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Abstract

This paper presents a belief propagation approach to the segmentation of the major white matter
tracts in diffusion tensor images of the human brain. Unlike tractography methods that sample
multiple fibers to be bundled together, we define a Markov field directly on the diffusion tensors
to separate the main fiber tracts at the voxel level. A prior model of shape and direction guides a
full segmentation of the brain into known fiber tracts; additional, unspecified fibers; and isotropic
regions. The method is evaluated on various data sets from an atlasing project, healthy subjects,
and multiple sclerosis patients.

1 Introduction

Diffusion-weighted imaging (DWI1) has become a major tool for the study of connectivity in
the living human brain in health and disease [1,2]. Although DWI tractography methods
provide useful information about the connectivity between remote regions of the brain [3],
the segmentation of fiber bundles or tracts that correspond to known anatomical atlases
requires additional grouping, trimming, and labeling, which usually requires manual
assistance [4,5]. The development of automatic solutions for white matter tract segmentation
is a challenging problem for several reasons. For example, since the reliability of fiber
tracking varies with imaging resolution, noise, and patient orientation [6], it is difficult to
consistently recover the same fiber tracts in repeated observations of the same individual. As
well, lesions in the white matter caused by disease or aging can impair fiber tracking,
resulting in poor definition of the tracts.

As an alternative to the reconstruction of fiber samples, level set [7] and non-parametric
fuzzy classification methods [8] have been investigated for the segmentation of a given
bundle from a set of initial regions of interest (ROIs). These methods focus on a single tract,
and often require a careful initialization in order to succeed. Deformable atlas registration
techniques segment the white matter into homogeneous regions rather than tracts [9,10], but
the relationship between these regions and the tracts is unclear. Probabilistic connectivity
methods evaluate the connection strength between regions or voxels [11,12,13], but do not
explicitly recover fiber tracts.

In this work, we propose a Markov Random Field (MRF) to model the diffusion properties
and a belief propagation (BP) technique to estimate the most likely tracts at every voxel.
Shape and direction priors are used to identify the tracts, and the MRF connects regions
along their diffusion direction. With this approach, we can automatically and simultaneously
segment multiple tracts with known anatomical and functional meaning, reduce the
variability of the estimated tracts without manual initialization or post-processing, and
handle robustly the presence of white matter lesions.



1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Bazin et al. Page 2

2 Methods

2.1 Problem Description and Notations

The goal of this work is to extract from this data set several of the major fiber tracts of the
human brain: anterior thalamic radiation (ATR), cortico-spinal tract (CST), body of the
corpus callosum (CCB), forceps of the corpus callosum (CCF), cingulum (CG), inferior
longitudinal fasciculus (ILF), superior longitudinal fasciculus (SLF), inferior fronto-
occipital fasciculus (IFO), uncinate fasciculus (UNC). These tracts are first defined using a
probabilistic atlas of shape and direction co-registered to the studied images, and then
refined by estimating the most likely diffusion pathways from the FA and diffusion
directions by belief propagation.

Starting from a series of diffusion-weighted images, we first obtain a set of diffusion

eigenvectors and associated eigenvalues (v}, 45) . With the standard linear reconstruction
method [2], as well as a fractional anisotropy (FA) map a; for each voxel j of the image.
Extra-cranial tissues are removed with a semi-automatic method [14] applied to the mean
diffusivity image.

When manipulating direction vectors vj, we denote vj the unsigned orientation axis without
direction, i.e., +vj and —v; correspond to the same orientation vj. We use the following
definitions for the inner product and addition of these orientations:

Fi . Fj: "U,' . ’Uj], F,—+7»,-=U,—+sign(u,~ . ’Uj)’Uj. 1)

Finally, the eigenvalues are ranked and normalized so that the largest eigenvalue /1}:1.

2.2 Diffusion Based Tract Gain Functions

The central question for this approach is how to adequately translate our knowledge of fiber
tracts observed in DTI into a MRF model of the tracts, represented by gain functions Ljj(x;,
Xj), which we define to be a large positive value if there is evidence that the state x; is likely
conditioned on the state X;, a large negative value if the data goes against this hypothesis,
and close to zero if there is no information for or against it.

Several well-known fiber tracts like the optic radiation or even the corpus callosum were not
included in the original, tractography-based atlas because it is difficult to define them
consistently based on tractography and ROIs [6]. In addition, many smaller tracts between
neighboring regions are present and distinct from these tracts. To provide a complete
parcellation, we add two labels to the nine fiber tracts from the atlas: isotropic regions or
background (BG), and other fiber tracts (OFT).

