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Abstract

Partially linear models provide a useful class of tools for modeling complex data by naturally
incorporating a combination of linear and nonlinear effects within one framework. One key
question in partially linear models is the choice of model structure, that is, how to decide which
covariates are linear and which are nonlinear. This is a fundamental, yet largely unsolved problem
for partially linear models. In practice, one often assumes that the model structure is given or
known and then makes estimation and inference based on that structure. Alternatively, there are
two methods in common use for tackling the problem: hypotheses testing and visual screening
based on the marginal fits. Both methods are quite useful in practice but have their drawbacks.
First, it is difficult to construct a powerful procedure for testing multiple hypotheses of linear
against nonlinear fits. Second, the screening procedure based on the scatterplots of individual
covariate fits may provide an educated guess on the regression function form, but the procedure is
ad hoc and lacks theoretical justifications. In this article, we propose a hew approach to structure
selection for partially linear models, called the LAND (Linear And Nonlinear Discoverer). The
procedure is developed in an elegant mathematical framework and possesses desired theoretical
and computational properties. Under certain regularity conditions, we show that the LAND
estimator is able to identify the underlying true model structure correctly and at the same time
estimate the multivariate regression function consistently. The convergence rate of the new
estimator is established as well. We further propose an iterative algorithm to implement the
procedure and illustrate its performance by simulated and real examples. Supplementary materials
for this article are available online.
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1. INTRODUCTION

Linear and nonparametric models are two important classes of modeling tools for statistical
data analysis and both have their unique advantages. Linear models are simple, easy to
interpret, and the estimates are most efficient if the linear assumption is valid.
Nonparametric models are less dependent on the model assumption and hence able to
uncover nonlinear effects hidden in data. Partially linear models, a class of models between
linear and nonparametric models, inherit advantages from both sides by allowing some
covariates to be linear and others to be nonlinear. Partially linear models have wide
applications in practice due to their flexibility.

Given the observations (y;, X;, tj), i =1, ..., n, where y; is the response, x; = (Xi1, ---, xip)T and
ti = (tq, -, tiq)T are vectors of covariates, the partially linear model assumes that

yi=b+x B+ f(t)+s:, (1.1

where b is the intercept, f# is a vector of unknown parameters for linear terms, f is an
unknown function from RY to R, and &;’s are iid random errors with mean zero and variance
2. In practice, the most used model for (1.1) is the following special case when q = 1:

yi=b+x,-T,8+ f(t)+e;. (1.2)

For example, in longitudinal data analysis, the time covariate T is often treated as the only
nonlinear effect. Model estimation and inference for (1.2) have been actively studied under
various smooth regression settings, including smoothing splines (Wahba 1984; Engle et al.
1986; Heckman 1986; Rice 1986; Chen 1988; Hong 1991; Green and Silverman 1994;
Liang, Hardle, and Carroll 1999), penalized regression splines (Ruppert, Wand, and Carroll
2003; Liang 2006; Wang, Li, and Huang 2008), kernel smoothing (Speckman 1988), and
local polynomial regression (Fan and Gijbels 1996; Fan and Li 2004; Li and Liang 2008).
Interesting applications include the analysis of city electricity (Engle et al. 1986), household
gasoline consumption in the United States (Schmalensee and Stoker 1999), a marketing
price-volume study in the petroleum distribution industry (Green and Silverman 1994), the
logistic analysis of bioassay data (Dinse and Lagakos 1983), the mouthwash experiment
(Speckman 1988), and so on. A recent monograph by Hardle, Liang, and Gao (2000) gave
an excellent overview on partially linear models, and a more comprehensive list of
references can be found there.

One natural question about the model (1.1) is, given a set of covariates, how one decides
which covariates have linear effects and which covariates have nonlinear effects. For
example, in the Boston housing data analyzed in the article, the main goals are to identify
important covariates, study how each covariate is associated with the house value, and build
a highly interpretable model to predict the median house values. The structure selection
problem is fundamentally important, as the validity of the fitted model and its inference
heavily depends on whether the model structure is specified correctly. Compared to the
linear model selection, the structure selection for partially linear models is much more
challenging because the models involve multiple linear and nonlinear functions and a model
search needs to be conducted within some infinite-dimensional function space.

Furthermore, the difficulty level of model search increases dramatically as the data
dimension grows due to the curse of dimensionality. This may explain why the problem of
structure selection for partially linear models is less studied in the literature. Most works we
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mentioned above assume that the model structure (1.1) is given or known. In practice, data
analysts oftentimes have to rely on their experience, historical data, or some screening tools
to make an educated guess on the function forms for individual covariates. Two methods in
common use are the screening and hypothesis testing procedures. The screening method first
conducts univariate nonparametric regression for each covariate or unstructured additive
models and then determines linearity or nonlinearity for each term by visualizing the fitted
function. This method is useful in practice but lacks theoretical justifications. The second
method is to test linear null hypotheses against nonlinear alternatives, sequentially or
simultaneously, for each covariate. However, proper test statistics are often hard to construct
and the tests may have low power when the number of covariates is large. In addition, these
methods handle the structure selection problem and the model estimation separately, making
it difficult to study inferential properties of the final estimator. To our knowledge, none of
the existing methods can distinguish linear and nonlinear terms for partially linear models
automatically and consistently. The main purpose of this article is to fill this gap.

Motivated by the need of an effective and theoretically justified procedure for structure
selection in partially linear models, we propose a new approach, called the LAND (Linear
And Nonlinear Discoverer), to identify model structure and estimate the regression function
simultaneously. By solving a regularization problem in the frame of smoothing spline
ANOVA, the LAND is able to distinguish linear and nonlinear terms, remove uninformative
covariates from the model, and provide a consistent function estimate. Specifically, we show
that the LAND estimator is consistent and establish its convergence rate. Furthermore, under
the tensor product design, we show that the LAND is consistent in recovering the correct
model structure and estimating both linear and nonlinear function components. An iterative
computational algorithm is developed to implement the procedure. The rest of the article is
organized as follows. In Section 2 we introduce the LAND estimator. Statistical properties
of the new estimator, including its convergence rate and selection consistency, are
established in Section 3. We discuss the idea of two-step LAND in Section 4. The
computational algorithm and the tuning issue are discussed in Section 5. Section 6 contains
simulated and real examples to illustrate finite sampling performance of the LAND. All the
proofs are relegated to the Appendix. Due to the space restriction, Appendix 4 is given in
online supplementary materials.

