wilson et al.
could be informative for distinguishing aging effects from retest effects after controlling for
age-cohort, alternative explanations for their estimated retest effects remain.

In conclusion, although this study strongly suggests that caution should be employed in
attempting to statistical control for retest effects in long-term studies of aging, it also
highlights an inferential issue regarding the interpretation of the retest-controlled age slopes
per se. That is, although the use of retest models is often motivated by the need to estimate
the “test naive” age trajectory that would have been observed without the influence of
repeated test exposure, all these models can do is estimate the age trajectory that would have
been obtained holding retest constant instead. But because retest occasion cannot be held
constant across time within a given person, such a “naïve” aging effect could never be
directly observed.

An approach that is more likely to be more useful is to measure retest explicitly instead. For
example, it may be useful to quantify a person’s tendency to improve from repeated testing
or one’s maximal practiced performance by using external data, such as through alternative
longitudinal designs in which the effects of age and retest are observed over different time
scales (i.e., measurement burst designs, Nesselroade, 1991; Sliwinski, 2008). In the same
way that within-person aging effects can only be measured directly via long-term
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longitudinal designs in which aging has time to occur, within-person retest gains can only be
measured directly in short-term longitudinal designs in which retest effects can occur but in
which aging effects cannot. Only through careful consideration of such alternative
longitudinal designs can the effects of aging, age-cohort, and retest be distinguished
informatively.
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Figure 1.
Predicted trajectories from Study 1 for the simulation condition of 6 waves and a 20-year
baseline age range. The predicted outcomes are shown when including the correct effects of
age and age-cohort (separate lines with squares) or for the effect of age controlled for retest
(dashed line), given a negative age-cohort effect (top panel) or a positive age-cohort effect
(bottom panel).
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Figure 2.
Predicted trajectories from Study 2 for the simulation condition of 6 waves and a 20-year
baseline age range. The predicted outcomes are shown when including the correct effects of
age and age-cohort*age (separate lines with squares) or for the effect of age controlled for
retest and retest*age (dashed line), given a negative age-cohort*age effect (top panel) or a
positive age-cohort*age effect (bottom panel).
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Table 1

Simulation Parameters and Data Analysis Models for Studies1 and 2

Study 1 Data Generation Parameter Values

50 Fixed Intercept (γ00)

−1 Fixed Per-Year Age Slope (γ10)

−0.25, 0, 0.25 Fixed Effect of Age-Cohort on Intercept (γ01)

0 Fixed Effect(s) for Single Boost Retest (γ20) or Incremental Retest (γ20…60)

75 Random Intercept Variance (τU0
2 )

0.25 Random Age Slope Variance (τU1
2 )

25 Residual Variance (σe
2)

Study 1 Data Analysis Models: Fixed Effects Included

1a Age + Age-Cohort (Correct Model)

1b Age + Single Boost Retest

1c Age + Single Boost Retest + Age-Cohort

1d Age + Incremental Retest

1e Age + Incremental Retest + Age-Cohort

Study 2 Data Generation Parameter Values

50 Fixed Intercept (γ00)

−1 Fixed Per-Year Age Slope (γ10)

0 Fixed Effect of Age-Cohort on Intercept (γ01)

−0.05, 0, 0.05 Fixed Effect of Age-Cohort by Age Slope (γ11)

0 Fixed Effect(s) for Single Boost Retest (γ20) or Incremental Retest (γ20…60)

0 Fixed Effect(s) for Age by Single Boost Retest (γ70) or by Incremental Retest (γ70…110)

75 Random Intercept Variance (τU0
2 )

0.25 Random Age Slope Variance (τU1
2 )

25 Residual Variance (σe
2)

Study 2 Data Analysis Models: Fixed Effects Included

2a Age + Age-Cohort + Age-Cohort*Age (Correct Model)

2b Age + Single Boost Retest + Single Boost Retest*Age

2c Age + Single Boost Retest + Single Boost Retest*Age + Age-Cohort + Age-Cohort*Age

2d Age + Incremental Retest + Incremental Retest*Age

2e Age + Incremental Retest + Incremental Retest*Age + Age-Cohort + Age-Cohort*Age
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