Background Model—We assume the background is composed of regions of very low FA,
with the following gain function:

B ai
L7 =2exp(——) -1
ap (2)

with ag a parameter representing the expected transition value for FA (ag = 0.1 in our
experiments, see Fig. 1a).
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Diffusion Model—The evidence for fiber tracts comes from the diffusion tensors: if two
tensors are aligned they likely correspond to the same tract. Note that we cannot differentiate
between the type of tracts based on the diffusion direction alone, without considering some
global models of the tracts. However, we can model the similarity between tensors as
follows:

1)
lei

1 — max(¥} - dij, v -d;ij) 1=} -7
:maxabs,,.,,,/lf’/l’;’exp(— ) 2exp(——2 Sy 1

Vi V1 (3)

with di; the direction between voxels i and j, and vy a constant representing the average
expected deviation in angle between similar directions. maxabs,g(n) selects for the function
g(n) with maximum absolute value.

This gain function is positive when the diffusion directions from i to j and from j to i are
aligned with the path from i to j. If both diffusion directions are orthogonal to that path, we
cannot assume that they are related even if they are aligned: many fiber tracts have “kissing”
fibers that follow the same direction before diverging. In such case, the gain goes to zero in
order to model the uncertainty. When the diffusion directions are orthogonal and one of
them is aligned with the path, then it is clear that both points cannot be part of the same
tract, which translates into a large negative gain value (see Fig. 1b).

Shape and Direction Prior—To provide a labeling for the tracts, we use an atlas of
shape and direction that gives for each voxel i and tract label | a probability pﬁ of existence,

and a probable diffusion orientation Zﬁ, with |35| a function of the orientation variability in the
atlas.

Our atlas is based on the fiber tract atlas of Mori and Wakana [4,6]. We obtained the
individual tensor images and fiber tract delineations used in building this atlas, so we could
complement the atlas with tracts that were not originally delineated because of their lower
reproducibility [6]. For this work, we added our delineation of the body of the corpus
callosum in seven atlas images (see Fig. 2). The remaining, unspecified fibers were
segmented as the regions of FA above ag = 0.1.

To build the shape and direction atlas, each of the delineated fibers is smoothed over
neighborhood of 10mm and its principal orientation is extrapolated as follows:

t =t
28V
—t_“=JVj ) . t
V= Vj€Nists;>s;,

1
2js; )

where ¥! is the principal direction at voxel i in image t and s} the smoothed delineation on
image t for the considered fiber. The shape and orientation are then averaged from the seven
images as shown in Fig. 1-c. The 10mm neighborhood was chosen empirically to ensure that
tracts from the image to segment are fully included in the neighborhood, making the atlas
more generic, even with low numbers of atlas images. As the segmentation is driven
simultaneously by the atlas and the diffusion data, it is not necessary that the atlas matches
accurately the images to segment.

From the atlas, we define the shape prior gain as follows:
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LS (x;=D)=p! — maxp”
; (xi=D)=p; naxp; 5)

giving positive values where the prior for | is higher than any other, negative values where is
it dominated by another prior, and zero where two or more tracts compete. The direction
prior gain is similar to the diffusion gain:
@i-d,-¥ 4,7
——) —exp(———)

diIvy ld;vo (6)

L{) (.xi:l):pl{lzﬁlnaxabs,,/ll'.' exp(—

with vg an angular constant. The gain is positive when the data is well aligned with the prior,
negative when it is orthogonal, and goes toward zero in the uncertain area between vg and v;
or when the shape prior is low, i.e., where the orientation is likely to be unknown. For the

unspecified fibers, we set LP (OFT)=0.

Gain Function—The complete gain function is built from these separate terms for all the
different cases as follows:

L;(BGBG)=L’+aLf (BG)+p
Ly;(BGIh=L?+aL; (BG)
Lyj(IBG)= — LE+aL7 ()+yLP(])
L; j(1|1):L{”j poj(D+aL? (D+B+yLP(D)

Lyj(llm)y= — max(L¥, 0) py,;(D)+aL (D+yLP(l)

iy’ (7)

exph (1)

where py,;(1)= S is the current estimate of the posterior probability for label I, and «, 3,
y three parameters that modulate the importance of shape priors (), smoothing (), and
direction priors (y). Because isotropic regions do not include a direction prior, the relative
value of y with regard to «, £ influences the global amount of recovered tracts. In all our
experiments, we set a =0.1, = 0.2 and y = 0.5.

2.3 Belief Propagation Algorithm

Belief propagation [15] is the method of choice for maximizing functions that can be
decomposed into a sum or product of pairwise interactions E = X j Ljj(I|m) as above. In this
work, we use the tree-reweighted belief propagation (TRBP) variant of Kolmogorov, which
offers convergence guarantees not present in the original max-product algorithm [16].