2. METHODOLOGY
2.1 Model Setup

From now on, we use x; R% instead of (x;, t;) to represent the entire covariate vector, as we
do not assume the knowledge of linear or nonlinear form for each covariate. Without loss of
generality, all covariates are scaled to [0, 1]. Let {x;, yi}, i =1, ..., n, be an independent and
identically distributed sample. The underlying true regression model has the form

yi=b+inj,Bj+ ij(.\',‘j)-f— ZO(X,’]‘)-I-S,',

jelL jeIN jelo 2.1)

where b is an intercept, I, Iy, lo are the index sets for nonzero linear effects, nonzero
nonlinear effects, and null effects, respectively. Let the total index set be 1 = {1, ..., d}; then
I =1_U Iy U lg and the three subgroups are mutually exclusive. The model (2.1) can be
regarded as a hypothetical model, since I, Iy, lp are generally unknown in practice. Since
nonlinear functions embrace linear functions as special cases, we need to impose some
restrictions on f’s to assure the identifiability of terms in (2.1). This issue will be carefully
treated later.
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The model (2.1) is a special case of the additive model
Yi=b+gi(xi))+ -+ - +ga(xig)+&i. (2.2)

Without loss of generality, we assume that the function components in (2.2) satisfy some
smoothness conditions, say, differentiable up to a certain order. In particular, we let gj € *,
the second-order Sobolev space on xj = [0, 1], that is, % = {g: g, g are absolutely
continuous, g” € L2[0, 1]}. Using the standard theory in functional analysis, one can show
that # is a reproducing kernel Hilbert space (RKHS), when equipped with the following
norm:

ngl|ij:{f(])gj(x)dx}-+{f(])g;-(x)dx}-+f(l){g; (x)}zdx.

The reproducing kernel (RK) associated with * is R(X, z) = Rg(X, z) + R1(X, z) with Ry(X, 2) =
ka(¥)k1(z) and Ry(X, 2) = ko (X)ko(z) — ka(x — 2), where f,; (x)=x — 1, ka(x)=1{k?(x) — &} @nd

k4(x):,1—4{k‘]‘( x) — %klz(x).;-%“}. See the works of Wahba (1990) and Gu (2002) for more
details. Furthermore, the space * has the following orthogonal decomposition:

Hi={1} & Ho; & H, ), (2.3)

where {1} is the mean space, H)F{gj:g;(X) = O} is the linear contrast subspace, and

Hij={g;: f ég‘;(-r)d-’f:(l f ég}(X)dx:O, g; € £>[0, 11} is the nonlinear contrast space. Both *
and ", as subspaces of *, are also RKHS and respectively associated with the reproducing
kernels Rg and R;. Based on the space decomposition (2.3), any function g; € * can be
correspondingly decomposed into the linear part and nonlinear part

2(x)=boj+B; (x; = 1) +&1(x)), 2.4)

where the term ki(x))=B;(x; — 1) € Ho, is the “linear” component and g,j(xj) € v is the
“nonlinear” component. The fact that % and * are orthogonal to each other assures the
uniqueness of this decomposition.

The function g(x) = b + g1(Xj1) + ... + g4(Xjg) is then estimated in the tensor sum of *’s, that
is, ‘H=€B‘!1»:]’H,-. The decomposition in (2.3) leads to an orthogonal decomposition of #:
d d d
H= o Hi={1}® &Ho;® &H;
J= J= J=

={1} e Ho @ Hi, (2.5)

where 710:€Bff:1740j and H :€Bf,(:.741 j. In the next section, we propose a new regularization
problem to estimate g € H by imposing some penalty on function components, which
facilitates the structure selection for the fitted function.

J Am Stat Assoc. Author manuscript; available in PMC 2011 November 23.



1duasnue Joyiny vd-HIN 1duasnue Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Page 5

2.2 New Regularization Method: LAND

Throughout the article, we regard a function g(x) as a zero function, that is, g = 0, if and
only if g(x) = 0, Vx € . With the above setup, we say X; is a linear covariate if §; # 0 and
915 = 0, and X; is a nonlinear covariate if gy(xj) is not zero. In other words, we can describe
the three index sets in the model (2.1) in a more explicit manner:
Linearindexset: [,={j=1,...,d:8; # 0,g1; =0},
Nonlinearindex set: I, ={j=1,...,d:g1; # 0},
Nullindexset: [I,={j=1,...,d:3;=0,g1; = 0}.

o

Note that the nonlinear index set Iy can be further decomposed as Iy = Ipy U Iy, Where Ipy
={ =0, 9yj # 0} is the index for purely nonlinear terms and I,y = {j # 0, gy; # O} is the
index for covariates whose linear and nonlinear terms are both nonzero.

The model selection problem for (2.2) is therefore equivalent to the problem of identifying
IL, Iny lo. To achieve this, we propose to solve the following regularization problem:

d d

l n
m‘jn—Z[y,» - g(x,-)]2+,1;Zu‘()j”?’ojguﬂ +/122W1j”7)|ng,H s
geH n = = oA : (2.6)

where 7 and Pv are the projection operators respectively from # to * and *v. The
regularization term in (2.6) consists of two parts: "zl = |;] is equivalent to L, penalty on
linear coefficients (Tibshirani 1996), and /"¢l is the RKHS norm of gj in *v. In the context
1w, 2 12
of second-order Sobolev space, we have lefg“,,,l :{f ol 8101 dx} Our theoretical results
show that this penalty combination enables the proposed procedure to distinguish linear and
nonlinear components automatically. Two tuning parameters (A1, A) are used to control
overall shrinkage imposed on linear and nonlinear terms. As shown in Section 3, when (A,
Ap) are chosen properly, the resulting estimator is consistent in both structure selection and
model estimation. The choices of weights wo; and wy; in (2.6) are discussed in the end of this
subsection. We call the new procedure linear and nonlinear discoverer (LAND) and denote
the solution to (2.6) by g. The model structure selected by the LAND is defined as

We note that the penalty proposed in (2.6) is related to the COSSO penalty for
nonparametric model selection proposed by Lin and Zhang (2006) and Zhang and Lin
(2006). The following remark reveals the link and difference between the new penalty and
the COSSO penalty.

d d
Remark 1—Denote Jl(g):ijl HPOJ&’H'H“ and Jn(g>=Z,-:1||7’1.fgI|H]. We also denote the

d
COSSO penalty term as Jc(g)zzjzl ||Pig [[H where 7 is the projection operator from * to %
= Ho @ i and I - 1x is the previously defined RKHS norm. Based on

2 2
HP,g[lW - \/”('D('jgnwn+||$D'fg”wl , the Cauchy—Schwarz inequality implies that
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Ji(g)+J,(g)
2

< J(g) < Ji(g)+Jn(8)

forany g € .

The above remark implies that the penalty term in (2.6) includes the COSSO penalty as a
special case when equal weights and smoothing parameters are used for regularization. The
LAND is much more flexible than the COSSO by employing different weights and
smoothing parameters, which makes it possible to distinguish linear and nonlinear
components effectively.

The weights woj and w4 are not tuning parameters as they need to be prespecified by data.
We propose to choose the weights adaptively such that unimportant components are
assigned with large penalties and important components are given small penalties. In this
way, nonzero function components are protectively preserved in the selection process, while
insignificant components are shrunk more toward zero. This adaptive selection idea has been
employed for linear models in various contexts (Zou 2006; Wang, Li, and Jiang 2007;
Zhang and Lu 2007) and SS-ANOVA models (Storlie et al. 2011), and it was found to be
able to greatly improve performance of nonadaptive shrinkage methods if the weights are
chosen properly. Assume g is a consistent estimator of g in #. We propose to construct the
weights as follows:

! ! for j=1 d
—, wyj=—-= forj=1,....d,
1B;l

21,115 2.7)

woj=

where gj, §1j are the decomposition of g according to (2.4), || - ||» represents the L, norm, and
a>0and y > 0 are some positive constants. We will discuss how to decide o and y in
Section 3. A natural choice of g is the standard SS-ANOVA solution, which minimizes the
least squares in (2.6) subject to the roughness penalty. Other consistent initial estimators
should also work.

Remark 2—The implementation of the LAND procedure requires an initial weight
estimation. We point out this two-step process has a different nature from that of classical
stepwise selection procedures. In forward or backward selection, variable selection is done
sequentially and involves multiple decisions. At each step, the decision is made on whether
a covariate should be included or not. These decisions are generally myopic, so the selection
errors at previous steps may accumulate and affect later decisions. This explains instability
and inconsistency of these stepwise procedures in general. By contrast, the model selection
of the LAND is not a sequential decision. It conducts model selection by solving (2.6) once,
where all the terms are penalized and shrunken toward zero simultaneously. The initial
weights are used to assure the selection consistency of the LAND, which is similar to the
adaptive LASSO in linear models.

3. THEORETICAL PROPERTIES

In this section, we first establish the convergence rates of the LAND estimator. Then under
the tensor product design, we show that the LAND can identify the correct model structure
asymptotically, that is, T, — Iy, Ty — Iy, To — lo with probability tending to 1.
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To facilitate the presentation, we now define some notations and state the technical
assumptions used in our theorems. First, we assume the true partially linear regression is

yi=go(Xi)+&i,
go(xi)=bo+ X, xijfo;+ X foj(xip+ 2 O(xij),
jEIL jGIA' jel() (31)

where by is the true intercept, fo;’s are the true coefficients for nonzero linear effects and
foj’s are the true nonzero functions for nonlinear effects. For any g € *, we decompose g(-)
in the framework of function ANOVA:

d d
g(x)=b+ Z‘ﬁjkl (xj)+ Zglj(xj)’
j=1 J=1

where g, € *v. For the purpose of identifiability, we assume that each component has mean

n N n \
zero, that is, ZI.: lﬂ_ikl(xij)‘*'zi:]glj(xij):o for each j =1, ..., d. For the final estimator g,
the initial estimator g, and the true function go, their ANOVA decomposition can also be

expressed in terms of the projection operators. For example, g?j=5"1,'go forj=1,...,d.

Given data (x;, i), i = 1, ..., n, for any function g € *, we denote its function values
evaluated at the data points by the n-vector g = (g(Xy), ..., 9(Xn)). Similarly, we define gg
and g. Also, define the empirical L, norm || - ||, and inner product (-, -), in R" as

1¢ &
lglly =~ >80 (.=~ gxh(x):
i=1 i=1

2 n )
and thus H\ - gH,, =(1/”)Zi:1 {vi — g(xd)}", For any sequence r,, — 0, we denote A ~ r, when
there exists an M > 0 so that M~ 1r, <A < Mry,.

We will establish our theorems for fixed d under the following regularity conditions:
(C1) eisassumed to be independent of X, and has the sub-exponential tail, that is,
E[exp(|el/Cq)] < Cq for some 0 < Cp < 00
Cc2 n ,
(€2) Zi:l(xi — 1/2)(xi = 1/2) /n converges to some non-singular matrix

(C3) the density for X is bounded away from zero and infinity.

3.1 Asymptotic Properties of the LAND

The choices of weights wg;’s and wy;’s are essential to the LAND procedure. In Section 2,
we suggest using the weights constructed from the SS-ANOVA solution g: Woj = |6j|~* and

-y

, forj=1, ..., d. The standard smoothing ANOVA g is obtained by solving

wij= HE’U

J Am Stat Assoc. Author manuscript; available in PMC 2011 November 23.
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. 1 n 2 d ) 2

In the following theorem, we show that the LAND estimator has a rate of convergence n~2/5
if the tuning parameters are chosen appropriately.

Theorem 1—Under the regularity conditions (C1) and (C2) and the weights stated in (2.7)
and (3.2), if A1, A ~ n™#5 and « > 3/2, y > 3/2, then the LAND estimator in (2.6) satisfies:

lrg— g()”n ZOP(’7_2/5) if go is not a constant function

and

H?— g()”n =0,,(n_1/2) if go is a constant function.

Remark 3—Theorem 1 is consistent with corollary 1 in the COSSO article (Lin and Zhang
2006) since we assume the same order of two smoothing parameters A1 and A. It is worth
pointing out that we do not have the optimal parametric rate when the nonparametric
component of g is zero. This is not surprising because we still apply the standard
nonparametric estimation method, which yields n=2>-rate, even when the true function g is
purely linear.

3.2 Selection Consistency

To illustrate the selection consistency of our LAND procedure, we give an instructive
analysis in the special case of a tensor product design with a smoothing spline ANOVA
model built from the second-order Sobolev spaces of periodic functions. For simplicity, we
assume that the error &’s in the regression model are independent with the distribution N(O,
2) here. The space of periodic functions on [0, 1] is denoted by

Hper={1} @ GB‘f:{Ho,- ® @7:181767: J» Where s~ is the functional space - on x;, and
Sper= { f: f(z)zza,, ﬁcos(vatHZb\. V2sin(27ve), with Z(a§+b§)(2m-r)4<oo} .
v=1 v=1 v=1

We also assume that the observations come from a tensor product design, that is,
{x1,X2,..., X4},

where Xj = (Xgj, -, anj)' and xjj =i/, fori=1,...,njnj,andj=1, ..., d. Without loss of
generality, we assume that nj equals some number m forany j=1, ..., d.

J Am Stat Assoc. Author manuscript; available in PMC 2011 November 23.
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Theorem 2—Assume a tensor product design and gg € <. Under the regularity conditions

(C1) to (C3), assume that (i) n'/5xywo; — o0 for j € NI ; (ii) n*/* 3wt — o for j € NIy, we
have T = Iy, Ty = In, To = 1o with probability tending to 1 as n — oo,

Remark 4—To achieve the structure selection consistency and convergence rate in
Theorem 1 simultaneously, we require that A1, Ay ~n~4/, « > 3, y > 29/8, by considering the
assumptions in Theorems 1 and 2 and Lemma A.1 in the Appendix if we use the weight of
the form (2.7).