First we register the atlas to the image to segment with a multi-scale gradient descent
2

— . l - - - -
method maximizing EI«)"Z_,Z,““JPMJ , where g; is the computed FA, and T a rigid
transform. The direction atlas is rotated accordingly. Then, the algorithm alternates belief
propagation with a refinement of the atlas registration:

1. compute the beliefs: bj(xj) < Zjan;m;i(xi),

2. estimate the gain function L;}; for all labels,

i

update the messages: m;;(x;) < max, (@L,- (i, x)+ 2 bixg) — mj,-(x,'))
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4. 2
refine the registration by maximizing ERZZ_iZ,HPb/(’)P;',n”

These steps are repeated until the computed beliefs are stable, only about 10-20 iterations in
practice thanks to the efficient TRBP propagation method. A 181x217x181 voxel image
(Imm cubic resolution) is processed in less than two hours, and a more classical 256x256x60
voxel image takes between 45 minutes and an hour on a modern workstation with 6GB of
available memory.

3 Experiments

The algorithm is evaluated in several experiments that test its accuracy and reproducibility
in real DTI images of the human brain in health and disease, as well as its use in
complement to more classical tractography methods. First, we evaluate the algorithm on a
set of ten images from the original atlas [4], distinct from the seven images used in building
the shape and direction priors (“atlas images” experiment). In clinical practice, two or more
DWI acquisitions are often used to reconstruct the DTI tensors in order to mitigate the noise.
We reconstructed two separate tensor images from the DWI acquisitions for a set of five
healthy subjects. These images have low SNR but describe the exact same anatomy in the
same orientation (“healthy repeats” experiment). We also tested the method on a set of seven
pairs of DTI acquisitions from multiple sclerosis (MS) patients with extensive white matter
lesions, imaged twice at an interval of about six month (“MS repeats” experiment). Finally,
we investigate the use of this voxel-based method in conjunction with fiber tractography.
Tractography does provide a much finer, sub-voxel representation of connectivity, but
automatically labeling regions and bundles of fibers is challenging [17,18]. Our method
provides a probabilistic labeling of the entire space, thus we can classify each fiber by its
mean belief value.

In DTI segmentation, validation is a challenging issue as there is no accepted gold standard
or ground truth beyond simplistic simulations. Even the carefully edited fiber tracts of [4]
have limitations, and often portions of the tracts are missing if the underlying fibers are
interrupted or stray into a neighboring bundle. Furthermore, the typically elongated shape
and small volume of fibers make the classical measures of overlap very sensitive to
differences.

For the atlas images, we measured the amount of the original delineation (D) included in the

segmentation (S): j— s, while we used the Dice overlap D_fslu“ in the repeats. Average
surface distances were computed in all cases, see Table 1. In this context, our experiments
still demonstrate that our segmentations correlate well with fiber delineations, and more
importantly that they are reproducible in successive acquisitions of clinical quality.

As can be seen on Fig. 3-a, the tractography-based delineations of the atlas were very
conservative, and our proposed segmentation is overall more inclusive. For the largest, most
distinct tracts (ATR, CC, CST) the segmentation includes most of the original delineations,
but the smaller (CG, UNC) and heavily overlapping tracts (IFO, ILF, SLF) are more
variable, due to the small number of voxels in the delineation. The repeat experiments show
fairly high overlap and very low surface distance for most tracts, and the differences in the
resulting segmentations appear mostly to be related to noise, see Fig. 3-b. The method
succeeds in the presence of lesions, however with slightly worse overlap than in the healthy
cases. This is likely reflecting the added variability due to different head position, different
geometric distortions and registration errors. The presence of lesions only impairs the
segmentation locally, leading to thinner or missing tracts in some of the diseased regions,
but the healthy parts of the tracts remain unaffected, see Fig. 3-c. When tractography is
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reliable, our method offers an efficient way to cluster the fibers into compact bundles,
mostly free of straying fibers as shown in Fig. 3-d.

4 Conclusion

In this paper, we propose a new approach to the segmentation of white matter tracts in DTI.
By combining shape and direction priors with a belief propagation method, the algorithm
recovers nine of the major fiber tracts in the human brain automatically and simultaneously.
Several real data experiments indicate that the method is consistent with manual delineations
based on tractography, and can handle clinical quality images with noise and even lesions in
a reproducible way. These properties are important for clinical applications, where the
interaction of white matter lesions or tumors with the main fiber tracts can inform the
diagnosis and treatment for individual patients and provide more insight on the systems
targeted by the disease.
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Fig. 1.

Gain and atlas functions: a) background gain L?, b) diffusion gains LP for the X and Y
directions, c) shape and direction atlas building steps for CCF (left: original delineation,
middle: extrapolated image, right: average of seven images)
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Fig. 2.
Shape and direction atlas for the delineated fiber tracts on selected axial slices: shape prior p!
(top) and direction prior d' (bottom) for each tract
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b. Healthy repeats d. Fiber bundles

Fig. 3.

Experiments: a) Atlas images: automatic segmentation (top) compared to tractography-based
delineation (bottom), b) Healthy repeats: segmentation for two successive acquisitions, c)
MS repeats: segmentations of two separate acquisitions, after coregistration (left) and 3D
rendering of the reconstructed fibers intersecting estimated lesions (in green) in the same
subject, d) fibers clustered by our segmentation in an atlas image
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