Remark 5—The proof of the selection consistency requires detailed investigation on eigen-
properties of the reproducing kernel, which is generally intractable. In Theorem 2, we
assume that the function belongs to the class of periodic functions and x has a tensor product
design. This makes our derivation more tractable, since the eigenfunctions and eigenvalues
of the RK for Hyer have particularly simple forms. Results for this specific design are often
instructive for general designs, as suggested by Wahba (1990). We conjecture that the
LAND is still selection consistent in general cases. This is also supported by numerical
results in Section 5, where neither the tensor product design nor the periodic function is
assumed in the examples. Note that the special design condition is not required for the
convergence rate results in Theorem 1.

4. TWO-STEP LAND ESTIMATOR

As shown in Section 3, the LAND estimator can consistently identify the true structure of
partially linear models. In other words, the selected model would be correct as the sample
size goes to infinity. In finite sample situations, if the selected model is correct or
approximately correct, it is natural to ask whether refitting data based on the selected model
would improve model estimation. This leads to the two-step LAND procedure: at step I, we
identify the model structure using the LAND, and at step 1l we refit data by using the
selected model from step I. In particular, we fit the following model at the second step:

yisbt Y Bia(xij)+ Y g1j(xip+ Y 0Cxi)+e

Jel, Jel, JEl, (4.1)

where (I, Ty, To) are the index sets identified by . Denote the two-step LAND solution by
¢". The rationale behind the two-step LAND is: if the selection in step | is very accurate,
then the estimation of g™ can be thought of as being based on a (approximately) correct
model. This two-step procedure thus will yield better estimation accuracy as shown in the
next paragraph.

Let Q, = {I_ =T_and Iy = Ty}. In the first step, we estimate I, and Iy consistently, that is,
P(Qn) — 1, according to Theorem 2. In the second step, we fit a partial smoothing spline in

(4.1). Denote the solution as £~ and €} ;. Within the event Q, that is, T_ = 1__and Ty = Iy, we
know that, by the standard partial smoothing spline theory (Mammen and van de Geer
1997),

B - Bo]| =077,

(4.2)

J Am Stat Assoc. Author manuscript; available in PMC 2011 November 23.
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||Ef - g(‘)fllz =0,(n*), (4.3)

under regularity conditions. In addition, we know that #* is also asymptotically normal
within the event Q. Since Q,, is shown to have probability tending to 1, we can conclude
that (4.2) and (4.3) hold asymptotically. Moreover, comparing (4.2)-(4.3) with Theorem 1,
we conclude that the convergence rates of both linear and nonlinear components can be
further improved to their optimal rates by implementing the above two-step procedure.

In Section 6, we find that the LAND and two-step LAND perform similarly in many cases.
If the LAND does a good job in recovering the true model structure correctly, say in strong
signal cases, then the additional refitting step can improve the model estimation accuracy.
However, if the selection result is not good, say, in weak signal cases, the refitting result is
not necessarily better.

5. COMPUTATION ALGORITHMS

5.1 Equivalent Formulation

We first show that the solution to (2.6) lies in a finite-dimensional space. This is an
important result for nonparametric modeling, since the LAND estimator involves solving an
optimization problem in an infinite-dimensional space *. The finite representer property is
known to hold for standard SS-ANOVA models (Kimeldorf and Wahba 1971) and partial
splines (Gu 2002).

Lemma 1— Let gx)= b+z B kl(*1)+z glz(VJ) be a minimizer of (2.6) in %, with gy
€ "iforj= , d. Then gy; E span{Ry;(X;, ) i= ., N}, where Ryj(:, ) is the
reproducing kernel of the space "v.

To facilitate the LAND implementation, we give an equivalent but more convenient
formulation to (2.6). Define @ = (61, ..., g)". Consider the optimization problem:

9>r5111€1H—IZ[v, g(x:)] +/1|2”0/||7D018||

+T()j§10; WUHPugH;{I +T1]§1H‘1j6j,

subjectto  6; >0, j=1,....,d, (5.1)

where 7 is a constant that can be fixed at any positive value, and (A1, 71) are tuning
parameters. The following lemma shows that there is a one-to-one correspondence between
the solutions to (2.6) [for all possible pairs (A1, A2)] and those to (5.1) [for all (A1, 71) pairs].

Lemma 2—Set 7,=43/(47o). (i) If ¢ minimizes (2.6), set 6=, *7;"/* ||P12]|; then the pair
(6, ) minimizes (5.1). (ii) If (4, $) minimizes (5.1), then ¢ minimizes (2.6).

In practice, we choose to solve (5.1) since its objective function can be easily handled by
standard quadratic programming (QP) and linear programming (LP) techniques. The
nonnegative 6;’s can be regarded as scaling parameters and they are interpretable for the
purpose of model selection. If §; = 0, the minimizer of (5.1) is taken to satisfy || 7vg]| =
which implies that the nonlinear component of g; vanishes.
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With @ fixed, solving (5.1) is equivalent to fitting a partial spline model in some RKHS
space. By the representer theorem, the solution to (5.1) has the following form:

gx)= b+28 kl(\])+20 wy T ZC,RU(x,,,xj)

i=1 (5.2)

The expressmn (5. 2) suggests that the linearity or nonlinearity of gj is determined by the fact
whether ﬁj Oor HJ 0 or not. Therefore, we can define the three index sets as:

{Jﬁ,aeoe,—O} 1,={j:6; # 0},
{]B/ 00 =0}.

5.2 Algorithms

In the following, we propose an iterative algorithm to solve (5.1). Define the vectors y = (yj,

oY 9= QX), e 9 )T A= (0, B, -.n, BT, @nd € = (cy, ..., ¢p) T € R With some
abuse of notations, let Ryj also stand for the n x n matrix {Ryj(Xjj, Xjj)}, fori, i'=1, ...,n; j=

d 1

.,d,and RWIFZ.,‘ZIQJ“'I./Rl.i be the Gram matrix associated with the weighted kernel.
Let T be the n x (1 + d) matrix with tj; = 1 and tj; = ky(x;j)) fori=1, ...,nandj=1, ..., d.
Then g =TS + Ry;4C, and (5.1) can be expressed as

l’ﬁrl(}l’ln (y-TB- Rw,.()c)T(y =T - Rw].ﬁc)

d
+44 Z WO]‘W}'H‘ T()CTRw]_gc-f-Tl Z W]jgj,

Jj=1 Jj=1
s.t. 9, > 0, j=1, . ,d. (5'3)

To solve (5.3), we suggest an iterative algorithm to alternatively update (8, #) and c.

On one hand, with (8, ) fixed at their current values, we update ¢ by the following ridge-
type problem: define z =y — T and solve

1 T T
min~(z— R, 70)"(2 - R, jo+7oc'R, e 64

On the other hand, when € is fixed at their current values, we can update (8, ) by solving a

quadratic programming (QP) problem. Define VA;=W1_.,!R1‘,? forj=1,...,dand letV be the n
x d matrix with the jth column being v;. Then we obtain the following problem:

d

d
min- (y T8 - Vo) (y - T8 - V9)+1,Zwo,vsﬂwo?'fvemzm,
>0.8n J
J=1 J=1 (5.5)

Further, we can write |8j1 =8} +8; and B;=8; — 8 for each j, where S} and /3 T/ ;are
respectively the positive and negative part of ;. Define wg = (Woy, ..., Wog) ' - Then (5.5) can
be equivalently expressed as
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g%ig_%(y —TB*+TB - VO)(y - TB*+TB - V6)
+We (BT +B7)+T0€1 V6,

d
subjectto Y wy;0; <M, 6> 0,55 >0, >0
=1 (5.6)

for some M > 0. Given any (A1, M), the following is a complete algorithm to compute g.

Algorithm

Step 0  Obtain the initial estimator g by fitting a standard SS-ANOVA model. Derive
Bj» 91j,§ =1, ..., d, and compute the weights woj, wyj, j = 1, ..., d, using (2.7).

Step1 Initialize 8 =14 and/?jzﬁ]-,jzl, o d,
Step2 Fixing (@, f) at their current values, update ¢ by solving (5.4).
Step 3  Fixing ¢ at their current values, update (@, #) by solving (5.6).

Step4  Go to step 2 until the convergence criterion meets.

6. NUMERICAL STUDIES

In this section, we demonstrate the empirical performance of the LAND estimators in terms
of their estimation accuracy and model selection. We compare the LAND with GAM, SS-
ANOVA, COSSO, and the two-step LAND (2LAND). Note that LAND and 2LAND
procedures give identical performance for model selection. The GAM and COSSO fits were
obtained using the R packages “gam” and “cosso,” respectively. The builtin tuning
procedures in R packages are used to tune the associated tuning parameters.

The following functions on [0, 1] are used as building blocks of functions in simulations:

hi(x)=x, hy(x)=cos(2nx),
h3(x)=sin(2mx)/(2 — sin(27x)),
ha(x)=0.1sin(27x)+0.2c0s(27x)+0.3(sin(27x))>+0.4(cos(2x))>+0.5(sin(27x))>,
hs(x)=3x — 1)°.

For each function, we can examine whether it is a pure linear, pure nonlinear, or both linear
and nonlinear function based on its functional ANOVA decomposition in (2.4). Simple
calculation shows that hq is a pure linear function, hy, h3, and h,4 are pure nonlinear
functions, and hg contains both nonzero linear and nonlinear terms.

For the simulation design, we consider four different values of theoretical R? as R2 = 0.95,
0.75, 0.55, 0.35, providing varying signal-to-noise ratio (SNR) settings. For the input x, we
consider both uncorrelated and correlated situations, corresponding to p = corr(X;, X;) =0,
0.5, 0.8 for all i # j. The combination of four levels of RZ and three levels of produces
twelve unique SNR settings.

To evaluate the model estimation performance of the estimator g, we report its integrated
squared error ISE = Ex{g(X) — $(X)}2. The ISE is calculated via a Monte Carlo integration
with 1000 points. For each procedure, we report the average ISEs over 100 realizations and
the corresponding standard errors (in parentheses). To evaluate performance of the LAND in
structure selection, we summarize the frequency of getting the correct model structure
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(power) and an incorrect model structure (Type | error) over 100 Monte Carlo simulations.
In particular, the power related measures include:

i. the number of correct linear effects identified (denoted as “corrL”)
ii. the number of correct nonlinear effects identified (denoted as *“corrN”)
iii. the number of correct linear and nonlinear effects identified (denoted as “corrLN”)
iv. the number of correct zero coefficients identified (denoted as “corr0”).
The Type | error related measures include:

i.  the number of linear effects incorrectly identified as nonlinear effects (denoted as
“LtON”)

ii. the number of nonlinear effects incorrectly identified as linear effects (denoted as
“NtOL”)

iii. the number of linear or nonzero effects incorrectly identified as zero (denoted as
“LNto0”).

The selection of tuning parameters is an important issue. Our empirical experience suggests
that the performance of the LAND procedures is not sensitive to y and a. We recommend to
use y = o = 4 based on Remark 4 and they work well in our examples. The choices of (A4,
o) [or (A1, M), equivalently] are important, as their magnitude directly controls the amount
of penalty and the model sparsity. The numerical results are quite sensitive to A’s. Therefore,
we recommend to select the optimal parameters using cross-validation or some information
criteria. In our simulation, we generate a validation set of size n from the same distribution
of the training set. For each pair of tuning parameters, we implement the procedure and
evaluate its prediction error on the validation set. We select the pair of 1q and A, (or M)
which corresponds to the minimum validation error.

6.1 Example 1

We generate Y from the model
Y=3h1 (X1)+21‘12(X2)+2h5(X3)+8,

where & ~ N(0, ¢2). The pairwise correlation corr(X;, Xx) = p for any j # k. We consider three
cases: p =0, 0.5, 0.8. In this model, there are one purely linear effect, one purely nonlinear
effect, one linear-nonlinear effect, and d — 3 noise variables. We consider d = 10 and d = 20,
and the number of noise variables increases as d increases.

Table 1 summarizes the ISEs of all the procedures in twelve settings. To set a baseline for
comparison, we also include the oracle model which fits the data using the true model
structure. The 2LAND consistently produces smaller ISEs than GAM and SS-ANOVA in all
the settings. The LAND is better than GAM and SS-ANOVA in most settings. We also note
that the LAND and 2LAND perform similarly in the independent case. When the covariates
are correlated at some degree, 2LAND tends to give better ISEs than the LAND as long as
the signal is not too weak. The comparison between the LAND methods and COSSO is
quite interesting. When R? is moderately large, say 0.75 and 0.95, the 2LAND overall gives
smaller or comparable ISEs; if R2 is small, say 0.55 and 0.35, the COSSO gives smaller
errors. This pattern is actually not surprising, as the COSSO and LAND aim to tackle
different problems. The COSSO can distinguish zero and nonzero components, while the
LAND can distinguish zero, linear, and nonlinear components. Since the LAND methods are
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designed to discover a more detailed model structure than the COSSO, they generally
estimate the function better if they can correctly separate different terms, which often
require relatively stronger signals in data. The main advantage of the LAND methods is to
produce more interpretable models by automatically separating linear and nonlinear terms,
while other methods can not achieve this.

Figure 1 plots the estimated function components by the SS-ANOVA and the 2LAND in
one typical realization of Example 1. For illustration, we plot the first four function
components. In each panel, the solid, dashed, dotted lines respectively represent the true
function, the fit by SS-ANOVA, and the fit by 2LAND. We observe that both SS-ANOVA
and 2LAND perform well in the first three panels, and 2LAND shows better accuracy in
estimation than SS-ANOVA by producing a sparse model. In the last panel where the true
function is zero, the 2LAND successfully removes it from the final model while the SS-
ANOVA provides a nonzero fit.

Table 2 reports the selection performance of the LAND under different settings. Note that
the 2LAND is identical to the LAND for model selection. We observe that the LAND shows
effective performance in terms of both power and Type-1 error measures in all the settings.
When the signal is moderately strong, the LAND is able to identify the correct model with
high frequency since the “corrL,” “corrN,” “corrLN,” and “corr0” are all close to their true
values and the incorrectly selected terms are close to zero. Except in weak signal cases, the
frequency of missing any important variable or treating linear terms as nonlinear is low. In
more challenging cases, with a small RZ or a large number of noise variables, the LAND
selection gets worse as expected but still performs reasonably well, considering that the
sample size n = 100 is small.

6.2 Example 2

We modify Example 1 into a more challenging example, which contains a larger number of
input variables and a more complex structure for the underlying model. In particular, let d =
20. Similarly to Example 1, we consider uncorrelated covariates, correlated covariates with
pairwise correlations p = 0, 0.5, 0.8 respectively. The response Y is generated from the
following model:

Y=3h1(X1)—4h (X2)+2h1 (X3)+2ho(Xa)+3h3(Xs)+(5ha(Xe)+2h1 (X6))+2hs (X7 ) +e,

where ¢ ~ N(0, 2). In this case, the first three covariates X1, X5, and X3 have purely linear
effects, the covariates X4 and Xg have purely nonlinear effects, and the covariates Xg and X7
have nonzero linear and nonlinear terms. There are d — 7 noise variables, and let n = 250.

Table 3 summarizes the prediction errors of various estimators under different settings. We
consider four different values of theoretical R? as R? = 0.95, 0.75, 0.55, 0.35, which provide
different signal-to-noise ratio (SNR) values and hence varying signal strength. We have
similar observations as in Example 1. The LAND and 2LAND give similar performance,
and both of them consistently produce smaller ISEs than GAM and SS-ANOVA in all the
settings. The ISEs of the LAND and 2LAND are significantly better than that of the COSSO
in all the cases except R? = 0.35, where the signal is very weak. In Table 4, we report the
structure selection performance of the LAND under different settings. Overall, the LAND
gives an effective performance as long as the signal is not too weak.

In Figure 2, we plot the estimated functions given by SS-ANOVA and 2LAND for one
typical realization of Example 2. Again, with the feature of automatic selection, 2LAND
delivers overall better estimation than SS-ANOVA. In the last panel, the SS-ANOVA
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provides a nonzero fit to a zero component function, while the 2LAND successfully detects
the variable as unimportant.

In Table 4, we report the structure selection performance of the LAND under different
settings. Similarly to Example 1, we observe that the LAND overall gives effective
performance in all the settings. When the signal is moderately strong, the LAND procedure
is able to identify the correct model with a high frequency and the incorrectly selected terms
are close to zero. When the signal becomes quite weak, the LAND performance gets worse
but is still reasonable.

6.3 Real Example

We apply the LAND to analyze the Boston housing data, which are available at the UCI
Data Repository and can be loaded in R. The data are for 506 census tracts of Boston from
the 1970 census, containing twelve continuous covariates and one binary covariate. These
covariates are per capita crime rate by town (crime), proportion of residential land zoned for
lots over 25,000 sq.ft (zn), proportion of non-retail business acres per town (indus), Charles
River dummy variable (chas), nitric oxides concentration (nox), average number of rooms
per dwelling (rm), proportion of owner-occupied units built prior to 1940 (age), weighted
distances to five Boston employment centers (dis), index of accessibility to radial highways
(rad), full-value property-tax rate per USD 10,000 (tax), pupil-teacher ratio by town
(ptratio), 1000(B — 0.63)2 where B is the proportion of blacks by town (b), and percentage of
lower status of the population (Istat). The response variable is the median value of owner-
occupied homes in USD 1000’s (medv).

We scale all the covariates to [0, 1] and fit the 2LAND procedure. The parameters are tuned
using 5-fold cross-validation. From the thirteen covariates, the 2LAND identifies two linear
effects: rad and ptratio, and six nonlinear effects: crime, nox, rm.dis, tax, and Istat. The
remaining five covariates: zn, indus, chas, age, b, are removed from the final model as
unimportant covariates. For comparison, we also fit the additive model in R with the
function gam, which identify four covariates as in-significant at level a = 0.05: zn, chas, age,
and b. Figure 3 plots the fitted function components provided by the 2LAND estimator. The
first six panels are for nonlinear terms and the last two are for linear terms.

7. DISCUSSION

Partially linear models are widely used in practice, but none of the existing methods can
consistently distinguish linear and nonlinear terms for the models. This work aims to fill this
gap with a new regularization framework in the context of smoothing spline ANOVA
models. Rates of convergence of the proposed estimator were established. With a proper
choice of tuning parameters, we have shown that the proposed estimator is consistent in both
structure selection and model estimation. The methods were shown to be effective through
numerical examples. An iterative algorithm was proposed for solving the optimization
problem. Compared with existing approaches, the LAND procedure is developed in a
unified mathematical framework and well-justified in theory.

In this article, we consider classical settings where d is fixed. It would be interesting to
extend the LAND to high-dimensional data, with a diverging d or d >> n. For ultrahigh-
dimensional data, we suggest to combine the LAND procedures with dimension reduction
techniques such as Sure Independence Screening (Fan and Jinchi 2008; Fan, Feng, and Song
2011). Alternatively, we can first implement the variable selection procedures for high-
dimensional additive models, using SpAM (Ravikumar et al. 2009) or the adaptive group
LASSO (Huang, Horowitz, and Wei 2010). These procedures are consistent in variable
selection for high-dimensional data, but they cannot distinguish linear and nonlinear terms.
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After variable screening is performed in the first step, the LAND can be applied to discover
the more subtle structure of the reduced model.

Additive models are a rich class of models and provide greater flexibility than linear models.
The possible model mis-specification associated with additive models is to overlook the
potential interactions between variables. The LAND can be naturally extended to two-way
functional SS-ANOVA models and conduct selection for both main effects and interactions.
Interestingly, this extension makes it possible to detect subtle structures for interaction
terms, such as linear-linear, linear-nonlinear, and nonlinear-nonlinear interactions between
two variables.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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APPENDIXES

Some Notations

Recall that the ANOVA decomposition of any g € * is
d d ‘
g=b+ ) Biki(x)+ > 8155, Then we define hi(x) = fiku(6) + g3i06)

d d . d ‘
HO(X):Zj:lﬁjkl(fj)» H, (X):ijlglj(x.i), and H(X):Zj:,hj(xj). The same notational rule
also applies to g, g, and gp.
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Appendix 1. Important Lemmas: Convergence Rates of g

LemmaA.l

Proof

We derive the convergence rate of g in Lemma A.1.

Suppose Conditions (C1)-(C3) hold. If we set A ~ n=#/3, then the initial solution (3.2) is
proved to have the following convergence rates, forany 1 <j <d:

s, -, 0,0,
1B - Bo|| =0,(n173),

where || - || is the Euclidean norm.

~ d 2 ~
We first prove that |[H—Hgl||, = Op(n~2/5). Denote J"(H)ZZFI leiH”.H]. Since H minimizes
H > ||Ho+e - HH::“F/Ui(H), we have the following inequality:

|| = Ho[> +AJ:(F) < 2(H — Ho, &),+AJi(Ho),

||z - H0||fl <2l |& — Hol|,+ A7:(Ho)
< 0,(1)||H = Hy||,+0,(1) (A1)

by the Cauchy-Schwarz inequality and the subexponential tail assumption of ¢. The above
inequality implies that ||[H—Hg||, = Op(1) so that ||H||, = Op(1). By the Sobolev embedding

d :
theorem, we can decompose H(x) as Hy(x) + Hy(x), where Zj:]”glj“m < Ju(H), Similarly,

.~ o~ - ~ d - - -
we can write H = Hg + Hy, where HO(X):ZF]'Bjkl(-"J) and ||Hq||co < Jn(H). We shall now
show that ||H||co/(1 + Jn(H)) = Op(1) as follows. First, we have

ol _ e, el
1+J,(H) 1+J,(H) 1+J,(H) (A.2)

Combining with Condition (C2), (A.2) implies that ||8]|/(1+J,(H)) = Op(1). Since x € [0, 119,
[Holleo/(1 + Jn(H)) = Op(1). So we have proved that ||H||eo/(1 + Jn(H0)) = Op(1) by the
triangular inequality and the Sobolev embedding theorem. Thus, according to Birman and
Solomjak (1967), we know the entropy number for the below constructed class of functions:

H-Hy ”H 00 -1)2
(6’{1+J,,(H)'1+J,,(H) <Ch [l < Mo

where M7 is some positive constant. Based on theorem 2.2 in the article by Mammen and
van de Geer (1997) about the continuity modulus of the empirical processes

{Z;&'(H — Ho)(x1)} indexed by H and (A.1), we can establish the following set of
inequalities:
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_ . 3/4 - o _
AT < (| = Hol[ " Q0,0 v (1+2,(B)n 101 % 0,0~ 1)+ AJi(Ho),
and

A+, (H) v (1+,(E)n 10150, (n™ )+ AT (Ho).

I~ Holl; < [

H — Hy|

Considering J2/d < J; < J?, we can solve the above two inequalities to obtain ||I-f—H0||n =
Op(n~23) and J;(H) = Op(1) given A ~ n¥>. Theorem 2.3 in the article by Mammen and van
de Geer (1997) further implies that

HH - H(’Hz ZOP(”_z/S)' (A.3)

N d . d . o o
Recall that 7 (X)ZZ jzlhj(x.f):Z o Piki(e)+81(x1) and ( £9,()) is the true value of (8,

91j(*)). We next prove || — Boll = Op(n~Y/5) and “5’1; il 5 =0,(0""") for anyj=1,..,d
based on (A.3). We first take a differentiation approach to get the convergence rate for f;.

Since the density for X is bounded away from zero and f(],hj(u)du=0, (A.3) implies

ax (YT 0ny — PO = -4/5
max Johjw) = ki) du=0,(n™*P). o

Agmon (1965) showed that there exists a constant C >0 such that forall 0 <k <2,0<p<1
and for all functions y: R — R:

1 2 2 _n 1 2k rl 2
JooP 0 dx < o7 [0 (0dxr € [/ () d (A5)

Having proved that Ji(H) = Op(1), we can apply the above interpolation inequality (A.5) to
(A4) with k = 1, p = A1/4, and y(x)=h;(x) — K(x). Thus we conclude that

max [ (&) - (0/00H) du=0, (%), o

Note that we can write (8/8u)h]—(u) = [51 + (3/3u)gyj(u) and ((3/0M)h(j)-(u)=l3?+((9/ ou)g! (),
respectively. Thus (A.6) becomes
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0,1 %)=(B; - B 423, - B [, o (22 ) - £ (W) du+ Jo(Z31w - 288 .w) du
=B;~ B+ (%210 - £6,w) du

(A.7)

for any 1 <j < d, where the second equality follows from the definition of *v in RKHS.
Obviously, (A.7) implies that 3; - 8=0,(n"'"),

We next prove the convergence rate for dlj by decomposing the function gj(x;) in another
form; see example 9.3.2 in the book by van de Geer (2000). We can write gj(x;j) = (b/d) +

i — 112) + g1j() = Goj(%)) + a;(xp), where g1;0x)= ], o8P (x)du and wu() = (% —

wu)1{u < x}. Let Eu(-\‘j)=a{;,u+0{,uxj' be the projection in terms of empirical Lp-norm of
wu(xj) on the linear space spanned by {1, xj}. Let yy (X)) = wy(X)) — wu(Xj). Then, we can
further decompose

i (x)=[(b/d)+B;(x; — 1/2)]+ [ JosPwa) durxt | (‘)gf)(zt)a{udu] + 382l (xj)du

=g0j(x;)+g11(x;)+gojn(x}),

where ggj| and gy n are the (orthogonal) linear and nonlinear components of ggj;,

respectively. We define (goj, g1j,1, d1j,n1) and (g8,-, g(l),;l, g(l),;nl) as the initial estimators and
true values of (Qoj, 91;,1, 91j,n1), respectively. By corollary 10.4 in the work by van de Geer
(2000), we have

= = 0 0 _ -1/2
“goj+g1j_l — 80~ g]j‘]”n =0,(n / ) and

= 0 _ -2/5
|g1/~n1_glj.nl| =0,(n~*P).

n

By the triangle inequality and the result obtained previously, that is, /; —l3?=0p(11_1/5), we
~ 0 -1/5 -
have “gm - 31‘,:1”,, =0,(1"'""*), Then combining the fact that 91j = 91,1 + 91j,nl, We have

~ -1/5
shown ||g1j - g?j]l,, =0,(n"'") by applying the triangle inequality again. We further obtain

the Lp-rate for gy, that is, “5'1/ -1l 5 =0,(n™'"), by applying theorem 2.3 from the book by
Mammen and van de Geer (1997). This completes the whole proof.

Proof of Theorem 1

W d W R d
Denote /1 (H)zzj:]“’()jwﬂ and 7/ (H):ijlwlj”PUH”,H]. We first rewrite (2.6) as
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Page 21

n
Z(b()"‘HO(Xi)"'si -b- H(Xi))2+/ll J;'A(H)-l-ﬂg.],‘:'(H).

1
=y

[z

. hj(xij)=0 . . . .
Since we assume that ;‘ P the terms involving b in the above equation are

" n — n
(bo — b)"+2(bo — b)zles"/”- Therefore, we obtain that b:b0+zi:13i/’l which implies that

b—by=0,(n""". (A.8)

—— d d A
Recall that /() = ZFIWJHZFI H?UH“H]. It remains to prove that ||H — Hol|n =
Op(n~2/5) when J(Hp) > 0 and ||H — Hg|l, = Op(n~Y2) when J(Hg) = 0 as follows.

The definition of A implies the following inequality:
|‘ii - H0]|;+,11J,‘"(ﬁ)+,121;;‘(f7) < 2e, H — Hy),+ 417 (Ho)+ 0 (Hy),

|7~ Hol[, < 2l JJ7 - ol + 17 troyao o

< 0,()|[H - Hol| +o,(1, (A.9)

where the second inequality follows from the Cauchy-Schwarz inequality, and the third one
follows from the subexponential tail of &. Hence, we can prove ||H — Hgl, = Op(1) so that ||
Hl|n = Op(1). Now we consider two different cases that J(Hg) > 0 and J(Hg) = 0.

J(Ho) > 0.

We first prove

I
———=0,()
J(Ho)+J(H) (A.10)

by the Sobolev embedding theorem. The Sobolev embedding theorem implies that ||
91j(Xj)lleo < 1™, and thus we can establish that

|Fio

|7

A [ZA
J(Ho)+J(H) — J(Ho)+J(H)  J(Ho)+J(H)

PR iHl,,
< 0P(1)+W < OP(])

n

Combining the above result with Condition (C2), we have ||8]|/(J(Ho) + J(H)) = Op(1) which
further implies that ||Ho|leo/(J(Ho) + J(A)) = Op(1) by the assumption that x € [0, 1]9. Again,

J Am Stat Assoc. Author manuscript; available in PMC 2011 November 23.



1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Zhang et al.

Page 22

by the Sobolev embedding theorem, we have proved (A.10). By theorem 2.4 in the book by
van de Geer (2000), we know the bracket-entropy number for the below class of constructed
functions is

H, |0 ﬂ'f]:ih-whemheg I < Mrs~\2
| HOHE) T A J j Al | < M52,

where ¢ = {hj(x) = (x — 1/2)gj + gyj(x): '«» < 00} and My is some positive constant. Based
on lemma 8.4 from the work of van de Geer (2000) about the continuity modulus of the
empirical processes (H — Hy, &), indexed by H in (A.9), we can establish the following set
of inequalities:

|17 - H0|[i+/11 Ty 20, () < (|| - H0|E/4(](H0)+J(ﬁ))l/ N0, (1724 00 Y (Ho)+ o (Ho).

1

(A.11)

Note that the sub-Gaussian tail condition in lemma 8.4 of the book by van de Geer (2000)
can be relaxed to the assumed subexponential tail condition; see discussions on page 168 of
that book. In the following, we will analyze (A.11) for the cases J(H) < J(Ho) and J(H) >
J(Ho). If J(H) < J(Hg), then J(H) = Op(1). Thus, (A.11) implies that

2

7 374 3 - w w
< || = ol I HO 40,07 Py 0 Ty (Hoy Ao (Ho),

177 - Ho

(A.12)

Since A1, Ao ~ ™45 we have ||H — Ho|ln = Op(n~2/) based on (A.12). We next consider the
case that J(H) > J(Hg) > 0. In this case, (A.11) becomes

—~ 2 o~ o~ — 3/4  ~1/4 1/ , , .

— 110 1 A2Jdy = — 110 pn A1 0)TA2J, U10),s

177 = Hol| -+ 73 )+ (B < ||H = Hol| ()" 0,072 +17} (Ho)+ Ao (Ho)
which implies either

|77 - H0|]i+ N} + 7 ) < || - H0|E/4J(ﬁ)l/ 0,071 i)

or

[F = Hol[| + 17y D+ (H) < 3T} (Ho)+ o3 (H). in
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Note that
- L d _ d _
AT Ey 0T = Ay 3 (|Posf]| +aow; 3 ||P1H]|
=1 Hy J=1 H)
> rpJ(H), (A.15)
where r,=1;wy A Law], wo=min{wo, ..., woq} and wi=minfwy, ..., w4} Thus solving (A.
13) gives
o ~1/3 —2/3
“H Ho”n <1 70T, (A.16)
_ »
JH) < 170,73, (A.17)

Because of the conditions on A, A2, Woj, and wyj, we know ! :0,,(n4/5). Hence (A.16) and
(A.17) imply that J(A) = Op(1) and ||H — Ho|l, = Op(n~2/%). By similar logic, we can show
that (A.14) also implies J(H) = Op(1) and ||H — Ho|l, = Op(n~2).

So far, we have proved ||H — Ho|l, = Op(n~2/%) and J(H) = Op(1) given that J(Hg) > 0. Next
we consider the trivial case that J(Hp) = 0.

J(Hg) =0.

Based on (2.7) and Lemma A.1, we know that wy ! =0, (1 *) and w1 }=0,(n™"") given that
J(Ho) = 0. Thus we have 1»1'5}“’1_}:0;,("_3/10) based on the assumption that a > 3/2, y > 3/2.

Then we know that 7> '=0,(n'/?). From (A.16) and (A.17), we can get [|H — Ho|l, =
Op(n~2) and J(H) = Op(n~1/2) = 0p(1).

Appendix 3. Proof of Lemmas 1 and 2

The proof of Lemma 1 is similar to those of lemmas 1 and 4 in COSSO, and the proof of
lemma 2 is similar to that of lemma 2 in the COSSO article.
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function 1
function 2

1.0

function 3
function 4
0.0
1

-1.0

Figure 1.

True and estimated function components for Example 1: True function (solid line), SS-
ANOVA estimator (dashed line), and 2LAND estimator (dotted line). The online version of
this figure is in color.
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True and estimated function components for Example 1: True function (solid line), SS-
ANOVA estimator (dashed line), and 2LAND estimator (dotted line). The online version of

this figure is in color.
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